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Abstract

Health is one of the main components of well-being and medical progress
has enabled many people to live better lives than at any time in history.
Moreover, since the second half of the 20th century, the right to health
has been recognized as a human right by international law as well as by
many national laws. Unfortunately for many years now - and the phe-
nomenon has become even more acute since COVID-19 pandemic - there
has been a worldwide shortage of healthcare workers. This is particularly
true for nurses, especially in poor countries. The aim of the paper is to
help assess the number of nurses needed to ensure both healthier care-
givers and healthier patients. To achieve this goal, we propose a model
with random arrivals and exits of patients who may be of a single type (or
several), and calculate the average care time they can receive. The results
are given in closed form when arrivals follow a Poisson probability distri-
bution. We also propose an analysis of the impact of working conditions
on the average time that can be devoted to a patient.
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1 Introduction

As part of his work on consumption, poverty, and well-being, which cul-
minated in the award of the Sveriges Riksbank Prize in Economic Sciences in
Memory of Alfred Nobel in 2015, Angus Deaton wrote a book entitled "The
Great Escape", providing an overview of developments in humanity over the last
two hundred and �fty years. Referring explicitly to the title of John Sturges'
1963 �lm, Deaton describes how humanity has escaped hardship and premature
death over this period: "Life is better now than at almost any time in history.
More people are richer and fewer people live in dire poverty. Lives are longer
and parents no longer routinely watch a quarter of their children die. Yet mil-
lions still experience the horrors of destitution and of premature death. The
world is hugely unequal." [2013, p. 9].

This spectacular evolution, like the glaring inequalities we see between coun-
tries and populations, naturally lies in the evolution of various components but,
as Deaton points out, income and health are two of the main components of
human well-being. Moreover, in the labor-intensive healthcare sector, there is
a correlation between the number of doctors and patient prognosis, as demon-
strated, for example, in the study by Needleman et al. [2002]. The role of
nurses is particularly crucial since, as stated by the World Health Organiza-
tion (WHO [2022]), through their work they promote health, prevent disease,
provide primary and community care, deliver care in emergency situations, and
their participation is essential to achieving universal health coverage. Nurses
are thus at the heart of any healthcare system.

Unfortunately, there is a worldwide shortage of healthcare personnel, and
the COVID-19 crisis has exacerbated these shortages. This is particularly true
for nurses and midwives, who account for over 50% of the world's current unmet
need for healthcare personnel (there is currently a global shortage of 900,000
midwives and 6 million nurses); although the situation is highly uneven, with
almost 90% of these shortages concentrated in low-income countries, particu-
larly in Africa and South-East Asia, as the United Nations Regional Information
Center (UNRIC [2021]) notes. Looking ahead, WHO estimates that an addi-
tional 9 million nurses and midwives will need to be recruited worldwide by
2030 (WHO [2022]) and, Sche�er and Arnold [2019] have predicted a shortfall
of 2.5 million nurses in 2030 for 23 OECD countries. In short, demand exceeds
supply everywhere.

Those shortages have two major implications.

First, they call into question decades of improvement in the provision of care
and patient management, by increasing the risk of death and increasing the loss
of opportunity (e.g., Twigg et al. [2015], Gri�ths et al. [2016], Haegdorens et
al. [2019], Needleman et al. [2020], Keck School of Medicine of USC [2023]). By
way of illustration, the Royal College of Emergency Medicine (RCEM [2023])
estimates the number of deaths in England at 442 per week for the year 2022
due to de�ciencies in emergency care. Equally worrying, on January 8, 2023,
the French Minister of Health declared in a televised interview: "We have fewer
professionals, fewer nurses, fewer orderlies, so we have beds that are closed. We
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are not closing them for the sake of closing them, we are closing them because
we have fewer sta�" (France Info [2023]). And although sta� shortages alone
do not explain all the hospital bed closures, 2 they do contribute to them.

Second, through the degradation of their working conditions, those short-
ages also have negative impacts on the physical, emotional, and mental health
of caregivers (sleep disorders, stress, ethical su�ering, burnout, depression, in-
juries, etc.) (Rotenstein et al. [2016], Duarte et al. [2020], Hardy et al. [2020],
Sexton et al. [2022]). These elements thus contribute to increased absenteeism,
sick leave, and even abandonment of their profession by many nurses, as high-
lighted, for example in the USA by the National Council of State Boards of
Nursing (NCSBN [2023]), which reports that 100,000 graduate nurses have left
the profession since 2020, and that a further 600,000 intend to leave the profes-
sion by 2027 due to stress, burnout, and retirement. In other words, we are in
a vicious circle where understa�ng leads to deterioration, which in turn leads
to understa�ng.

In view of these realities and their public health implications, all countries
around the world are simultaneously seeking to train, retain and recruit nurses,
including, at least for the past twenty years, by engaging in international com-
petition, in particular by recruiting those working in low-income countries (e.g.,
Brush et al. [2004], Morgan [2022]), which both the WHO (WHO [2021]) and
the International Council of Nurses (ICN [2023]) deplore and try to discourage
so as not to further accentuate inequalities between countries and populations.

It is against this backdrop that several countries have begun to consider,
without seeing it as a panacea, the creation of ratios of caregivers to patients
in hospitals, with the aim of improving both the quality of care and caregivers'
working conditions. To our knowledge, state of California (USA) was the �rst
to enacted a law of this type (Assembly Bill no394, Chap. 945, 1999), followed
by the state of Victoria (Autralia), Wales (United Kingdom), Scotland (United
Kingdom), Ireland, and the state of Queensland (Australia).3 This subject is
also currently under discussion in France, thanks to Proposition de loi no105
tabled on November 8, 2022 by Senator Bernard Jomier, aimed at modifying
the Public Health Code by creating hospital benchmarks in the form of ratios
of caregivers per patient.

The aim of our article is to contribute to the analysis of patient/nurse ratios.
We propose a way for assessing the number of nurses needed in a hospital de-
partment to achieve a given average time for each patient, while complying with
legislation on working hours. To this end, we calculate, for a given (potentially
random) resource, with random arrivals and exits of patients (which may be of
several types), the average time allowed for each patient. To be more precise,
let us consider a hospital care unit. During a time step (typically a day), we
consider a global care time that medical sta� can o�er. This global time, which
can be random (due to some absenteeism for example) is divided into the pa-
tients in the unit. Consider now an additional patient who is coming during the

2There is in particular the reorganization of the hospital with the shift to ambulatory care.
3For a positive assessment of this last case, we refer the reader to McHugh et al. [2021].
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time period under study. The question we raise is to know if the medical sta�
can deal with this additional patient, given that this patient needs a minimum
time of care.

Within the theoretical literature, our paper is in line with the game-theoretic
dynamic models with random arrivals that Pierre Bernhard has developed with
his co-authors in the context of biology (Bernhard and Hamelin [2016]) and
economics (Bernhard and Deschamps [2017][2020][2021]). However, our article
di�ers from these in considering that the resource may be random and that
there are di�erent types of arrivals (following Biard and Deschamps [2021]).

The paper is organized as follows. In Section 2, we present our model in
the most simple case where there is only one type of patients (i.e., patients are
perfect clones of each other). The arrivals and exits of these patients are random,
and we calculate the average time that can be spent on a patient in a hospital
service. The results are obtained in closed form for the case of Poisson arrivals.
In Section 3, the previous results are generalized to the case where there are two
types of patients, and it helps to understand how to deal with cases where it
would be appropriate to consider a greater number of patient types. Finally, in
Section 4, we study the in�uence of working conditions (summarized as a linear
function linking the evolution of the resource from period i to period i+ 1) on
the average time that can be devoted to a patient.

2 One pro�le of patients

2.1 General results

We denote by τi the available care time during time step i ∈ N in the hospital
unit we focus on. The sequence (τi)i≥1 can be either deterministic or a sequence
of independent random variables with expectation τ̄i := E[τi]. In the �rst case,
we have τ̄i = E[τi] = τi so we can use the common notation τ̄i for both cases.
The main question is to compute the care time available for an additional patient
who is coming in the unit during the period under study. We assume in this
section that all patients are identical, that is to say that the total care time τi
is split equally into the patients. Mathematically, let Ni be the number of other
patients in this unit at time i ∈ N. So, at time i, there are Ni + 1 patients in
the unit. Finally, we assume that the (τi)i∈N and the (Ni)i∈N are independent,
that is to say that the global care time by time step is independent from the
number of patients in the unit. The mean care time by patient at time i ∈ N,
denoted by t̄i, is given by

t̄i = E
[

τi
Ni + 1

]
. (1)

Remark 2.1. A naive approach could state that the mean care time by patient
at step i would be equal to the mean global care time divided by the mean number
of patients present at time i. However, it is well known by Jensen inequality
(Jensen [1906]) that

E[τi]
E[Ni + 1]

≤ E
[

τi
Ni + 1

]
.

As a consequence, the naive approach undervalues the mean care time by patient.
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Let us start with N0 patients in the unit. We assume that N0 is a random
variable over N, independent from all other random variables. At each time
i ∈ N∗, Ai new patients arrive in the unit. We assume that (Ai)i≥1 is a se-
quence of independent and identically distributed (iid) random variables in N,
with common probability-generating function G(x) := E[xA1 ]. At time i ∈ N∗,
each patient in the unit at time i − 1 can leave the unit with probability q.
Consequently, given Ni−1, the number of departures at time i ≥ 1, denoted by
Di, follows a binomial distribution with parameters Ni−1 and q:

Di|Ni−1 ∼ Bin(Ni−1, q) . (2)

Finally, we have:
Ni+1 = Ni +Ai+1 −Di+1 , i ∈ N . (3)

Proposition 2.2. Denote by n̄i := E[Ni] the mean number of patients at time
i, for i ∈ N. Let us de�ne µ := E[A1] as the mean of the number of arrivals by
time step. We have, for all i ∈ N,

n̄i = pi
(
n̄0 −

µ

q

)
+

µ

q
,

where p = 1− q. By consequence,

� if n̄0 =
µ

q
, then n̄i =

µ

q
for all i ∈ N;

� if n̄0 <
µ

q
, then n̄i is an increasing sequence;

� if n̄0 >
µ

q
, then n̄i is a decreasing sequence.

In the three cases, the sequence is convergent with limit equal to

lim
i→∞

n̄i =
µ

q
.

Proof. From (3), we have

n̄i+1 = n̄i + µ− E[Di+1] .

From (2), E[Di+1] = qn̄i, so

n̄i+1 = (1− q)n̄i + µ .

All results come from the fact that (n̄i)i∈N is a linear sequence.

This result states that the mean number of patients in the care unit is quite
regular and tends to the ratio between the mean number of arrivals at each time
over the probability of leaving. The behavior of this mean number only depends
on the initial value. If it is lower (resp. higher) than the limit ratio, then the
mean number of patients increases (resp. decreases). The particular case where
the initial value is equal to the limit gives a constant mean number of patients
(see Figure 1 for an illustration).
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Figure 1: The mean number of patients is either constant if n̄0 = µ
q , decreasing

if n̄0 > µ
q , or increasing if n̄0 < µ

q . See Proposition 2.2.

Remark 2.3. Assume here that N0 is distributed as A1, that is to say that the
number of patients at time 0 is distributed as the number of incoming patients
during other times. In this case, since n̄0 = µ < µ/q, the sequence (n̄i)i≥0 is
increasing.

Lemma 2.4. For i ∈ N, denote by Gi(x) := E[xNi ] the probability-generating
function of Ni. We have, for all i ∈ N,

Gi+1(x) = G(x)Gi(px+ q)

Proof. From (2), Di+1 can be rewritten as:

Di+1 =

Ni∑

k=1

Ik ,

where (Ik)k≥1 is an iid sequence of Bernoulli random variables with parameter
q. Thus, from (3),

Ni+1 =

Ni∑

k=1

(1− Ik) +Ai+1 .

Since Ai+1 and Ni are independent, we have:

Gi+1(x) = G(x)Gi ◦G1−I1(x) ,

where G1−I1(x) := E[x1−I1 ] = px+q since 1−I1 follows a Bernoulli distribution
with parameter 1− q = p.
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Lemma 2.5. For i ∈ N∗, we have

Gi(x) = G0(p
i(x− 1) + 1)

i−1∏

k=0

G
(
pk(x− 1) + 1

)
.

Proof. By induction. For i = 0, using Lemma 2.4,

G1(x) = G(x)G0(px+ q) = G0(p
1(x− 1) + 1)

0∏

k=0

G(p0(x− 1) + 1).

From step i+ 1 given step i, we use again Lemma 2.4:

Gi+1(x) = G(x)Gi(px+ q) ,

= G(x)G0(p
i(px+ q − 1) + 1)

i−1∏

k=0

G
(
pk(px+ q − 1) + 1

)
,

= G(x)G0(p
i(px− p) + 1)

i−1∏

k=0

G
(
pk(px− p) + 1

)
,

= G0(p
i+1(x− 1) + 1)G(x)

i−1∏

k=0

G
(
pk+1 (x− 1) + 1

)
.

Since
G(x) = G(p0(x− 1) + 1),

and
i−1∏

k=0

G
(
pk+1 (x− 1) + 1

)
=

i∏

k=1

G
(
pk (x− 1) + 1

)
,

we get the result.

Proposition 2.6. We have

t̄0 = τ̄0

∫ 1

0

G0(x)dx,

and for i ≥ 1,

t̄i = τ̄i

∫ 1

0

G0(p
i(x− 1) + 1)

i−1∏

k=0

G
(
pk(x− 1) + 1

)
dx.

Proof. From (1),

t̄i = E
[

τi
Ni + 1

]
.

Since τi and Ni are independent,

ti = τ̄iE
[

1

Ni + 1

]
.

We have

E
[

1

Ni + 1

]
= E

[∫ 1

0

xNidx

]
=

∫ 1

0

E
[
xNi
]
dx .

Since E[xNi ] = Gi(x) and using Lemma 2.5, we get the result.
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As a consequence, to get the mean care time by patient at time i, we only
need the probability generating functions of the initial number and the number
of arrivals by time step since the integral is easy to get numerically. Note that
two di�erent distributions for the arrivals give two di�erent results even if the
mean numbers of arrivals are equal.

2.2 The Poisson case

In this subsection, we assume that N0 is Poisson distributed with parameter
λ0 and the Ai's are Poisson distributed with parameter λ.

Proposition 2.7. We have, for all i ∈ N,

n̄i = pi
(
λ0 −

λ

q

)
+

λ

q
.

By consequence,

� if λ0 =
λ

q
, then n̄i =

λ

q
for all i ∈ N;

� if λ0 <
λ

q
, then n̄i is an increasing sequence;

� if λ0 >
λ

q
, then n̄i is a decreasing sequence.

In the three cases, the sequence is convergent with limit equal to

lim
i→∞

n̄i =
λ

q
.

Proof. The results are the direct consequence of Proposition 2.2 since the mean
number of new arrivals is equal to λ and the mean number of patients present
at time 0 is λ0.

Proposition 2.8. We have,

t̄0 =
τ̄0
λ0

(
1− e−λ0

)
, (4)

and for i ∈ N∗,

t̄i =
qτ̄i

(qλ0 − λ)pi + λ

(
1− exp

{
− (qλ0 − λ) pi + λ

q

})
. (5)

In the case where λ0 = λ, we have, for all i ∈ N,

t̄i =
qτ̄i

λ (1− pi+1)

(
1− exp

{
−λ

1− pi+1

q

})
. (6)

Proof. Since the Ai's are Poisson distributed, we have

G(x) = eλ(x−1) .
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For N0 ∼ P(λ0), we also have

G0(x) = eλ0(x−1) .

So we easily get (4) from Proposition (2.6) and we have

G0(p
i(x− 1) + 1) = eλ0p

i(x−1) .

Since

i−1∏

k=0

exp
{
λ
(
(pk(x− 1) + 1)− 1

)}
= exp

{
λ(x− 1)

1− pi

q

}
,

we get

G0(p
i(x− 1) + 1)

i−1∏

k=0

G
(
pk(x− 1) + 1

)
= exp

{(
λ0p

i + λ
1− pi

q

)
(x− 1)

}
.

Then, we apply Proposition 2.6 to get (5). Taking λ0 = λ in (4) and (5) gives
(6).

In the Poisson case, results are totally explicit. In particular, that allows
us to study of the behavior of the mean care time by patient over time (see
Proposition 2.9).

Proposition 2.9. Assume τ̄i is constant over time and denote by τ̄ their com-
mon value. We have

� if λ0 =
λ

q
, then t̄i =

qτ̄

λ

(
1− e−

λ
q

)
for all i ∈ N;

� if λ0 <
λ

q
, then t̄i is a decreasing sequence;

� if λ0 >
λ

q
, then t̄i is an increasing sequence.

In the three cases, the sequence is convergent with limit equal to

lim
i→∞

t̄i =
qτ̄

λ

(
1− e−

λ
q

)
.

Proof. Letting τi = τ for all i in Proposition 2.8 gives

t̄i =
qτ̄

(qλ0 − λ)pi + λ

(
1− exp

{
− (qλ0 − λ) pi + λ

q

})
,

which can been rewritten as

t̄i = τ̄ f(X(i)),

with X(i) = (qλ0−λ)pi+λ
q > 0 and f(X) = 1−e−X

X . Since X ′(i) = ln(p)pi(qλ0−λ)
q

and ln(p) < 0, we have that

� X(i) is constant if λ0 =
λ

q
;
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� X(i) is increasing if λ0 <
λ

q
;

� X(i) is decreasing if λ0 >
λ

q
.

Since f ′(X) = e−XX−(1−e−X)
X2 = X+1−eX

eXX2 , the sign of f ′(X) is the sign of X +
1 − eX . Since (X + 1 − eX)′ = 1 − eX which is non positive on (0,+∞),
X 7→ X + 1− eX is decreasing on (0,+∞), so X + 1− eX ≤ 0 for X ∈ (0,+∞)
since 0 + 1 − e0 = 0. As a consequence, f ′(X) < 0 for X ∈ (0,+∞) and f is
decreasing on (0,+∞), which ends the proof.

In other words, if the mean care time is constant over time, the care time
per patient is quite regular and its long-term behavior does not depend on the
initial conditions. This initial value determines the monotony of this individual
time only through the comparison between the initial mean number of patients
and the ratio of the mean new patients per period and the probability of a
departure. Figure 2 represents the three behaviors of the sequence (t̄i)i∈N and
its convergence.

Figure 2: The mean care time for an additional patient is either constant if
λ0 = λ

q , decreasing if λ0 < λ
q , or increasing if λ0 > λ

q . See Proposition 2.9.
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3 Two pro�les of patients

In this section, only two pro�les of patients are investigated. Note that the
extension to more than two patients types could be obtained using the same
methods. Nevertheless, expressions for more than two patients types are quite
tedious and that is the reason why it is decided not to present them for the sake
of clarity.

3.1 General results

We assume throughout this section that two di�erent types of patients arrive
in the unit. The two pro�les are called type A and type B. A B-patient needs
α more care time than a A-patient. We furthermore assume that α ∈ (1,+∞).
Denote by N

(A)
i (resp. N (B)

i ) the number of A-patients (resp. B-patients) who

are present in the unit at time i ∈ N. We also consider that both
(
N

(A)
i

)
i≥1

and
(
N

(B)
i

)
i≥1

are iid sequences and independent from one another. As previously,

the number of patients are independent from the available care time (τi)i∈N.
The mean care time for an additional A-patient who arrives at time i ∈ N,
denoted by t̄

(A)
i , is given by

t̄
(A)
i = E

[
τi

(N
(A)
i + 1) + αN

(B)
i

]
, (7)

and the time of care for an additional B-patient, denoted by t̄
(B)
i , is

t̄
(B)
i = E

[
ατi

N
(A)
i + α(N

(B)
i + 1)

]
.

The processes (N
(A)
i )i≥0 and (N

(B)
i )i≥0 evolve similarly to that of (Ni)i≥1 in

Section 2. Explicitly, let us start withN
(A)
0 of A-patients andN

(B)
0 of B-patients

in the unit. We assume that N
(A)
0 and N

(B)
0 are two random variables in N,

independent from all other random variables, and mutually independent. Let
A

(A)
i (resp. A

(B)
i ) the number of new A-patients (resp. B-patients) at time i.

Both sequences (A
(A)
i )i≥1 and (A

(B)
i )i≥1 are iid sequences of positive random

variables in N and mutually independent. Denote by GA(A)(x) (resp. GA(A)(x))
the common probability-generation function of the A

(A)
i 's (resp. A(B)

i 's). Each
A-patient (resp. B-patient) present at time i−1 can leave the unit at time i ∈ N∗

with probability q(A) (resp. q(B)). Consequently, the number of departures of
A-patients (resp. B-patients) at time i, denoted by D

(A)
i (resp. D

(B)
i ), given

N
(A)
i−1 (resp. N

(B)
i−1), follows a binomial distribution with parameters N

(A)
i−1 and

q(A) (resp. N (B)
i−1 and q(B)):

D
(A)
i |Ni−1 ∼ Bin(N

(A)
i−1, q

(A)) , (8)

and
D

(B)
i |Ni−1 ∼ Bin(N

(B)
i−1 , q

(B)) . (9)
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Finally, we have:

N
(A)
i+1 = N

(A)
i +A

(A)
i+1 −D

(A)
i+1 , i ∈ N , (10)

and
N

(B)
i+1 = N

(B)
i +A

(B)
i+1 −D

(B)
i+1 , i ∈ N . (11)

Proposition 3.1. Denote by n̄
(A)
i := E[N (A)

i ] the mean number of A-patients

at time i and n̄
(B)
i := E[N (B)

i ] the mean number of B-patients at time i. Let

n̄i := n̄
(A)
i + n̄

(B)
i the total number of patients at time i. Let us de�ne µ(A) :=

E[A(A)
1 ] and µ(B) := E[A(B)

1 ] the mean number of arrivals for A-patients and
B-patients by time step, respectively. We have

n̄
(A)
i = p(A)i

(
n̄
(A)
0 − µ(A)

q(A)

)
+

µ(A)

q(A)
,

and

n̄
(B)
i = p(B)i

(
n̄
(B)
0 − µ(B)

q(B)

)
+

µ(B)

q(B)
,

where p(A) = 1− q(A) and p(B) = 1− q(B). So

n̄i = p(A)i
(
n̄
(A)
0 − µ(A)

q(A)

)
+ p(B)i

(
n̄
(B)
0 − µ(B)

q(B)

)
+

µ(A)

q(A)
+

µ(B)

q(B)
.

Letting n goes to in�nity gives

lim
i→∞

n̄
(A)
i =

µ(A)

q(A)
, lim
i→∞

n̄
(B)
i =

µ(B)

q(B)
, and lim

i→∞
n̄i =

µ(A)

q(B)
+

µ(B)

q(B)
.

Proof. The proof is similar to the one of Proposition 2.2 since (10) and (11) are
similar to (3).

The behaviors of the mean number of A-patients or B-patients are similar
to the mean number of patients in the one-pro�le case (see Proposition 2.2). In
particular, the decrease or the increase of theses numbers only depends on the
position of the initial mean numbers with respect to the limit values, which are
equal to the ratio between the mean number of arrivals and the probability of
leaving for each type of patients. The discussion on the total number of patients
is done in Remark 3.2.

Remark 3.2. If µ(A)/q(A) < (>)n̄
(A)
0 , then the population of A-patients in-

creases (decreases) with time. The same results hold for the B-patients. Ob-
viously, if the two populations increase (decrease), the total number of patients
increases (decreases) too. It is more complicated when one population increases
and the other decreases. Indeed, many situations can appear (an increase of the
total number of patients all along the time, or a decrease all along the time,
or a decrease then an increase or an increase then a decrease). However, we
can show (studying i 7→ n̄i) that there is one change at most and the monotony
changes after time:

TC =




ln

(
− ln(p(B))

ln(p(A))

n̄
(B)
0 −µ(B)/q(B)

n̄
(A)
0 −µ(A)/q(A)

)

ln
(
p(A)/p(B)

)




,
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where ⌈x⌉ is the ceiling of x. This con�guration can be seen in Figure 3.

Figure 3: One situation with decreasing mean number of A-patients, increasing
mean number of B-patients, and a �uctuation in the total mean number (see
Remark 3.2).

Proposition 3.3. We have

t̄
(A)
0 = τ̄i

∫ 1

0

G
(A)
0 (x)G

(B)
0 (xα)dx,

and

t̄
(B)
0 = ατ̄i

∫ 1

0

xα−1G
(A)
0 (x)G

(B)
0 (xα)dx.

For i ≥ 1, we have

t̄
(A)
i = τ̄i

∫ 1

0

G
(A)
0 (pi(x− 1) + 1)G

(B)
0 (pi(xα − 1) + 1)

i−1∏

k=0

G(A)
(
pk(x− 1) + 1

)
G(B)

(
pk(xα − 1) + 1

)
dx,
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and

t̄
(B)
i = ατ̄i

∫ 1

0

xα−1G
(A)
0 (pi(x− 1) + 1)G

(B)
0 (pi(xα − 1) + 1)

i−1∏

k=0

G(A)
(
pk(x− 1) + 1

)
G(B)

(
pk(xα − 1) + 1

)
dx.

Proof. From (7),

t̄
(A)
i = E

[
τi

(N
(A)
i + 1) + αN

(B)
i

]
.

Since τi, N
(A)
i and N

(B)
i are independent,

t̄
(A)
i = τiE

[
1

(N
(A)
i + 1) + αN

(B)
i

]
.

We have

E

[
1

(N
(A)
i + 1) + αN

(B)
i

]
= E

[∫ 1

0

xN
(A)
i +αN

(B)
i dx

]
=

∫ 1

0

E
[
xN

(A)
i +αN

(B)
i

]
dx .

For t̄(B)
i , from (3.1),

t̄
(B)
i = E

[
ατi

N
(A)
i + α(N

(B)
i + 1)

]
.

Since τi, N
(A)
i and N

(B)
i are independent,

t̄
(B)
i = ατiE

[
1

N
(A)
i + αN

(B)
i + α

]
.

We have

E

[
1

N
(A)
i ) + αN

(B)
i + α

]
= E

[∫ 1

0

xN
(A)
i +αN

(B)
i +α−1dx

]

=

∫ 1

0

xα−1E
[
xN

(A)
i +αN

(B)
i

]
dx .

Since N
(A)
i and N

(B)
i are independent,

E
[
xN

(A)
i +αN

(B)
i

]
= E

[
xN

(A)
i

]
E
[
xαN

(B)
i

]
= G(A)(x)G(B)(xα) .

Since (10) and (11) are similar to (3), then Lemma 2.5 applies for G(A)(x) and
G(B)(xα), which ends the proof.

Given the probability-generating functions of the number of new incomers of
both types and the probability-generating functions of initial numbers of both
type, these results give the care time that a new patient of both type could
expect at step i, t̄(A)

i and t̄
(B)
i . Let us recall here that a B-patient needs twice

as much care time as a A-patient. We notice that t̄(B)
i is not equal to αt̄

(A)
i but

also depends on the dynamics of both numbers of A-patients and B-patients.
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3.2 The Poisson case

In this subsection, we assume that N (A)
0 is Poisson distributed with parame-

ter λ(A)
0 , N (B)

0 is Poisson distributed with parameter λ(B)
0 , the A(A)

i 's are Poisson

distributed with parameter λ(A), and the A
(B)
i 's are Poisson distributed with

parameter λ(B).

Proposition 3.4. We have

n̄
(A)
i = p(A)i

(
λ
(A)
0 − λ(A)

q(A)

)
+

λ(A)

q(A)
,

and

n̄
(B)
i = p(B)i

(
λ
(B)
0 − λ(B)

q(B)

)
+

λ(B)

q(B)
.

So

n̄i = p(A)i
(
λ
(A)
0 − λ(A)

q(A)

)
+ p(B)i

(
λ
(B)
0 − λ(B)

q(B)

)
+

λ(A)

q(A)
+

λ(B)

q(B)
.

Letting n goes to in�nity gives

lim
i→∞

n̄
(A)
i =

λ(A)

q(A)
, lim
i→∞

n̄
(B)
i =

λ(B)

q(B)
, and lim

i→∞
n̄i =

λ(A)

q(B)
+

λ(B)

q(B)
.

Proof. The results are direct consequences of Proposition 3.1 since the mean
numbers of new arrivals are respectively equal to λ(A) and λ(B) and the mean
numbers of patients present at time 0 are, respectively, λ(A)

0 and λ
(B)
0 for A-

patients and B-patients.

Proposition 3.5. We have

t̄
(A)
0 = τ̄ie

−
(
λ
(A)
0 +λ

(B)
0

) ∫ 1

0

exp
{
λ
(A)
0 x+ λ

(B)
0 xα

}
dx, (12)

and

t̄
(B)
0 = ατ̄ie

−
(
λ
(A)
0 +λ

(B)
0

) ∫ 1

0

xα−1 exp
{
λ
(A)
0 x+ λ

(B)
0 xα

}
dx. (13)

For i ≥ 1, we have

t̄
(A)
i = τ̄ie

−
(
C

(A)
i +C

(B)
i

) ∫ 1

0

exp
{
C

(A)
i x+ C

(B)
i xα

}
dx,

and

t̄
(B)
i = ατ̄ie

−
(
C

(A)
i +C

(B)
i

) ∫ 1

0

xα−1 exp
{
C

(A)
i x+ C

(B)
i xα

}
dx,

with

C
(A)
i = λ

(A)
0 p(A)i + λ(A) 1− p(A)i

q(A)
,

and

C
(B)
i = λ

(B)
0 p(B)i + λ(B) 1− p(B)i

q(B)
.
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Proof. The results are the consequences of Propositions 3.3. To get the desired
results, we just have to explicit

G
(A)
0 (x)G

(B)
0 (xα),

and

G
(A)
0 (pi(x−1)+1)G

(B)
0 (pi(xα−1)+1)

i−1∏

k=0

G(A)
(
pk(x− 1) + 1

)
G(B)

(
pk(xα − 1) + 1

)
.

Since the A
(A)
i 's and the A

(B)
i 's are Poisson distributed, we have

G(A)(x) = eλ
(A)(x−1) and G(B)(x) = eλ

(B)(x−1) .

For N (A)
0 ∼ P(λ

(A)
0 ) and N

(B)
0 ∼ P(λ

(B)
0 ), we also have

G
(A)
0 (x) = eλ

(A)
0 (x−1) and G

(B)
0 (x) = eλ

(B)
0 (x−1) .

So we easily get (12) and (13) from Proposition 3.3 and we have

G
(A)
0 (pi(x− 1) + 1) = eλ

(A)
0 pi(x−1) .

Since

i−1∏

k=0

exp
{
λ(A)

(
(p(A)k(x− 1) + 1)− 1

)}
= exp

{
λ(A)(x− 1)

1− p(A)i

q(A)

}
,

we get

G
(A)
0 (p(A)i(x− 1) + 1)

i−1∏

k=0

G(A)
(
p(A)k(x− 1) + 1

)
=

exp

{(
λ
(A)
0 p(A)i + λ(A) 1− p(A)i

q(A)

)
(x− 1)

}
,

which is equal to eC
(A)
i (x−1). Following the same way gives

G
(B)
0 (p(B)i(x− 1) + 1)

i−1∏

k=0

G(B)
(
p(B)k(x− 1) + 1

)
= eC

(B)
i (x−1) ,

which ends the proof.

The Poisson case gives more tractable expressions, which allows us to give
the asymptotic behavior (see Proposition 3.6). Figure 4 represents one example
of these results where a B-patient needs twice as much care time as a A-patient
and the global care time is constant.
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Figure 4: One situation where a B-patient needs twice as much care time as a
A-patient (see Proposition 3.5).

Proposition 3.6. Assume τ̄i is constant over time and denote by τ̄ their com-
mon value. We have

lim
i→∞

t̄
(A)
i = τ̄ e

−
(

λ(A)

q(A)
+λ(B)

q(B)

) ∫ 1

0

exp

{
λ(A)

q(A)
x+

λ(B)

q(B)
xα

}
dx ,

and

lim
i→∞

t̄
(B)
i = ατ̄e

−
(

λ(A)

q(A)
+λ(B)

q(B)

) ∫ 1

0

xα−1 exp

{
λ(A)

q(A)
x+

λ(B)

q(B)
xα

}
dx .

In other words, both individual care times are convergent in the case of constant
global care time.

Proof. Suppose τ̄i = τ̄ for all i in Proposition 3.5. We have

lim
i→∞

C
(A)
i =

λ(A)

q(A)
,

and

lim
i→∞

C
(B)
i =

λ(B)

q(B)
,
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which ends the proof.

4 Working conditions impact

In this section, we focus on the quantity τ̄i, that is the available mean care
time at step i. We aim to model the impact of a degradation in the working con-
ditions by assuming a decreasing care time along the periods. Mathematically,
let

τ̄i+1 = aτ̄i + b , i ∈ N .

Such a sequence is not necessarily decreasing. Let us discuss the cases.

� If a = 1, then b has to be negative and greater than −τ̄0/N , where N is
the �nal time of the study to guarantee the positivity of τ̄i. In this case,
we have a linear decrease for the available care time.

� If 0 < a < 1, the sequence decreases if τ̄0 > b/(1 − a) and converges to
b/(1− a).

� If a > 1, the sequence diverges.

� If a < 0, the sequence oscillates.

Only the two �rst cases are relevant. The �rst case could be seen as a constant
degradation without reaction. The second case could model a situation where
the degradation is controlled by managers to ensure a minimum service. In this
situation, the particular case b = 0 could model an abrupt degradation without
reaction (since the limit is zero).

For both cases of one pro�le and two pro�les, we are going in this section to
compare four di�erent situations with respect to the sequence (τ̄i)i∈N:

Model 1 A constant situation: τ̄i = τ̄0 for all i ∈ N.

Model 2 A constant degradation: τ̄i+1 = τ̄i − 0.1 for i ∈ N∗.

Model 3 A brutal degradation without reaction: τ̄i+1 = 0.99τ̄i for i ∈ N∗.

Model 4 A brutal degradation with reaction: τ̄i+1 = 0.99τ̄i + 0.2 for i ∈ N∗.

The four cases are plotted in Figure 5.

4.1 One pro�le of patients

In this subsection, we consider the setting of Proposition 2.8, that is to say
that there exists one pro�le of patients and the arrivals are Poisson distributed.
Let us recall here that in the case where the global care time is constant, Propo-
sition 2.9 states that the mean care time by patient converges and the behavior
is regular. In particular, this time is either increasing or decreasing (or con-
stant). For the four models of this section, Figure 6 and Figure 7 depict the two
situations for the mean global care time τ̄i. In Figure 6, the individual mean
care time is increasing at the beginning but, for the three cases that model a

18



Figure 5: The four situations for the (τi)i∈N during a short period (left-hand
side graph) and a long period (right-hand side graph).

degradation of the working conditions, this time is decreasing afterwards. In
Figure 7, the individual mean care time is decreasing and continue to decrease
for the three models with a degradation on working conditions but stabilizes
when the global mean care time is constant. In both �gures, we observe two
phases. The �rst one ends when the constant case stabilizes and the behavior
of the four cases are quite similar. In a second phase, we clearly see di�erences.
The individual mean care time in the two cases without reaction goes to zero
(linearly when the degradation is constant and exponentially when the degra-
dation is brutal). When there exists a reaction, the individual mean care time
stabilizes and stay positive. The shape of curves in the second phase is similar
to the shape of curves of τ̄i (Figure 5).

4.2 Two pro�les of patients

In this subsection, we consider the setting of Proposition 3.5 where there exist
two pro�les of patients (A and B) and the arrivals are Poisson distributed. Here
a B-patient needs twice as much care time as a A-patient. Figure 8 represents
the individual mean care time for an additional patient in the case where this
patient is of type A or type B. These two individual mean care times are plotted
for the four cases of global mean care time. We retrieve the two phases we have
mentioned in the previous subsection. We observe the same behaviors as in the
one pro�le case but we can notice that the di�erence of individual mean care
time between a A-patient and a B-patient reduces with time for the three cases
where there exists a degradation of working conditions even in the case where
there exists a reaction. Figure 9 gathers the four models for both types.
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Figure 6: The four situations for the (τi)i∈N during a short period (left-hand
side graph) and a long period (right-hand side graph).

Figure 7: The four situations for (τi)i∈N during a short period (left-hand side
graph) and a long period (right-hand side graph).
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Figure 8: The four situations for (τi)i∈N during a short period (left-hand side
graph) and a long period (right-hand side graph).

Figure 9: The four situations for (τi)i∈N during a short period (left-hand side
graph) and a long period (right-hand side graph).
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5 Conclusion

The main objective of the paper at hand has been to propose a model in
order to help assess the number of nurses needed to ensure both healthier care-
givers and healthier patients. More exactly, we have proposed a simple model
where there is, for everyone, an unknown exact number of patients at each time
step. We have assumed that: 1/ all nurses are perfect substitutes (i.e., one hour
of a nurse is equal to one hour of another), 2/ patients could be categorized into
several types (once and for all), and 3/ entry and exit devices are exogeneous
and common knowledge. In this setting we are able to calculate the mean avail-
able care time and thereby provide assistance in assessing the potential nursing
shortage in a hospital. It should also be noted that we have made the assump-
tion that patient types correspond to pathology types. However, in the event
of severe resource scarcity, issues of social choice concerning the distribution
of this resource could arise, and patient types could then be reinterpreted as
indicating orders of priority. In other words, the model could be reinterpreted
in situations where patients need to be sorted.

We left for future research the cases where nurses have di�erent skills and
must cooperate to care of a given type of patient (i.e., the case where nurses
are complement).

To our mind, our analysis has three limits. First, the available care time
during time step i (i.e., τi) is independent of the number of other patients in
the same unit at time i (i.e. Ni), which means that we do not consider situa-
tions where the hospital adjusts the number of nurses on the number of patients
present at previous periods. Second, our model is only relevant in steady state
situations because our random parameters are constant over time. Third, we do
not di�erentiate between the di�erent exit situations (i.e., we do not distinguish
the case where the patient leaves because: she is dying, she leaves cured, or she
is transported to another service).

Finally, our analysis only focused on the quantity of human resources, but
we are aware that there is in fact an interplay between these and, the quality
of human ressources (e.g., education level and nursing experience), the material
resources, the organization of care services and their cooperation (e.g., Tamata
and Mohammadnezhad [2022]).
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