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Abstract

We introduce a non linear weighted Shapley value for cooperative games with transferable utility,

in which the weights are endogenously given by the players’ stand-alone worths. We call it the

proportional Shapley value since it distributes the Harsanyi dividend (Harsanyi, 1959) of all coali-

tions in proportion to the stand-alone worths of its members. We show that this value recommends

an appealing payoff distribution in a land production economy introduced in Shapley and Shubik

(1967). Although the proportional Shapley value does not satisfy the classical axioms of linearity

and consistency (Hart and Mas-Colell, 1989), the main results provide comparable axiomatic char-

acterizations of our value and the Shapley value by means of weak versions of these two axioms.

Moreover, our value inherits several well-known properties of the weighted Shapley values.

Keywords: (Weighted) Shapley value, proportionality, Harsanyi dividends, potential, land

production economy.

1. Introduction

The Shapley value (Shapley, 1953b) is a central tool in game theory, and has received con-

siderable attention in numerous fields and applications. Moretti and Patrone (2008) and other

articles in the same issue survey several examples. Many axiomatic characterizations have helped

to understand the mechanisms underlying the Shapley value, and compare it to other types of

values. Shapley’s original characterization (Shapley, 1953b) and the one in Shubik (1962) rely on

the axiom of additivity/linearity. In Myerson (1980), the axiom of balanced contribution requires

that if a player leaves a game, then the payoff variation for another player is identical to his/her

own payoff variation if this other player leaves the game. Young (1985) invokes an invariance prin-

ciple: a player should obtain the same payoff in two games in which all his/her contributions to
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coalitions are identical. Harsanyi (1959) proposes an interpretation of the Shapley value in terms

of the coalitions’ dividends. Roughly speaking, the Harsanyi dividend of a coalition measures the

coalition’s contribution to the worth of the grand coalition. The Shapley value splits equally the

dividend of each coalition among its members. This interpretation has given rise to other solution

concepts related to the Shapley value such as the selectope (Hammer et al., 1977) and the weighted

Shapley values, originally introduced in Shapley (1953a) but popularized later by Kalai and Samet

(1987). The selectope is the convex hull of the payoff vectors obtained by assigning the Harsanyi

dividends to the associated coalitions’ members. A weighted Shapley value splits the Harsanyi

dividends in proportional to the exogenously given weights of its members. Both solution concepts

are linear. The Harsanyi dividends are also often employed to compare different values (see section

5 in Herings et al., 2008; van den Brink et al., 2011, for instance).

In this article, we introduce a value based on another distribution of the Harsanyi dividends.

It is similar in spirit to the weighted Shapley values, except that the weights are endogenous:

they are given by the stand-alone worths of the players. Thus it coincides with the Shapley value

whenever all such worths are equal. We call our value the proportional (weighted) Shapley value.

The proportional principle incorporated to this value is often considered as intuitive in various

classes of sharing problems (see Moulin, 1987, for instance).1 Although the proportional Shapley

value is non linear, it admits a close form and operational expression. It also satisfies many clas-

sical axioms such as efficiency and the dummy player property, and preserves the equal treatment

property contrary to the asymmetric weighted Shapley values. The proportional Shapley value is

well-defined for games in which the worths of all singleton coalitions have the same sign. This

(not so) restrictive class of games includes several applications, such as airport games (Littlechild

and Owen, 1973), auction games (Graham et al., 1990), carpool problems (Naor, 2005) and data

sharing games (Dehez and Tellone, 2013). In airport games, a player is characterized by a positive

real number (his/her “cost”), and the worth of the associated singleton coalition is equal to this

number. So, it makes sense to use these numbers to define weights. In this article, we focus on the

land production economies introduced by Shapley and Shubik (1967) in order to underline that

the proportional Shapley value prescribes particularly relevant payoff distributions, especially com-

pared to the (weighted) Shapley value(s). An expression of the Shapley value for land production

economies is also given.

The rest of our contributions can be described as follows.

Firstly, the proportional Shapley value inherits some of the results concerning the weighted

Shapley values. In particular, we can easily adapt the characterization in Myerson (1980) by using

an axiom of proportional balanced contributions, and the characterization in Hart and Mas-Colell

(1989) by constructing a proportional potential function. This part also includes a recursive formula

inspired by the recursive formula of the Shapley value in Maschler and Owen (1989) and underlines

that the proportional Shapley value of any convex game is in the core as a corollary of a result in

Monderer et al. (1992). The proofs of these benchmark results are straightforward and omitted.

In fact, any result stated for the weighted Shapley values on a class of games built from a fixed

1Other values incorporating some degree of proportionality are the proportional value (Ortmann, 2000) and the

proper Shapley values (van den Brink et al., 2015).
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characteristic function and its subgames also holds for the proportional Shapley value. A similar

result is pointed out by Neyman (1989), who shows that Shubik (1962)’s axiomatic characterization

of the Shapley value still holds if the axioms are applied to the additive group generated by the

considered game and the games obtained from it after the nullification of any coalition (called

subgames by Neyman).

Secondly, as soon as we consider a class of games with varying characteristic functions, the im-

mediate transposition of existing results is no longer possible. For instance, the proportional Shap-

ley value does not satisfy the classical axioms of linearity and consistency (Hart and Mas-Colell,

1989). Nevertheless, weak versions of these two axioms can be invoked (and even combined) to

provide comparable axiomatic characterizations of the proportional Shapley value and the Shapley

value, in the sense that these results only differ with respect to one axiom. Both characterizations

have in common the well-known axioms of efficiency and dummy player out (Derks and Haller,

1999), which states that the payoff of a player is not affected if a dummy player leaves the game,

and our weak version of linearity. More specifically, Proposition 5 shows that if two values satisfy

efficiency, dummy player out and weak linearity, and if they coincide on games that are additive

except, possibly, for the grand coalition, then they must be equal. In other words, there exists a

unique extension of a value defined on these almost additive games to the set of all games in the

much larger class we consider. The proof of this result emphasizes that tools from linear algebra

can still be used on a class of games that is not a vector space.

Thirdly, Proposition 7 invokes the weak version of the axiom of consistency in addition to the

three axioms appearing in the previous result. It turns out that a value satisfying these four axioms

is the Shapley value if and only if it also satisfies the classical axiom of standardness, and is the

proportional Shapley value if and only if it also satisfies a natural proportional version of standard-

ness. The later axioms requires, in two-player games, that each player obtains first his/her stand

alone worth plus a share of what remains of the worth of the grand coalition that is proportional

to his/her stand-alone worth. It is worth noting that the two values are distinguished by axioms

on two-player games only. Similarly, in addition to the three axioms appearing in Proposition 5,

Proposition 8 invokes two new axioms inspired by the axiom of aggregate monotonicity in Megiddo

(1974). More specifically, these axioms examine the consequences of a change in the worth of the

grand coalition, ceteris paribus. Equal aggregate monotonicity requires equal payoff variations for

all players, while proportional aggregate monotonicity requires payoff variations in proportion to

the players’ stand-alone worths. Among the values satisfying efficiency, dummy player out and

weak linearity, the Shapley value is the only one that also satisfies equal aggregate monotonic-

ity, and the proportional Shapley value is the only one that also satisfies proportional aggregate

monotonicity.

Fourthly, the results presented so far all involve variable player sets, since they invoke axioms

such as dummy player out and consistency. It is however possible to characterize the proportional

Shapley value on a class of games with a fixed player set. In order to do so, we introduce another

variant of the axiom of balanced contributions in which the removal of a player is replaced by his/her

dummification. A player’s dummification refers to his/her complete loss of synergy, in the sense

that the worth of any coalition containing this player is now identical to that of the same coalition
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without this player plus his/her stand alone worth. In other words, the player becomes dummy,

while the worth of any coalition not containing him/her remains unchanged. The dummification is

in essence similar to the nullification of a player studied by Gómez-Rúa and Vidal-Puga (2010), Béal

et al. (2014) and Béal et al. (2016). The new axiom of balanced contributions under dummification

requires, for any two players, equal allocation variation after the dummification of the other player.

Combined with efficiency and the classical axiom of inessential game property (each player obtains

his/her stand-alone worth in case the game is additive), this axiom characterizes the proportional

Shapley value value.

The rest of the article is organized as follows. Section 2 provides definitions and introduces the

proportional Shapley value. It also states a first result for the case of land production economies.

Section 3 briefly states properties of the proportional Shapley value that are inherited from the

literature on the weighted Shapley values. Section 4 contains the main axiomatic characterizations,

relying on the weak version of linearity, consistency, and on balanced contributions under dummi-

fication. Section 5 concludes. The appendix contains the results on the land production economies

that are not stated in section 2, some technical proofs and the proofs of logical independence of

the axioms used in some results.

2. Definitions, notation and motivation

2.1. Notation

We denote by R, R+, R++ and R∗ the sets of all real numbers, non-negative real numbers,

positive real numbers and non-null real numbers respectively. For a real number b ∈ R we shall

also use notation ∣b∣ for the absolute value of b. In order to denote the cardinality of any finite set

S, the same notation ∣S∣ will sometimes be used without any risk of confusion, but we shall often

write s for simplicity.

2.2. Cooperative games with transferable utility

Let U ⊆ N be a fixed and infinite universe of players. Denote by U the set of all finite subsets ofU . A cooperative game with transferable utility, or simply a game, is a pair (N,v) where

N ∈ U and v ∶ 2N Ð→ R such that v(∅) = 0. For a game (N,v), we write (S, v) for the subgame

of (N,v) induced by S ⊆ N by restricting v to 2S . For N ∈ U and a ∈ RN , denote by (N,va) the

additive game on N induced by a, i.e. va(S) = ∑j∈S aj for all S ∈ 2N .

Define C as the class of all games with a finite player set in U and CN as the subclass of C
containing the games with player set N . A game (N,v) is individually positive if v({i}) > 0 for

all i ∈ N and individually negative if v({i}) < 0 for all i ∈ N . Let C0 denote the class containing

all individually positive and individually negative games, and C0N the intersection of C0 and CN .

For N ∈ U and a ∈ RN++, define the subclass of CaN containing all games such that the singleton

worths are obtained by multipliying vector a by some non-null real number, that is:

CaN = {(N,v) ∈ CN ∣∃c ∈ R∗ ∶ ∀i ∈ N,v({i}) = cai}.
Thus, if a′ ∈ RN++ is multiple of a ∈ RN++, then CaN = Ca′N , and C0N = ⋃a∈RN++ CaN . Finally, let A0 and A0

N

denote the subclasses of additive games in C0 and C0N respectively.
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For all b ∈ R, all (N,v), (N,w) ∈ C, the game (N, bv + w) ∈ C is defined as (bv + w)(S) =
bv(S) + w(S) for all S ∈ 2N . The unanimity game on N induced by a nonempty coalition S,

denoted by (N,uS), is defined as uS(T ) = 1 if T ⊇ S and uS(T ) = 0 otherwise. Since Shapley

(1953b), it is well-known that each function v admits a unique decomposition into unanimity

games:

v = ∑
S∈2N /{∅}∆v(S)uS

where ∆v(S) is the Harsanyi dividend (Harsanyi, 1959) of S, defined as ∆v(S) = v(S) −∑T ∈2S/{∅}∆v(T ). The Harsanyi dividend of S represents what remains of v(S) once the divi-

dends of all nonempty subcoalitions of S have been distributed. A player i ∈ N is dummy in(N,v) if v(S) − v(S/{i}) = v({i}) for all S ∈ 2N such that S ∋ i. Let D(N,v) be the set of dummy

players in (N,v). Two distinct players i, j ∈ N are equal in (N,v) if v(S ∪ {i}) = v(S ∪ {j}) for all

S ∈ 2N/{i,j}.
2.3. Values

A value on C (respectively on C0) is a function f that assigns a payoff vector f(N,v) ∈ RN

to any (N,v) ∈ C (respectively any (N,v) ∈ C0). In this article, we call upon values that admit

intuitive formulations in terms of the distribution of the Harsanyi dividends.

The Shapley value (Shapley, 1953b) is the value Sh on C defined as:

Shi(N,v) = ∑
S∈2N ∶S∋i

1

s
∆v(S), ∀(N,v) ∈ C,∀i ∈ N.

For each i ∈ U let wi ∈ R++, and w = (wi)i∈U . The (positively) weighted Shapley value

(Shapley, 1953b) with weights w is the value Shw on C defined as:2

Shwi (N,v) = ∑
S∈2N ∶S∋i

wi∑j∈S wj
∆v(S), ∀(N,v) ∈ C,∀i ∈ N.

The proportional Shapley value is the value PSh on C0 defined as:

PShi(N,v) = ∑
S∈2N ∶S∋i

v({i})∑j∈S v({j})∆v(S), ∀(N,v) ∈ C0,∀i ∈ N.
Thus, the Harsanyi dividend of a coalition S is shared equally among its members in the Shapley

value, in proportion to exogenous weights in a positively weighted Shapley value, and in proportion

to the stand-alone worths of its members in the PSh value. As a consequence, the Shapley and

PSh values coincide whenever all singleton worths are equal.

2Weighted Shapley values with possibly null weights are defined in Shapley (1953a), and studied in Kalai and

Samet (1987) and Monderer et al. (1992), among others.
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2.4. A motivating example: Land production economies

Consider a set N = {1, . . . , n} of peasants and an amount of land L ∈ R++. Shapley and Shubik

(1967, section VI) model the production process of several laborers working together by a function

φ ∶ N ×R++ Ð→ R+ which specifies the output

φ(s, l) = l

L
z(s) (1)

achieved by s identical laborers from an area of land l ≤ L, where z(s) ∶= φ(s,L), and z(s) > 0

whenever s > 0.3 They assume that each farmer owns the same share of L, which leads to an

associated game by setting v(S) = φ(s, sL/n) = sz(s)/n for all S ∈ 2N . A consequence of the

symmetry in this model is that both PSh and Sh yield an equal split of the total output.

As suggested by Shapley and Shubik (1967), it makes sense to introduce some heterogeneity

by considering that each peasant owns an amount of land ai ∈ R++, such that ∑i∈N ai = L. Let

a ∶= (ai)i∈N . Since the output only depends on function z, a land production economy can be

described by a triple (N,a, z). For any land production economy (N,a, z), the associated game(N,va,z) assigns to each coalition S a worth

va,z(S) = φ(s,∑
i∈S ai) = ∑i∈S ai

L
z(s)

for any coalition of farmers S. Note that (N,va,z) ∈ CaN . In this asymmetric version of the model,

Shapley and Shubik (1967) do not provide a formulation of the Shapley value, which is not easy

to compute. In the appendix, we provide a close form expression of the Shapley value, which is

nonetheless much less interpretable and appealing than the expression of the proportional Shapley

value below. Proposition 1 shows that PSh can be considered as a relevant alternative to the

Shapley value in the asymmetric land production economy. The proof is also relegated to the

appendix.

Proposition 1. For any land production economy (N,a, z) and any i ∈ N , it holds that

PShi(N,va,z) = ai
L
z(n).

The meaning of Proposition 1 is clear. The output z(n) produced by the n farmers altogether

is shared in proportion to the landholdings. Proposition 1 also emphasizes situations in which the

proportional Shapley value can be more suitable than the weighted Shapley values. After all, it is

true that PSh(N,va,z) in Proposition 1 can be obtained as a weighted Shapley value by choosing

the landholdings (ai)i∈N as weights. But now, suppose that a farmer buys a part, but not all, of

the landholding of another farmer, ceteris paribus. The new production economy is characterized

by the same player set. Because the weights in a weighted Shapley value do not change with

the characteristic function, they must remain the same in the new land production economy. As

a consequence, the original weighted Shapley value applied to this new problem is likely to be

less suitable. To the contrary, if the proportional Shapley value is applied to both situations, the

weights associated to the players adjust accordingly to account for the new landholdings.

3Rather than φ, Shapley and Shubik (1967) use function φ∗ defined as φ∗(s, l) = maxt∈{1,...,s} φ(t, l) for all pairs(s, l) ∈ N ×R++. The result in this section and in the appendix holds if φ is replaced by φ∗.

6



3. Legacy results

All the results in this section are based on the following useful property of PSh.

Lemma 1. For each game (N,v) ∈ C0, define the weights w(v) = (wi(v))i∈N such that wi(v) =∣v({i})∣ for all i ∈ N . Then, it holds that PSh(N,v) = Shw(v)(N,v).
The proof is obvious and omitted. Lemma 1 does not mean that PSh is a weighted Shap-

ley value since the weights w(v) can be different for two games defined on the same player set.

Nevertheless, Lemma 1 is sufficient to adapt well-known results in the literature that involve a

game with a fixed characteristic function and its subgames. As a first example, we consider the

characterizations obtained by Myerson (1980) and Hart and Mas-Colell (1989) by means of the

next axioms.

Balanced contributions (BC). For all (N,v) ∈ C, all i, j ∈ N ,

fi(N,v) − fi(N/{j}, v) = fj(N,v) − fj(N/{i}, v).
w-balanced contributions (w-BC). For all w = (wi)i∈U with wi ∈ R++ for all i ∈ U , all (N,v) ∈ C,
all i, j ∈ N ,

fi(N,v) − fi(N/{j}, v)
wi

= fj(N,v) − fj(N/{i}, v)
wj

.

Myerson (1980) characterizes the Shapley value by BC and E.

Efficiency (E). ∑i∈N fi(N,v) = v(N).
Hart and Mas-Colell (1989) demonstrate that the class of weighted Shapley values coincides

with the values satisfying E and w-BC for all possible weights w. A natural variant of w-BC

requires, for any two players, an allocation variation for each of them after the other player has

left that is proportional to their stand-alone worth.

Proportional balanced contributions (PBC). For all (N,v) ∈ C0, all i, j ∈ N ,

fi(N,v) − fi(N/{j}, v)
v({i}) = fj(N,v) − fj(N/{i}, v)

v({j}) .

The main notable difference between PBC and w-BC is that our weights are endogenous, i.e.

they can vary across games. The consequence is that the system of equations generated by PBC

together with E is not linear. Nevertheless, it gives rise to a unique non-linear value.

Proposition 2. The proportional Shapley value is the unique value on C0 that satisfies E and

PBC.
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Using PBC and the fact that PSh satisfies E, it is possible to obtain a recursive formula of

PSh very close to the recursive formula of the Shapley value provided by Maschler and Owen

(1989). For all (N,v) ∈ C0 and all i ∈ N ,

PShi(N,v) = ∑
j∈N/{i}

v({j})∑k∈N v({k})PShi(N/{j}, v) + v({i})∑k∈N v({k})(v(N) − v(N/{i})).
The latter expression is similar to following recursive formula for the Shapley value (Maschler and

Owen, 1989):

Shi(N,v) = ∑
j∈N/{i}

1

n
Shi(N/{j}, v) + 1

n
(v(N) − v(N/{i})).

Connected to Myerson’s approach is the fundamental notion of potential introduced by Hart and

Mas-Colell (1989). For any system of weights w, the unique w-potential function Pw is defined

as Pw(∅, v) = 0 and as ∑i∈N wi(Pw(N,v) − Pw(N/{i}, v) = v(N). They show that the weighted

Shapley value with weights w in game (N,v) coincides with payoffs wi(Pw(N,v) − Pw(N/{i}, v),

i ∈ N . Below is an adaptation for PSh. A proportional potential function is a function

Q ∶ C0 Ð→ R such that Q(∅, v) = 0 and for all (N,v) ∈ C0,
∑
i∈N ∣v({i})∣(Q(N,v) −Q(N/{i}, v)) = v(N). (2)

The following proposition mimics Theorem 5.2 in Hart and Mas-Colell (1989).

Proposition 3. There exists a unique proportional potential function Q on C0. Moreover, for

each game (N,v) ∈ C0, it holds that Q(N,v) = Pw(v)(N,v). Thus, for each game (N,v) ∈ C0 and

each i ∈ N ,

PShi(N,v) = ∣v({i})∣(Q(N,v) −Q(N/{i}, v)).
Finally Q can be computed recursively by the following formula:

Q(N,v) = 1∑i∈N ∣v({i})∣(v(N) + ∑
j∈N ∣v({j})∣Q(N/{j}, v)).

It suffices to define Q on C0 as Q(N,v) = Pw(v)(N,v) for all (N,v) ∈ C0. In a sense, Q is

a normalized (or dimensionless) potential because for each i ∈ N , Q({i}, v) = 1 if v({i}) > 0

and Q({i}, v) = −1 if v({i}) < 0. Dimensionless numbers are often desirable, in particular in

economics (elasticities). The proportional potential will play a key role in some of the main

results in the next section. We conclude this section by stating a sufficient condition under which

the PSh value lies in the core. The core of a game (N,v) ∈ C0 is the (possibly empty) set

C(N,v) = {x ∈ RN ∶ ∑i∈S xi ≥ v(S) and ∑i∈N xi = v(N)}. Shapley (1971) shows that the Shapley

value belongs to the core of a convex game. Monderer et al. (1992) generalize this result and prove

that the core of a convex game coincides with the set of weighted Shapley values (with possibly

null weights). Building on this result, it is immediate to prove the PSh value lies in the core of a

convex game.
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Proposition 4. If (N,v) ∈ C0 is convex, then PSh(N,v) ∈ C(N,v).
Not surprisingly, PSh is not necessarily a core imputation in a non-convex game with a

nonempty core as shown in the following example.

S {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}
v(S) 4 4 1 12 −5 15 22

∆v(S) 4 4 1 4 −10 10 9

The core of (N,v) is not empty since it contains, for instance, the Shapley value Sh(N,v) =(4,14,4). However, PSh(N,v) = (2,18,2) is not in the core.

4. Main results

The results in this section rely on weak versions of the axioms of linearity and consistency as

proposed by Hart and Mas-Colell (1989), and on another variant of PBC.

4.1. Potential, linearity and consistency

Contrary to the potential approach, the well-known axioms of linearity and consistency require

less evident modifications in order to account for PSh, even if these axioms are satisfied by any

weighted Shapley value. We examine each case separately before combining them in order to char-

acterize PSh.

Linearity (L). For all b ∈ R, all (N,v), (N,w) ∈ C, f(N, bv +w) = bf(N,v) + f(N,w).
The class C0 is not a vector space. Even if it is required that the game (N, bv +w) constructed

in the previous definition still belongs to C0, it is clear that PSh violates this adaptation of L onC0. Nonetheless, PSh satisfies the following weaker version of the axiom.

Weak linearity (WL). For all a ∈ RN++, all b ∈ R, all (N,v), (N,w) ∈ CaN , if (N, bv +w) ∈ CaN then

f(N, bv +w) = bf(N,v) + f(N,w).
So WL only applies to games belonging to the same subclass CaN of C0N , i.e. pair of games for

which the ratio w({i})/v({i}) is the same for all players. The requirement that (N, bv +w) ∈ CaN is

necessary: in case b is equal to the opposite of the above-mentioned ration (N, bv +w) would not

belong to CaN (and neither to C0N ). Before showing that PSh satisfies WL, we present a key result

in which WL is combined with the classical axioms E and dummy player out.

Dummy player out (DPO). For all (N,v) ∈ C0, if i ∈ N is a dummy player in (N,v), then for

all j ∈ N/{i}, fj(N,v) = fj(N/{i}, v).
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DPO was suggested first in Tijs and Driessen (1986, section V) and is closely related to the

widely-used null player out axiom (Derks and Haller, 1999). Proposition 5 below requires the

following definition. A game (N,v) is quasi-additive if v(S) = ∑i∈S v({i}) for all S ∈ 2N/{N}.

Let QA0 denote the class of all quasi-additive games in C0. In a quasi-additive game, the worths

of all coalitions are additive except, possibly, for the grand coalition for which there can be some

surplus or loss compared to the sum of the stand-alone worths of its members. So QA0 includes

the class A0. Proposition 5 essentially states that a value satisfies E, DPO and WL is completely

determined by what it prescribes on quasi-additive games.

Proposition 5. Consider two values f and g satisfying E, DPO and WL on C0 such that f = g
on QA0. Then f = g on C0.

The non-trivial and lengthy proof of Proposition 5 relies on two Lemmas. In order to lighten

the exposition, this material is relegated to the appendix. A similar result can be stated on the

larger class C by replacing WL by L. The only change would be to consider all quasi-additive

games in C and not just those in C0. At this point, remark also that both the Shapley value and

PSh satisfy the three axioms invoked in Proposition 5.4 In order to compare and distinguish the

two values, we present extra axioms below. The next axiom relies on the reduced game proposed

by Hart and Mas-Colell (1989). Let f be a value on C, (N,v) ∈ C and S ∈ 2N/{∅}. The reduced

game (S, vfS) induced by S and f is defined, for all T ∈ 2S , by:

vfS(T ) = v(T ∪ (N/S)) − ∑
i∈N/S fi(T ∪ (N/S), v), (3)

and resumes to vfS(T ) = ∑i∈T fi(T ∪ (N/S), v) if f satisfies E.

Consistency (C). For all (N,v) ∈ C, all S ∈ 2N , and all i ∈ S, fi(N,v) = fi(S, vfS).
The Shapley value satisfies C on C. If C is enunciated on C0, the extra condition that the

considered reduced game (S, vfS) remains in C0 must be added. Such a condition is, however, not

sufficient for our objective: PSh fails to satisfy the axiom as illustrated by the following example.

S {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}
v(S) 1 2 3 9 4 5 18

∆v(S) 1 2 3 6 0 0 6

Consider player 1. It is easy to check that PSh1({1,2,3}, v) = 4. Now consider the reduced game({1,3}, vPSh{1,3}), where vPSh{1,3}({1}) = PSh1({1,2}, v) = 3, vPSh{1,3}({3}) = PSh3({2,3}, v) = 3, and

vPSh{1,3}({1,3}) = PSh1({1,2,3}, v) + PSh3({1,2,3}, v) = 4 + 6 = 10. Note that ({1,3}, vPSh{1,3}) ∈ C0
and is symmetric, which implies that PSh1({1,3}, vPSh{1,3}) = 5 ≠ PSh1({1,2,3}, v) = 4, proving that

4Formal proofs are given later on.
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PSh does not satisfy C in this context.

It is possible to weaken C by imposing consistency of the value on the particular subclass of

quasi-additive games QA0. To this end, we begin by a Lemma stating that QA0 is almost close

under the reduction operation for values satisfying the following mild condition.

Inessential game property (IGP). For all (N,v) ∈ A0, all i ∈ N , fi(N,v) = v({i}).5
Lemma 2. Consider any value f that satisfies IGP on QA0. Then, for each (N,v) ∈ QA0 and

each S ∈ 2N such that s ≥ 2, it holds that (S, vfS) ∈ QA0. Furthermore, for each T ∈ 2S/{S},

vfS(T ) = ∑i∈T v({i}).
Proof. Consider any value f that satisfies IGP on QA0, any (N,v) ∈ QA0 and any S ∈ 2N such

that s ≥ 2. If S = N , the result is trivial. So let S ≠ N , and consider any coalition T ∈ 2S/{S}.

To show vfS(T ) = ∑i∈T vfS({i}). By definition (3) of the reduced game (S, vfS), the worth vfS(T )
only relies on the subgame (T ∪ (N/{S}), v) of (N,v). Since T ≠ S, (T ∪ (N/{S}), v) is a strict

subgame of (N,v), and since (N,v) ∈ QA0, we get that (T ∪(N/{S}), v) ∈ A0. By IGP, f satisfies

E in (T ∪ (N/{S}), v) and fi(T ∪ (N/{S}), v) = v({i}) for each i ∈ T ∪ (N/{S}). This implies that

vfS(T ) = ∑i∈T fi(T ∪ (N/{S}), v) = ∑i∈T v({i}). The proof is complete since T was an arbitrary

coalition in 2S/{S}. ∎
Remark 1. Lemma 2 excludes coalitions of size 1, i.e. reduced games with a unique player. Such

reduced games may not belong to QA0 as suggested by the following generic example. For any

game (N,v) ∈ QA0 such that v(N) = 0, we get PShi(N,v) = 0 for all i ∈ N . Therefore, for each

i ∈ N , the reduced game ({i}, vPSh{i} ) is such that vPSh{i} ({i}) = 0 and does not belong to QA0. ◻
Next, we introduce our weak version of C.

Weak consistency (WC). For all (N,v) ∈ QA0, all S ∈ 2N such that (S, vfS) ∈ QA0, and all i ∈ S,

fi(N,v) = fi(S, vfS).
Finally, we invoke the following axioms.

Proportional standardness (PS). For all ({i, j}, v) ∈ C0, fi({i, j}, v) = v({i})
v({i})+v({j})v({i, j}).

This axiom is called proportionality for two person games in Ortmann (2000) and two-player

games proportionality in Huettner (2015). It can be considered as the proportional counterpart of

the classical axiom of standardness (Hart and Mas-Colell, 1989).

5This axiom is also called the projection axiom in Aumann and Shapley (1974).
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Standardness (S). For all ({i, j}, v) ∈ C0, fi({i, j}, v) = v({i}) + 1
2
(v({i, j}) − v({i}) − v({j})).

Both axioms first assign their stand-alone worths to the two players. Then, proportional stan-

dardness splits the remaining surplus in proportion to these stand-alone worths, while standardness

shares the surplus equally, if any. To understand this interpretation, note that

v({i})
v({i}) + v({j})v({i, j}) = v({i}) + v({i})

v({i}) + v({j})(v({i, j}) − v({i}) − v({j})).
Proportional aggregate monotonicity (PAM). For all b ∈ R, all (N,v) ∈ C0 such that n ≥ 2,

and all i, j ∈ N ,
fi(N,v) − fi(N,v + buN)

v({i}) = fj(N,v) − fj(N,v + buN)
v({j}) .

The axiom compares two games that only differ with respect to the worth of the grand coalition.

It states that the players enjoy payoff variations that are proportional to their stand-alone worths.

Note that PAM is well-defined since (N,v) ∈ C0 implies that (N,v + buN) ∈ C0 for all b ∈ R.

Without the further requirement of E, PAM is not related to Aggregate monotonicity (Megiddo,

1974), which requires that none of the players should be hurt if the worth of the grand coalition

increases. In fact, the Shapley value satisfies Aggregate monotonicity but not PAM, while the

value f on C0, which assigns to each game (N,v) ∈ C0 and to each i ∈ N , the payoff fi(N,v) =−v({i})/∑j∈N v({j}) × v(N) satisfies PAM but not Aggregate monotonicity. However, if a value

satisfies PAM and E on C0, then it also satisfies Aggregate monotonicity on C0.
The next result lists which of these axioms are satisfied by PSh.

Proposition 6. PSh satisfies E, DPO, WL, PAM, WC and PS on C0.
Proof. The proof follows from Proposition 2 for E.

Regarding DPO, observe that if a player i ∈ N is dummy in (N,v), then ∆v(S) = 0 for all

S ∈ 2N such that S ∋ i and s ≥ 2. So, for any j ∈ N/{i}, it holds that

PShj(N,v) = ∑
S∈2N ∶S∋j

v({j})∑k∈S v({k})∆v(S) = ∑
S∈2N/{i}∶S∋j

v({j})∑k∈S v({k})∆v(S) = PShj(N/{i}, v)
as desired.

Regarding WL, consider any two games (N,v), (N,w) ∈ CaN , which means that, for all i ∈ N ,

w({i}) = cv({i}) for some c ∈ R∗. Note that for all nonempty S ∈ 2N , this implies

v({i})∑j∈S v({j}) = w({i})∑j∈S w({j}) . (4)

Choose any b ∈ R such that (N, bv + w) ∈ CaN in order to compute PShi(N, bv + w). The claim is

trivial for b = 0. So suppose b ∈ R∗. By linearity of function ∆ (third equality) and equation (4)
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(fourth equality), we have

PShi(N, bv +w) = ∑
S∈2N ∶S∋i

(bv +w)({i})∑j∈S(bv +w)({j})∆bv+w(S)
= ∑

S∈2N ∶S∋i
(b + c)v({i})∑j∈S(b + c)v({j})∆bv+w(S)

= ∑
S∈2N ∶S∋i

v({i})∑j∈S v({j})(b∆v(S) +∆w(S))
= b ∑

S∈2N ∶S∋i
v({i})∑j∈S v({j})∆v(S) + ∑

S∈2N ∶S∋i
w({i})∑j∈S w({j})∆w(S)

= bPShi(N,v) + PShi(N,w).
Regarding PAM, pick any game (N,v) ∈ C0 and any b ∈ R. Note that ∆v+buN

(S) = ∆v(S) for

all S ∈ 2N/{N}, and that ∆v+buN
(N) = ∆v(N) + b. As a consequence,

PShi(N,v) − PShi(N,v + buN)
v({i}) = −b∑j∈N v({j})

does not depend on i ∈ N , which proves that PSh satisfies PAM.

Regarding WC, consider any game (N,v) ∈ QA0, any nonempty S ∈ 2N and any i ∈ S. The

assertion that PShi(N,v) = PShi(S, vPSh
S ) is trivial if s = n. Since (N,v) ∈ QA0, note that

∆v(T ) = 0 for all T such that t ∈ {2, . . . , n−1}. As a consequence, PSh admits the following simple

formulation:

PShi(N,v) = v({i})∑j∈N v({j})v(N). (5)

The assertion is thus also obvious for s = 1 in case (S, vPSh
S ) ∈ QA0 (see Lemma 2). Now, let us

assume that s ∈ {2, . . . , n−1}. By Lemma 2, we know that (S, vPSh
S ) ∈ QA0. Furthermore, as noted

in Lemma 2, vPSh
S (T ) = ∑i∈T v({i}) for each T ∈ 2S/{S}, and vPSh

S (S) = ∑i∈S PShi(N,v). As a

consequence, for each i ∈ S,

PShi(S, vPSh
S ) = vPSh

S ({i})∑j∈N vPSh
S ({j})vPSh

S (S)
= v({i})∑j∈S v({j}) ∑k∈SPShk(N,v)= v({i})∑j∈S v({j}) ∑k∈S

v({k})∑j∈N v({j})v(N)
= v({i})∑j∈N v({j})v(N)
= PShi(N,v).

Finally, since any two-player game in C0 is quasi-additive, PSh satisfies PS by applying (5) to

the two-player case. ∎
Building on Propositions 5 and 6, we offer two characterizations of PSh that are comparable

to two new characterizations of Sh in the sense that they only differ with respect to one axiom.
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Both characterizations have in common the three axioms in Proposition 5: E, DPO and WL. The

first one invokes WC.

Proposition 7. A value f on C0 satisfies E, DPO, WL, WC and

(i) PS if and only if f = PSh;

(ii) S if and only if f = Sh.

Proof. By Proposition 6 and the fact that Sh satisfies E, DPO, WL, WC and S, it suffices

to show the uniqueness parts. Consider any value f on C0 that satisfies E, DPO, WL and WC.

By Proposition 5, it only remains to show that f is uniquely determined on QA0. Pick any quasi-

additive game (N,v) ∈ QA0, which means that v = va+buN for some a ∈ RN++ or −a ∈ RN++ and b ∈ R.

In case b = 0, v = va so that (N,v) is additive. All players are dummy, which implies that f(N,va)
is completely determined by combining E and DPO. In case b ≠ 0, we distinguish two cases.

Firstly, assume as in point (i) that f satisfies PS. The proof borrows some steps of the proof

of Theorem B in Hart and Mas-Colell (1989). We show that f admits a proportional potential onQA0. To do so, define the function R for games (N,v) ∈ QA0 with at most two players by setting

R(∅, v) = 0, R({i}, v) = v({i})/∣v({i})∣, and

R({i, j}, v) = v({i, j} + v({i}) + v({j})∣v({i}) + v({j})∣ .

By E and PS, for all (N,v) ∈ QA0 such that n ≤ 2, and all i ∈ N , it holds that

fi(N,v) = ∣v({i})∣(R(N,v) −R(N/{i}, v)). (6)

We now prove, by induction on the size of the player set, that R can be extended to all games inQA0, i.e. that R is the proportional potential Q on QA0, and in turn that f = PSh on QA0.

Initialization. As noted before, the assertion holds for games (N,v) ∈ QA0 with n ≤ 2.

Induction hypothesis. Assume that R has been defined and satisfies (6) for all games (N,v) ∈QA0 such that n ≤ q, q ≥ 2.

Induction step. Consider any (N,v) ∈ QA0 with n = q+1. We have to show that fi(N,v)/∣v({i})∣+
R(N/{i}, v) is independent of i ∈ N . Pick a triple of distinct players, which is always possible since

n ≥ 3. By Lemma 2 (since DPO and E imply IGP), WC and (6), we can write:

fi(N,v)∣v({i})∣ − fj(N,v)∣v({j}∣ = fi(N/{k}, vf
N/{k})∣v({i})∣ − fj(N/{k}, vf

N/{k})∣v({j})∣
= fi(N/{k}, vf

N/{k})∣vf
N/{k}({i})∣ − fj(N/{k}, vf

N/{k})∣vf
N/{k}({j})∣= (R(N/{k}, vf

N/{k}) −R(N/{i, k}, vf
N/{k}))−(R(N/{k}, vf

N/{k}) −R(N/{j, k}, vf
N/{k}))= (R(N/{j, k}, vf

N/{k}) −R(N/{i, j, k}, vf
N/{k}))−(R(N/{i, k}, vf

N/{k}) −R(N/{i, j, k}, vf
N/{k})).
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Another application of WC and two applications of (6) yield that the preceding equality becomes:

= fi(N/{j, k}, vf
N/{k})∣vf

N/{k}({i})∣ − fj(N/{i, k}, vf
N/{k})∣vf

N/{k}({j})∣
= fi(N/{j, k}, vf

N/{k})∣v({i})∣ − fj(N/{i, k}, vf
N/{k})∣v({j})∣

= fi(N/{j}, v)∣v({i})∣ − fj(N/{i}, v)∣v({j})∣= (R(N/{j}, v) −R(N/{i, j}, v))−(R(N/{i}, v) −R(N/{i, j}, v))= R(N/{j}, v) −R(N/{i}, v)
as desired. Remark 1 points out that one-player reduced games of a quasi-additive game inQA0 may not belong to QA0. In case n = 3, (N/{j, k}, vf

N/{k}) and (N/{j, k}, vf
N/{k}) are one-

player games, but they both belong to QA0. To see this, (N,v) ∈ QA0 and n = 3 imply that(N/{k}, vf
N/{k}) ∈ QA0 by Lemma 2, and thus that for each nonempty S ∈ 2N/{k}, (S, vf

N/{k}) ∈ QA0

too.

Secondly, assume as in point (ii) that f satisfies S. The result follows from Hart and Mas-Colell

(1989, Theorem B), where the preceding steps are developed on the basis of S and the classical

potential function. ∎
The logical independence of the axioms in Proposition 7 is demonstrated in appendix. The

second result in this section compares once again the Shapley value and PSh by keeping axioms

E, DPO and WL, and by adding either PAM or the following axiom.

Equal aggregate monotonicity (EAM). For all b ∈ R, all (N,v) ∈ C0, and all i, j ∈ N ,

fi(N,v) − fi(N,v + buN) = fj(N,v) − fj(N,v + buN).
Replacing WC and PS (resp. S) by PAM (resp. EAM) in Proposition 7 yields a characterization

of PSh (resp. Sh) on C0.
Proposition 8. A value f on C0 satisfies E, DPO, WL, and

(i) PAM if and only if f = PSh;

(ii) EAM if and only if f = Sh.

Proof. Regarding point (i), by Proposition 6, it suffices to show uniqueness. Consider any value

f on C0 that satisfies E, DPO, WL and PAM. By Proposition 5, it only remains to show that

f is uniquely determined on QA0. Pick any quasi-additive game (N,v) ∈ QA0, which means that

v = va + buN for some a ∈ RN++ or some −a ∈ RN++ and b ∈ R. In case b = 0, v = va is an additive

function. All players are dummy, which implies f(N,va) is completely determined by E and DPO.
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If b ≠ 0, remark that (N,v) with v = va + buN and (N,va) only differ with respect to the worth of

the grand coalition N . By PAM, we have, for all i, j ∈ N ,

fi(N,v) − fi(N,va)
v({i}) = fj(N,v) − fj(N,va)

v({j}) .

Summing on all j ∈ N and using E in both games, we get

fi(N,v) = fi(N,va) + v({i})∑j∈N v({j})(v(N) − va(N)) = fi(N,va) + v({i})∑j∈N v({j})b,
for all i ∈ N , and so fi(N,v) is uniquely determined, as desired.

Regarding point (ii), it is easy to check that Sh satisfies EAM. For the uniqueness part, mimics

the proof of point (i) except in the very last part where the combination EAM and E implies that

fi(N,v) = fi(N,va) + b/n for all i ∈ N . ∎
The logical independence of the axioms in Proposition 8 is demonstrated in appendix. It should

be noted that replacing either PS or S in Proposition 7 or either PAM and EAM in Proposition 8

by Aggregate monotonicity (Megiddo, 1974) does not yield the set of (positively) weighted Shapley

values. The weighted Shapley values satisfy all axioms, but they are not the only one. In fact,

consider a value f on C0 such that, for any N ∈ U , any a ∈ RN++ and any (N,v) ∈ CaN it holds that

f(N,v) = Shw(N,v) for some weights w. Whenever two games belonging to disjoint sets CaN are

associated to different weights, the value f satisfies all axioms but is not a (positively) weighted

Shapley value.

As a final remark, it is worth noting that strengthening, for each N ∈ U , WL on C0N by L on CN
in Proposition 8 (ii) yields a characterization of the Shapley value on the full domain C by E, DPO,

WL, and EAM. In case WC is further invoked on QA instead of QA0, then from Proposition 7

(ii), the Shapley value can be characterized on the full domain C by this axiom together with E,

DPO, WL, and S.

4.2. Proportional Balanced contributions under dummification

Contrary to the results in section 4, we illustrate here that PSh can be characterized on a fixed

player set by means of the following definition. For a game (N,v) ∈ C0 and a player i ∈ N , we denote

by (N,vi) ∈ C0 the game obtained from (N,v) if player i is dummified: vi(S) = v({i})+ v(S/{i})
for all S ∈ 2N such that S ∋ i and vi(S) = v(S) for all S /∋ i.6 The dummification operation is similar

to the nullification operation studied in Béal et al. (2016), among others. The dummification arises

naturally in the so-called Myerson (graph) restricted game (Myerson, 1977), where, for a given

graph on the player set, the worth of a coalition is the sum of the worths of its connected parts.

If a player is deprived of his or her links then he or she becomes dummified in the resulting new

Myerson restricted game. Below, we introduce a variant of PBC in which the subgame induced

when a player leaves the game is replaced by the game in which this player is dummified.

6An equivalent, and perhaps shorter, definition is that vi(S) = v(S/{i}) + v(S ∩ {i}) for all S ∈ 2N .
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Remark 2. Note that (vi)i = vi and (vi)j = (vj)i. From the latter property, for each nonempty

S ∈ 2N , the function vS in which the players in S are (successively) dummified is well-defined. For

any (N,v) ∈ C0N and i ∈ N , vN/{i} = vN and (N,vN/{i}) ∈ A0
N , i.e. this game is additive. Regarding

the set of dummy players D(N,v), note also that D(N,v) = {i ∈ N ∶ vi = v}, and that for any(N,v) ∈ C0N and i ∈ N , D(N,vi) ⊇D(N,v) ∪ {i}, where this inclusion may be strict. ◻
Proportional balanced contributions under dummification, PBCD. For all (N,v) ∈ C0N ,

all i, j ∈ N ,
fi(N,v) − fi(N,vj)

v({i}) = fj(N,v) − fj(N,vi)
v({j}) .

For a fixed player set N , Proposition 9 below indicates that a value satisfying E and PBCD is

completely determined by what it prescribes on additive games with player set N .

Proposition 9. Consider two values f and g satisfying E and PBCD on C0N such that f = g onA0
N . Then f = g on C0N .

Proof. Consider two values f and g satisfying E and PBCD on C0N such that f = g on A0
N . The

proof that f = g on C0n is done by (descending) induction on the number of dummy players.

Initialization. For a game (N,v) ∈ C0N , if ∣D(N,v)∣ = n, i.e. all players are dummy. Then v is

additive and f = g by hypothesis. By Remark 2, there is no game in which ∣D(N,v)∣ = n − 1.

Induction hypothesis. Assume that f(N,v) = g(N,v) for all games (N,v) ∈ C0N such that∣D(N,v)∣ ≥ d, 0 < d ≤ n − 1.

Induction step. Choose any game (N,v) ∈ C0N such that ∣D(N,v)∣ = d − 1. Because ∣D(N,v)∣ <
n−1, there exists i ∈ N/D(N,v), which implies D(N,vi) ⊇D(N,v)∪{i} and ∣D(N,vi)∣ ≥ ∣D(N,v)∣+
1 = d. Now pick any j ∈D(N,v). It holds that v = vj , so that PBCD and the induction hypothesis

imply that

fj(N,v) = fj(N,vi) + v({j})
v({i}) (fi(N,v) − fi(N,vj))

= fj(N,vi)
= gj(N,vi)
= gj(N,vi) + v({j})

v({i}) (gi(N,v) − gi(N,vj))
= gj(N,v). (7)

Conclude that the assertion is proved for dummy players in (N,v). Next, pick any j ∈ N/(D(N,v)∪{i}). Note that N/(D(N,v) ∪ {i}) ≠ ∅ since ∣D(N,v)∣ < n + 1. Applied to i and j, PBCD can be

rewritten as follows:

fj(N,v) = fj(N,vi) + v({j})
v({i}) fi(N,v) − v({j})v({i}) fi(N,vj). (8)
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Reformulation (8) can be done for g too. Note that ∣D(N,vj)∣ ≥ d. Using E for f and g gives:

v(N) = fi(N,v) + ∑
j∈D(N,v) fj(N,v) + ∑

j∈N/(D(N,v)∪{i}) fj(N,v)
v(N) = gi(N,v) + ∑

j∈D(N,v) gj(N,v) + ∑
j∈N/(D(N,v)∪{i}) gj(N,v)

Subtracting the lower equation to the upper, using (7), (8) and the induction hypothesis yield:

0 = fi(N,v) − gi(N,v) + ∑
j∈N/(D(Nv)∪{i}) [fj(N,vi) − gj(N,vi) +

v({j})
v({i}) (fi(N,v) − gi(N,v))

− v({j})
v({i}) (fi(N,vj) − gi(N,vj))]

= (fi(N,v) − gi(N,v)) × (1 + ∑
j∈N/(D(N,v)∪{i})

v({j})
v({i}) ) (9)

Since (N,v) ∈ C0N , the right term in (9) is positive, and so fi(N,v) = gi(N,v) for any non-dummy

player i ∈ N/D(N,v). This completes the proof. ∎
In order to characterize PSh, we invoke IGP.

Proposition 10. The proportional Shapley value is the unique value on C0N that satisfies E,

PBCD and IGP.

Proof. Clearly, PSh satisfies the three axioms. So consider any value f on C0N satisfying the

three axioms. By IGP, f is uniquely determined on A0
N . Since f also satisfies E and PBCD,

Proposition 9 implies that f is also uniquely determined on C0N . ∎
5. Conclusion

The promising results obtained for the land production economies reveal that the proportional

Shapley value can outperform the (weighted) Shapley value(s) in specific cases. A challenging

extension of our work would be to confirm or invalidate this assessment by study the proportional

Shapley value in the other applications listed in the introduction of the article. Finally, let us

conclude by mentioning a recurrent weakness related to weighted values. Haeringer (2006) argue

that some information is contained in the Harsanyi dividends since it can be interpreted as the

coalitions’ contribution to the worth of the grand coalition. He advocates that the distribution of

a Harsanyi dividends among its members should depend on its sign, i.e. whether the associated

coalition contributes negatively or positively to the worth of the grand coalition. Coming back

to the proportional Shapley value, in a game with negative stand-alone worths (which is not so

common in applications), positive dividends are distributed in inverse proportion to these stand-

alone worths: the players with the worse stand-alone worth get the best shares of the dividend.

This difficulty may be overcome by considering the approach developed in Haeringer (2006), thus

ensuring that the associated payoff to a player is always increasing with respect to his or her initial

weight. This is left for future work.
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Appendix

Land production economies

We start by stating a Lemma which is essential to prove Proposition 1.

Lemma 3. For any land production economy (N,a, z), there exists a unique function g ∶ N Ð→ R
such that ∆va,z = va,g, and defined, for each s = {1, . . . , n}, by:

g(s) = s−1∑
k=0(−1)s−1−k (s − 1

k
) z(k + 1). (10)

Moreover, for each s = {1, . . . , n}, it holds that:

z(s) = s−1∑
k=0(

s − 1
k

) g(k + 1). (11)

Proof. Consider any land production economy (N,a, z). For each S ∈ 2N , we have:

∆va,z(S) = ∑
T⊆S(−1)s−tva,z(T )

= ∑
T⊆S(−1)s−tz(t) 1

L
∑
i∈T ai

= 1

L
∑
i∈S ai ∑

T⊆S,T ∋i(−1)s−tz(t)
= 1

L
∑
i∈S ai

s−1∑
k=0(−1)s−1−k (s − 1

k
) z(k + 1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
g(s)

.

The last equation defines g and we have ∆va,z = va,g. Conversely, we may recover z:

va,z(S) = ∑
T⊆S ∆va,z(S)

= ∑
T⊆S g(t)

1

L
∑
i∈T ai

= 1

L
∑
i∈S ai ∑

T⊆S,T ∋i g(t)
= 1

L
∑
i∈S ai

s−1∑
k=0(

s − 1

k
) g(k + 1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶=z(s)
,

which completes the proof. ∎
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Proof. (Proposition 1) Consider any land production economy (N,a, z). For each i ∈ N , by

Lemma 3, we obtain:

PShi(N,va,z) = ∑
S∈2N ∶S∋i

va,z({i})∑j∈S va,z({j})∆va,z(S)
= ∑

S∈2N ∶S∋i
ai∑j∈S aj (g(s) 1

L
∑
k∈S ak)

= ai
1

L
∑

S∈2N ∶S∋i g(s)
= ai

1

L

n−1∑
k=0 (

n − 1

k
) g(k + 1)

= ai
L
z(n),

as desired. ∎
Next, we provide a formulation of the Shapley value for land production economies. To this end,

we rely on generating functions (see chapter 4 in Stanley, 1986, for an introduction), which have

been widely used to compute power indices, for instance in Alonso-Meijide et al. (2014). For any

function z ∶ N Ð→ R, let us define the (exponential) generating functions Z(x) = ∑k≥0 z(k+1)xk/k!

and the corresponding G(x) = ∑k≥0 g(k + 1)xk/k!, where g ∶ N Ð→ R is defined by formula (10).

Here too, a Lemma is useful.

Lemma 4. For any z ∶ N Ð→ R, one has G(x) = e−xZ(x).
Proof. Let us show that formula (11) is translated into Z(x) = exG(x) in the context of

exponential generating functions:

exG(x) = (∑
l≥0

xl

l!
) × (∑

k≥0 g(k + 1)xk
k!

)
= ∑

k,l≥0 g(k + 1)xl+k
l!k!

= ∑
n≥0

n∑
k=0 g(k + 1) xn(n − k)!k!

= ∑
n≥0(

n∑
k=0(

n

k
) g(k + 1)) xn

n!

= ∑
n≥0 z(n + 1)xn

n!= Z(x), (12)

as desired. ∎
For two exponential generating functions Z1, Z2, define the convolution operation (Z1⋆Z2)(x) =∫ x

0 Z1(t)Z2(x − t)dt. Recall that (Z1 ⋆Z2)′(x) = (Z1 ⋆Z ′
2)(x) +Z1(x)Z2(0) for instance.
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Proposition 11. For any land production economy (N,a, z), it holds that:

Shi(N,va,z) = 1

L
(s(n)ai + h(n) ∑

j∈N/iaj) (13)

where function s comes from the exponential generating function S(x) = ∑k≥0 s(k + 1)xk/k! =(Z ⋆ exp)(x)/x and H(x) = ∑k≥0 h(k + 2)xk/k! = (xZ(x) − (Z ⋆ exp)(x))/x2.
Proof. Firstly, let us show that the Shapley value may be written as (13):

Shi(N,va,z) = ∑
S∋i

∆va,z(S)
s

= ∑
S∋i

va,g(S)
s

= ∑
S∋i

⎛⎝g(s)s 1

L
∑
j∈S aj

⎞⎠
= 1

L

n∑
j=1aj

⎛⎝ ∑S∋i,j
g(s)
s

⎞⎠
= 1

L

⎛⎝(∑S∋i
g(s)
s

)ai + ∑
j∈N/iaj

⎛⎝ ∑S∋i,j
g(s)
s

⎞⎠⎞⎠
= 1

L

⎛⎝(
n−1∑
k=0 (

n − 1

k
) g(k + 1)

k + 1
)ai + ∑

j∈N/iaj (
n−2∑
k=0 (

n − 2

k
) g(k + 2)

k + 2
)⎞⎠

= 1

L
((n−1∑

k=0 (
n − 1

k
) g(k + 1)

k + 1
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
s(n)

ai + ∑
j∈N/iaj (

n−2∑
k=0 (

n − 2

k
) g(k + 2)

k + 2
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
h(n)

) (14)
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Secondly, having defined S(x) = ∑k≥0 s(k + 1)xk/k!, let us connect S(x) with Z(x).
S(x) = ∑

n≥0 s(n + 1)xn
n!

= ∑
n≥0

n∑
k=0(

n

k
) g(k + 1)

k + 1

xn

n!

= ∑
n≥0

n∑
k=0(

g(k + 1)
k + 1

xk

k!
)( xn−k(n − k)!)

= ∑
k,l≥0(

g(k + 1)
k + 1

xk

k!
) xl
l!

= (∑
k≥0 g(k + 1) xk

k + 1

1

k!
) × (∑

l≥0
xl

l!
) (15)

= (∑
k≥0 g(k + 1)1

x
∫ x

0
tkdt

1

k!
) × ex

= ex

x
∫ x

0
(∑
k≥0 g(k + 1) tk

k!
)dt

= ex

x
∫ x

0
G(t)dt

= ex

x
∫ x

0
Z(t)e−tdt

= 1

x
∫ x

0
Z(t)ex−tdt

= (Z ⋆ exp)(x)
x

(16)

Lastly, we find a closed expression for H(x) = ∑k≥0 h(k + 2)xk/k!. We will need to define Ĝ(x) =
∑k≥0 g(k+1)/(k+1)×(xk/k!) so that by (15), Ĝ(x) = S(x)e−x. Moreover Ĝ′(x) = ∑k≥0 g(k+2)/(k+
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2) × (xk/k!).
H(x) = ∑

n≥0h(n + 2)xn
n!

= ∑
n≥0

n∑
k=0(

n

k
) g(k + 2)

k + 2

xn

n!

= (∑
k≥0 g(k + 2) xk

k + 2

1

k!
) × (∑

l≥0
xl

l!
)

= ex (∑
k≥0 g(k + 2) xk

k + 2

1

k!
)

= exĜ′(x)
= ex(S′(x)e−x − S(x)e−x)
= S′(x) − S(x)
= x(F ⋆ exp)(x) + xZ(x) exp(0) − (Z ⋆ exp)(x)

x2
− (Z ⋆ exp)(x)

x

= xZ(x) − (Z ⋆ exp)(x)
x2

(17)

∎
Below are some examples of specification of function z.

• if z(s) = 1, then Z(x) = ex so that G(x) = 1. Moreover S(x) = ex and H(x) = 0.

• if z(s) = s, then Z(x) = (1 + x)ex so that G(x) = 1 + x. Moreover S(x) = ex(1 + x/2) and

H(x) = ex/2.

• if z(s) = 1/s, then Z(x) = (ex − 1)/x so that G(x) = (1 − e−x)/x = F (−x).
• if z(s) = 2s−1, then Z(x) = e2x so that G(x) = ex. Moreover S(x) = ex(ex − 1)/x and

H(x) = e2x(e−x + x − 1)/x2.
Proof of Proposition 5

Throughout this section, we consider fixed N ∈ U and a ∈ RN++. Several definitions will be useful.

Firstly, define the class Ca+N as

Ca+N = {(N,v) ∈ CN ∣∃c ∈ R ∶ ∀i ∈ N,v({i}) = cai},
so that CaN = Ca+N ∩C0N , i.e. CaN contains all games in Ca+N , except those with null stand-alone worths.

Obviously, Ca+N is a real vector space. Furthermore, the dimension of Ca+N is 2n − 1 − n + 1 = 2n − n.

Note also that Ca+N is the smallest vector space that contains CaN . Secondly, for all S ∈ 2N such that

s ≥ 2, define the game (N, rS) such that rS = uS + va. Lemma 5 essentially states that all games

in CaN admit a unique decomposition via the collection {(N,va), (N, rS)S∈2N ∶s≥2} and enunciates

properties of the associated coefficients. More specifically, {(N,va), (N, rS)S∈2N ∶s≥2} is a basis for

the vector space Ca+N , and this basis is composed of games in CaN only.
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Lemma 5. Consider any (N,v) ∈ Ca+N , and let v({i}) = cai for all i ∈ N , c ∈ R. Then,

(i) there are unique coefficients γv(S) ∈ R, S ∈ 2N , s ≥ 2, and γv(0) ∈ R such that

v = ∑
S∈2N ∶s≥2γv(rS)rS + γv(va)va;

(ii) for all S ∈ 2N , s ≥ 2, γv(rS) = ∆v−cva(S), and γv(va) = c −∑S∈2N ∶s≥2 ∆v−cva(S);
(iii) ∑S∈2N ∶s≥2 γv(rS) + γv(va) = c;
(iv) (N,v) ∈ CaN if and only if ∑S∈2N ∶s≥2 γv(rS) + γv(va) ≠ 0.

Proof. Consider any (N,v) ∈ Ca+N , and let v({i}) = cai for all i ∈ N , c ∈ R. We can write v

as (v − cva) + cva, where (v − cva) is a characteristic function on N that vanishes for singletons.

Therefore, v − cva can be written as

(v − cva) = ∑
S∈2N ∶s≥2∆v−cva(S)uS .

From this, we get

v = (v − cva) + cva
= ∑

S∈2N ∶s≥2∆v−cva(S)uS + cva
= ∑

S∈2N ∶s≥2∆v−cva(S)(uS + va) − ∑
S∈2N ∶s≥2∆v−cva(S)va + cva

= ∑
S∈2N ∶s≥2∆v−cva(S)(uS + va) + (c − ∑

S∈2N ∶s≥2∆v−cva(S))va
= ∑

S∈2N ∶s≥2∆v−cva(S)rS + (c − ∑
S∈2N ∶s≥2∆v−cva(S))va (18)

Letting γv(rS) = ∆v−cva(S) and γv(va) = c −∑S∈2N ∶s≥2 ∆v−cva(S), we obtain

v = ∑
S∈2N ∶s≥2γv(rS)rS + γv(va)va.

So, the collection of games {(N,va), (N, rS)S∈2N ∶s≥2} spans Ca+N , and this collection contains 2n −n
elements, i.e. as many elements as the dimension of Ca+N . Conclude that {(N,va), (N, rS)S∈2N ∶s≥2}
is a basis for the vector space Ca+N . Therefore, any game (N,v) ∈ Ca+N is uniquely decomposed as in

(18), proving claim (i). Claim (ii) follows from (18), claim (iii) is obvious via claim (ii), and claim

(iv) is obvious from claim (iii) . ∎
Lemma 6 is technical and will be used on the coefficients exhibited in Lemma 5 (i) so as to

ensure the property highlighted in Lemma 5 (iv).
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Lemma 6. Let (x1, . . . , xq) be a sequence of q ≥ 1 real numbers such that xk ∈ R∗ for all k ∈{1, . . . , q} and ∑q
k=1 xk ∈ R∗. Then, there exists an ordering (x(1), . . . , x(q)) of (x1, . . . , xq) such

that, for all k ∈ {1, . . . , q}, ∑k
l=1 x(l) ∈ R∗.

Proof. The proof is by induction on q.

Initialization. The claim is trivial for the case q = 1, and any of the two possible orderings can

be used to prove easily the case q = 2.

Induction hypothesis. Assume that there exists a desired ordering for all allowed sequences(x1, . . . , xq) such that q ≤ q̄, q̄ ≥ 2.

Induction step. Consider a sequence (x1, . . . , xq), q = q̄+1, such that xk ∈ R∗ for all k ∈ {1, . . . , q}
and ∑q

k=1 xk ∈ R∗. We distinguish two cases. Firstly, suppose that ∑q−1
k=1 xk ∈ R∗, then the induction

hypothesis can be applied to the sub-sequence (x1, . . . , xq−1). The desired ordering on (x1, . . . , xq)
is constructed by considering a desired ordering on the sub-sequence (x1, . . . , xq−1) and by adding

number xq in position q. Secondly, suppose that ∑q−1
k=1 xk = 0. Since the numbers xk, k ∈ {1, . . . , q −

1}, are all non-null, there exists a number xk, k ∈ {1, . . . , q − 1}, such that sign(xk) = −sign(xq).
Thus ∑l∈{1,...,k−1,k+1,...,q} xl ∈ R∗, which means that the induction hypothesis can be applied to the

sub-sequence (x1, . . . , xk−1, xk+1, . . . , xq). Similarly as before, the desired ordering on (x1, . . . , xq) is

constructed by considering a desired ordering on the sub-sequence (x1, . . . , xk−1, xk+1, . . . , xq) and

by adding number xk in position q. ∎
Proof. (Proposition 5) We shall show that if a value on C0 satisfies E, DPO and WL, and is

uniquely determined on QA0, then f is uniquely determined on C0. So consider such a value f .

Fix some N ∈ U and some a ∈ RN++. Pick any (N,v) ∈ CaN . By Lemma 5, we have that

v = ∑
S∈2N ∶s≥2γv(rS)rS + γv(va)va.

Let q ∈ {1, . . . ,2n − n} be the number of non-null coefficients in the above decomposition, where

q > 0 by definition of CaN and Lemma 5 (iii). Denote by (γv(v1), . . . , γv(vq)) the associated sequence

of coefficients. By Lemma 5 (iii), it holds that ∑q
k=1 γv(vk) = c ≠ 0. Thus, we can apply Lemma 6:

there is an ordering (γv(v(1)), . . . , γv(v(q))) of (γv(v1), . . . , γv(vq)) such that, for all k ∈ {1, . . . , q},

k∑
l=1γv(v(l)) ≠ 0. (19)

Now, denote by (N,vk) the game such that

vk = k∑
l=1γv(v(l))v(l).

By (19) and Lemma 5 (iv), (N,vk) ∈ CaN . Successive applications of WL to games (N,vk) and(N,γv(vk+1)v(k+1)) for all k ∈ {1, . . . , q − 1} according to ordering (γv(v(1)), . . . , γv(v(q))) imply
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that

f(N,v) = ∑
S∈2N ∶s≥2γv(rS)f(N, rS) + γv(va)f(N,va).

Note that (N,va) ∈ QA0. Moreover, consider any S ∈ 2N such that s ≥ 2. Each player i ∈ N/S is

dummy in (N, rS), which means that fi(N, rS) is uniquely determined by E and DPO for such

players. Then n − s successive applications of DPO yield that fi(N, rS) = fi(S, rS) for all i ∈ S.

Remark that (S, rS) ∈ QA0. By assumption f is uniquely determined on QA0, so that f is uniquely

determined in games (N, rS), S ∈ 2N , s ≥ 2, and (N,va). This completes the proof. ∎
Logical independence of the axioms in Propositions 7 and 8

Proposition 7:

• The Shapley value Sh on C0 satisfies E, DPO, WL, WC but not PS.

• PSh on C0 satisfies E, DPO, WL, WC but not S.

• The value on C0 which assigns to each (N,v) ∈ C0 and each i ∈ N , the payoff

∆v({i}) + v({i})∑j∈N v({j})∆v(N)
satisfies DPO, WL, WC, PS but not E.

• The value on C0 which assigns to each (N,v) ∈ C0 and each i ∈ N , the payoff ∆v({i}) +
∆v(N)/n satisfies DPO, WL, WC, S but not E.

• The proportional value on C0, which assigns to each (N,v) ∈ C0 and each i ∈ N , the payoff

v({i})∑j∈N v({j})v(N)
satisfies E, WL, WC, PS but not DPO.

• The equal surplus division ESD on C0, which assigns to each (N,v) ∈ C0 and each i ∈ N , the

payoff

ESDi(N,v) = v({i}) + 1

n
(v(N) − ∑

j∈N v({j}))
satisfies E, WL, WC, PS, but not DPO.

• The value f on C0 defined for each (N,v) ∈ C0 and each i ∈ N , by

fi(N,v) = v({i}) + v({i})∑j∈N v({j})∆v(N) + ∑
S∈2N ∶S∋i,s∈{2,...,n−1}

v({i})2∑j∈S v({j})2∆v(S).
satisfies E, DPO, WC, PS but not WL.
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• The value f on C0 defined for each (N,v) ∈ C0 and each i ∈ N , by

fi(N,v) = v({i}) + 1

n
∆v(N) + ∑

S∈2N ∶S∋i,s∈{2,...,n−1}
v({i})2∑j∈S v({j})2∆v(S).

satisfies E, DPO, WC, PS but not WL.

• For a given integer k ≥ 2, the value f on C0 defined for each (N,v) ∈ C0 and each i ∈ N , by

fi(N,v) = ∑
S∈2N ∶S∋i,s≤k

v({i})∑j∈S v({j})∆v(S) + ∑
S∈2N ∶S∋i,s>k

∆v(S)
s

.

satisfies E, DPO, WL, PS but not WC.

• For a given integer k ≥ 2, the value f on C0 defined for each (N,v) ∈ C0 and each i ∈ N , by

fi(N,v) = ∑
S∈2N ∶S∋i,s>k

v({i})∑j∈S v({j})∆v(S) + ∑
S∈2N ∶S∋i,s≤k

∆v(S)
s

.

satisfies E, DPO, WL, S but not WC.

Proposition 8:

• The null solution on C0 satisfies DPO, WL, PAM, EAM, but not E.

• The Shapley value Sh on C0 satisfies E, DPO, WL, EAM but not PAM.

• PSh on C0 satisfies E, DPO, WL, PAM but not EAM.

• The proportional value on C0, which assigns to each (N,v) ∈ C0 and each i ∈ N , the payoff

v({i})∑j∈N v({j})v(N)
satisfies E, WL, PAM, but not DPO.

• The equal surplus division ESD on C0, which assigns to each (N,v) ∈ C0 and each i ∈ N , the

payoff

ESDi(N,v) = v({i}) + 1

n
(v(N) − ∑

j∈N v({j}))
satisfies E, WL, EAM, but not DPO.

• The value f on C0 defined for each (N,v) ∈ C0 and each i ∈ N , by

fi(N,v) = v({i}) + v({i})∑j∈N v({j})∆v(N) + ∑
S∈2N ∶S∋i,s∈{2,...,n−1}

v({i})2∑j∈S v({j})2∆v(S).
satisfies E, DPO, PAM, but not WL.

• The value f on C0 defined for each (N,v) ∈ C0 and each i ∈ N , by

fi(N,v) = v({i}) + 1

n
∆v(N) + ∑

S∈2N ∶S∋i,s∈{2,...,n−1}
v({i})2∑j∈S v({j})2∆v(S).

satisfies E, DPO, EAM but not WL.
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