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1 Introduction

The theory of incentives has made considerable advances in the last forty years. The implica-

tions of pure adverse-selection or pure moral-hazard models are now well known.1 However,

there are many examples of contracts designed to solve adverse-selection and moral-hazard

problems simultaneously. Chief-executive-officer (CEO) and financial contracts are partic-

ularly archetypal. In the former, a CEO has private information on how good a manager

he is and how tirelessly he works. In the latter, a borrower has private information on how

risky his project is and how hazardously he carries it out. Paradoxically, despite the plethora

of mixed models in the incentives literature, such problems where the principal’s payoff is

closely bound up with the agent’s private information and unobservable action have come

in for little study.

In this paper, a stochastic production taking two values, low (i.e. failure) or high (i.e.

success), is considered in order to study the optimal contract offered by a risk-neutral princi-

pal to a risk-averse agent when the agent’s hidden efficiency and hidden action both improve

the probability of success.

We begin by recalling the well-known full-insurance property of the complete information

contract: to generate a positive probability of success the agent receives a (full information)

fixed payment whether the production fails or succeeds. Furthermore, he gets no rent (i.e.

he only receives his reservation utility). Then, we consider that the agent’s action becomes

non-observable and we recall the main characteristics of the moral-hazard contract. The

agreement offers high-powered incentives: the (moral-hazard) fixed payment is increased

by a positive bonus in the event of success. Moreover, because the agent bears some risk,

the contract pays him a risk-premium without giving up a rent for him. These elements

constitute the moral-hazard cost incurred by the principal to induce a positive probability

of success despite the non-observability of the action. It is optimal to distort the efficient

probability of success in order to take this cost into account. Such distortions reflect the

usual trade-off between insurance and efficiency.

Next, we consider that efficiency is no longer observable. Thus adverse selection comple-

1See Laffont and Martimort (2002), Bolton and Dewatripont (2005).
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ments moral hazard to form a mixed model. When the principal faces asymmetric informa-

tion about the agent’s type, she needs to elicit truthful information. To do this, she must give

up an informational rent to the agent. Compared with moral hazard, such a rent introduces

two modifications into the marginal cost to induce a positive probability of success. First,

this rent constitutes a cost that raises the moral-hazard cost. So the moral-hazard marginal

cost to induce a positive probability of success is increased, except for the most efficient

agent, by the marginal cost of the informational rent. This is the standard adverse-selection

cost for the principal.

Second, the rent affects the two components of the moral-hazard cost. The consequence

for the bonus is inevitably costly. Because the bonus incentivizes the risk-averse agent to bear

a risk, the higher the fixed payment is, the more costly high-powered incentives are. That is

precisely what the informational rent does since the agent gets no rent under moral-hazard

alone.

By contrast, the consequence of the informational rent for the risk premium is ambiguous.

It is important to notice that a rent is equivalent to transferring the risk borne by the agent

toward higher utility levels than the reservation utility. This forces the principal to pay a risk

premium that guarantees a higher utility in the mixed model than in the moral-hazard model.

On the one hand, it is costly at the margin because of risk aversion again. On the other hand,

in accordance with decision theory, this transfer is not welcomed by an imprudent agent,

but the contrary is true for a prudent one.2 In the former case, this prompts an increase in

the risk premium (at the margin). In the latter, the contrary arises.

Ultimately, the presence of adverse selection can reinforce or mitigate the moral-hazard

trade-off. More specifically, the informational rent given up implies that3

• risk aversion and prudence both contribute to increasing the moral-hazard marginal

cost if the agent is imprudent,

• prudence alleviates the increase in the moral-hazard marginal cost due to risk aversion

if the agent is weakly or moderately prudent,

2See Eeckhoudt et al. (1995), Crainich and Eeckhoudt (2005).
3The notions of weakly, moderately, and highly prudent agent will be stated rigorously in the core of the

paper.

3



• the moral-hazard marginal cost is reduced because prudence offsets risk aversion if the

agent is highly prudent.

A somewhat surprising effect arises if we consider both a highly prudent and sufficiently

efficient agent.4 Indeed, as shown above, great prudence implies a reduction in the moral-

hazard marginal cost. In parallel, in accordance with pure adverse-selection models, a suffi-

ciently efficient agent implies an adverse-selection marginal cost relatively close to zero (even

null at the top). So in this case, the mixed-model marginal cost to induce a positive probabil-

ity of success is lower than under moral hazard. The mixed-model contract entails a higher

probability of success, despite the costly informational rent given up. Otherwise, there is a

reduction in the probability of success when the agent is imprudent or weakly/moderately

prudent since the informational rent also increases the moral-hazard marginal cost. It follows

there is inevitably a distortion for all the agent’s efficiency compared to moral hazard alone,

even at the top, which contradicts the well-known result under adverse selection alone. Such

distortions reflect the overall trade-off between rent extraction, insurance, and efficiency.

Nevertheless, the nature of these distortions varies with agent’s efficiency. We show that

moving from the lowest to the highest efficiency leads the overall trade-off to substitute

distortions due to moral hazard for distortions due to adverse selection. Indeed, again

according to adverse-selection models alone, rather inefficient agents get a low rent and are

associated with a high marginal cost of the informational rent. The contrary is true for

rather efficient agents. So the distortion associated with the inefficient types is due rather to

the rent extraction efficiency trade-off. The principal is more concerned about the adverse-

selection cost. The probability of success is distorted to limit the informational rent. The

reverse is true for the distortion associated with the efficient types. It occurs from the

insurance-efficiency trade-off, because the principal is more interested in the moral-hazard

cost. The distortion comes from the desire to limit the cost to induce a positive probability

of success, i.e. the bonus and the risk premium.

This result raises the question whether a fully separating contract can be implemented.

Pooling can occur because of the common-value nature of the model and the possible lack

of monotonicity of the marginal cost of the informational rent due to risk aversion. So

4The notion of sufficiently efficient agent will be stated rigorously in the core of the paper.
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pooling in the mixed contract does not have different causes from those already known in

pure adverse-selection models. However, pooling is most likely to emerge since the conditions

for avoiding pooling are more difficult to satisfy because of the different kinds of incentives

to be managed and the overall trade-off between rent extraction, insurance, and efficiency

involved.

The paper is organized as follows. Section 2 presents the related literature. The model

is stated in section 3. Sections 4 and 5 respectively analyze complete information and moral

hazard. The mixed case is studied in section 6. An example is given in section 7. We briefly

conclude in an eighth section. Section 9 is devoted to appendices.

2 Related literature

The literature on screening under true moral-hazard can be split into two distinct parts. The

first part concerns closed models. Faynzilberg and Kumar (2000) analyze a similar model,

but with a continuum of output. They study more specifically the validity of the well-known

first-order approach. However, this degree of generality implies that the optimal contract

cannot be fully characterized. On the one hand, the two-output model constitutes a limit.

But, on the other hand, it allows us to use the first-order approach and to fully determine

the properties of the optimal contract and the overall trade-off between rent extraction,

insurance, and efficiency.

Ollier (2007) and Ollier and Thomas (2013) also study a two output model, but with a

risk-neutral agent protected by limited liability or ex-post participation constraints. They

show that a fully pooling contract is optimal. Such a contract allows the principal to reduce

the overall (informational plus limited liability or ex-post participation) rent left to the agent.

In our model, pooling can also arise. But this is due to standard reasons: the common-value

nature of the model or the lack of monotonicity of the marginal cost of the informational

rent. So pooling is not a cause for the principal to limit rent but a consequence of the

difficulty in managing different kinds of incentives in the presence of risk aversion.

The second part of the literature studies insurance models. In Jullien et al. (2007),

a two-type/two-output model is analyzed. The major difference with the present paper is
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that the agent’s private knowledge affects the level of risk-aversion instead of the technology.

One result can be underlined: the properties of the optimal contract crucially depend on the

high power incentives existing in the outside option. In our paper, we do not investigate an

endogenous outside-option utility. By contrast, we assume that it is constant.

3 The Model

The basic data of the model follow Ollier and Thomas (2013). A principal contracts with

an agent to produce a pecuniary output with random value x, x ∈ {x, x}. High (resp.

low) production x (resp. x) is associated with success (resp. failure). The realization of

high production requires the agent to perform an action generating a probability of success

ρ = Pr(x = x) ∈ (0, 1). But action is costly for the agent. He incurs an indirect disutility

ψ(ρ, θ), with θ his efficiency. The principal does not observe the action or the efficiency.

But she knows that efficiency is drawn from a density f > 0 on [θ, θ] with cumulative F .

The principal offers a contract 〈a, b〉 with a, a fixed payment, and b, a bonus in the event

of success. In other words, a is the non-contingent component of the contract and b the

contingent component. Let U0 be the agent’s reservation utility.

The principal. The principal is risk-neutral. For a given probability of success and a given

contract, her objective function is

V =
(
1− ρ

)(
x− a

)
+ ρ

(
x− (a + b)

)

= x+ ρ∆x− a− ρb, (1)

where ∆x = x− x > 0, is the increase in output value due to success.

The agent. The agent is risk-averse. The utility of the payment in the event of success

(resp. failure) is u(a+ b) (resp. u(a)). The agent’s expected utility is

U =
(
1− ρ

)
u(a) + ρu(a + b)− ψ(ρ, θ)

= u(a) + ρ
(
u(a+ b)− u(a)

)
− ψ(ρ, θ). (2)

The properties of the functions u and ψ are the following.
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Property 1. The functions u and ψ verify

u(0) = 0, u′(.) > 0, u′′(.) < 0, u′′′(.) has a constant sign,

and 5

ψ(0, θ) = 0, ψ1(ρ, θ) > 0, ψ11(ρ, θ) > 0, ψ2(ρ, θ) < 0, ψ22(ρ, θ) > 0, ψ12(ρ, θ) < 0.

The conditions on the function u imply that the agent has no utility if he receives no

payment, is risk-averse since the marginal utility of the payment is positive and decreasing,

and is either imprudent when u′′′ < 0 or prudent when u′′′ > 0. The conditions on the

function ψ reflect standard assumptions about the probability of success and the disutility

of effort.6 For all types, the disutility incurred to implement no probability of success is

null. The marginal indirect disutility is positive and increasing. In more productive states,

the agent’s disutility diminishes but at an increasing rate. Higher values of θ correspond to

states in which a higher probability of success is less costly to generate.

Let rA = −u′′
u′ (resp. rP = −u′′′

u′′ ) be the absolute risk aversion (resp. prudence) coefficient.

For the analysis, it is useful to introduce different levels of prudence.

Definition 1. The agent is said to be, ∀(ρ, θ) ∈ (0, 1)× [θ, θ],

• weakly prudent if

0 < rP ≤ 3rA,

• moderately prudent if

3rA < rP ≤ 3rA +
u′

ρ(1− ρ)ψ11(ρ, θ)
,

• highly prudent if

3rA +
u′

ρ(1− ρ)ψ11(ρ, θ)
< rP .

5Subscript i denotes the partial derivative with the ith argument.
6Indeed, an equivalent way to analyze this problem is to consider that the agent exerts an effort that,

like his efficiency, increases the probability of success ρ(e, θ). But he incurs a disutility ϕ(e). See Ollier and

Thomas (2013) for details.
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The problem. The principal’s problem is to maximize the expectation of (1) with respect

to 〈a, b〉, subject to the participation and the incentive compatibility constraints. The former

implies that the agent voluntarily agrees to the contract. The latter requires the agent to be

honest and obedient.

For the sake of clarity in resolution whatever the informational framework, it is useful to

change the variables as follows. Let u be the utility in the event of failure, u the utility in

the event of success, and ∆u the spread of utility (hereafter, the power of incentives). We

obtain 



u = u(a),

u = u(a+ b),

∆u = u− u.

(3)

Denoting u−1 = w, we get a first lemma.

Property 2. The function w is such that

w′ =
1

u′
> 0,

w′′ = − u′′

u′3
> 0,

w′′′ = −u
′′′u′ − 3u′′2

u′5
≶ 0 ⇔ rP ≷ 3rA.

Proof. Straightforward.

The signs of w′ and w′′ directly follow from Property 1. Using Definition 1, the sign

of w′′′ depends on the level of the agent’s prudence. If the agent is at least (resp. most)

moderately (resp. weakly) prudent, w′′′ is negative (resp. positive).

Considering payments, we get the following lemma.

Lemma 1. The payments are such that

a = w(u),

b = w(u)− w(u).

Proof. Straightforward.
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Using this lemma, the objective function (1) is

V = x+ ρ∆x − w(u)− ρ
(
w(u)− w(u)

)
. (4)

From (3), the agent’s utility (2) becomes

U = u+ ρ∆u − ψ(ρ, θ). (5)

Moreover, manipulating (5) and since u = ∆u+ u, we get




u = U + ψ(ρ, θ)− ρ∆u,

ū = U + ψ(ρ, θ) +
(
1− ρ

)
∆u.

(6)

Thus offering the contract 〈U,∆u〉 specifying the agent’s expected utility, U , and the power

of incentives, ∆u, is equivalent to offering the initial contract 〈a, b〉.
To get a well-behaved model, we assume that the indirect disutility ψ verifies Inada’s

conditions and has a convex marginal indirect disutility.

Assumption 1. ψ is such that limρ→0 ψ1(ρ, θ) = 0, limρ→1 ψ1(ρ, θ) = ∞, and ψ111(ρ, θ) ≥ 0.

The rest of the paper studies the optimal contract according to the following informa-

tional frameworks: complete information, pure moral hazard, and mixed model (i.e. adverse

selection plus moral hazard).

4 Complete information

When information is complete, the principal observes the agent’s efficiency and action. Only

the participation constraint needs to be satisfied. Given (6), the problem is max(ρ,∆u,U)(4)

subject to the participation constraint

U ≥ U0. (PC )

This constraint ensures that the agent is not forced to accept the contract.

We get the following lemma.

Lemma 2. The first-best contract entails , ∀θ ∈ [θ, θ]
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• UFB(θ) = U0,

• ∆uFB(θ) = 0,

so uFB(θ) = UFB(θ) + ψ(ρFB(θ), θ), with ρFB(θ) given by

∆x = w′(uFB(θ))ψ1(ρ
FB(θ), θ). (FB)

Proof. See appendix 9.1.

The interpretation is the following. To benefit from the increase in output value, ∆x

in (FB), the principal must implement a positive probability of success. This implies that

the agent incurs the indirect disutility. According to (4) and (5), the principal must make

the expected payment, w(u) + ρ
(
w(∆u + u) − w(u)

)
, in order to ensure the participation

constraint. But it is increasing in u and ∆u. It follows that U is costly (make use of (6)) as

is ∆u. It is optimal to set U = U0 and ∆u = 0. In other words, it is optimal not to give up

a rent to the agent, U = U0, nor a contingent contract, ∆u = 0 and the power of incentives

is null in the complete information contract. Instead, the agent receives a full insurance

contract since ∆u = 0 ⇔ u = u. The first-best payment is thus w(u), with u = U0 + ψ

and the first-best marginal cost to induce a positive probability of success corresponds to

the marginal payment w′(u)ψ1 in (FB).

5 Moral hazard

In this framework, the agent’s efficiency is still observable, but the action is not. The

principal faces a moral-hazard problem. The incentive question requires the agent to be

obedient. Using Assumption 1, the agent faced with an incentive contract 〈U,∆u〉 chooses
to generate the probability of success

p(∆u, θ) = argmax
ρ

{u+ ρ∆u− ψ(ρ, θ)}

⇒ ∆u = ψ1(p(∆u, θ), θ) > 0. (7)

Equation (7) represents the moral-hazard incentive constraint. Now, the power of incentives

must be strictly positive to ensure a positive action from the agent.
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Thus (6) becomes




u = U + ψ(p(∆u, θ), θ)− p(∆u, θ)∆u,

ū = U + ψ(p(∆u, θ), θ) +
(
1− p(∆u, θ)

)
∆u.

(8)

Given (8), the problem is max(∆u,U)(4) subject to (PC ).

We can state the following lemma.

Lemma 3. The moral-hazard contract entails

• UMH(θ) = U0, (MH 1)

•∆uMH(θ) such that

∆x =
(
w(∆uMH(θ) + uMH(θ))− w(uMH(θ))

)

+ p(∆uMH(θ), θ)
(
1− p(∆uMH(θ), θ)

)
×

(
w′(∆uMH(θ) + uMH(θ))− w′(uMH(θ))

)
ψ11(p(∆u

MH(θ), θ), θ), (MH 2)

with

uMH(θ) = UMH(θ) + ψ(p(∆uMH(θ), θ), θ)− p(∆uMH(θ), θ)∆uMH(θ). (MH 3)

Proof. See appendix 9.2.

This Lemma deserves some comments because the marginal payment on the right-hand

side of (MH 2) differs from complete information. It is composed of two terms. To induce

a positive action despite its non-observability, the power of incentives can no longer be set

to 0, i.e. ∆u > 0 (see (7)). This forces the principal to offer a contingent contract or high-

powered incentives to the agent. Thus, the principal must give up the bonus to the agent,

or the contingent component of the contract. This is the first term on the right-hand side of

(MH 2) (see Lemma 1). It represents the high-powered incentives marginal cost (HPIMC).

In parallel, as with complete information, the agent does not get a positive rent, U = U0 in

(MH 1), because it is costly for the principal. However, because the contract is contingent,

the agent bears some risk. It follows that the moral-hazard payment is higher than the
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first-best payment. Indeed, for a given ρ, we have

w(u) + ρ
(
w(u)− w(u)

)
=

(
1− ρ

)
w(u) + ρw(u)

> w((1− ρ)u+ ρu), by Jensen’s inequality

= w(u+ ρ∆u)

= w(U0 + ψ), because U = U0 and ∆u = 0 with complete information.

This higher payment arises because the principal has to pay a risk-premium to the agent

to ensure that the participation constraint is binding despite the risk borne. The second

term on the right-hand side of (MH 2) is the risk-premium marginal cost (RPMC), given

that ∆u = ψ1 from (7).

All in all, the right-hand side of (MH 2) is the moral-hazard marginal cost to induce

a positive probability of success. It differs from the first-best. So the efficient action is

distorted to take into account the fact that a contingent contract implies a moral-hazard

cost. This is the standard insurance-efficiency trade-off in moral-hazard problems with a

risk-averse agent.

6 Mixed model

In this framework, the principal observes neither the agent’s efficiency nor the agent’s action.

Following Myerson (1982), there is no loss of generality in focusing on direct revelation

mechanisms. The contract offered by the principal is then 〈U(θ̂),∆u(θ̂)〉, where θ̂ is the

agent’s report on his efficiency.

From the moral-hazard section, we know that the agent chooses to generate a probability

of success such that

p(∆u(θ̂), θ) = argmax
ρ

{u(θ̂) + ρ∆u(θ̂)− ψ(ρ, θ)}

⇒ ∆u(θ̂) = ψ1(p(∆u(θ̂), θ), θ) > 0. (9)

Let us denote by υ(θ̂, θ) the indirect expected utility of an agent with efficiency θ who

reports θ̂. We have

υ(θ̂, θ) = u(θ̂) + p(∆u(θ̂), θ)∆u(θ̂)− ψ(p(∆u(θ̂), θ), θ).
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Hence, the incentive constraint is ∀θ̂, θ ∈ Θ

U(θ) = υ(θ, θ) ≥ υ(θ̂, θ). (IC )

That is, the agent is better off reporting the truth about his efficiency.

The participation constraint is ∀θ ∈ Θ

U(θ) ≥ U0. (PC ′)

Moreover (8) becomes



u(θ) = U(θ) + ψ(p(∆u(θ), θ), θ)− p(∆u(θ), θ)∆u(θ),

ū(θ) = U(θ) + ψ(p(∆u(θ), θ), θ) +
(
1− p(∆u(θ), θ)

)
∆u(θ).

(10)

Given (10) and using (4), the principal’s problem is

max
∆u(.),U(.)

∫ θ

θ

{
x+ p(∆u(θ), θ)∆x− w(u(θ))− p(∆u(θ), θ)

(
w(u(θ))− w(u(θ))

)}
f(θ)dθ, (11)

subject to (IC ) and (PC ′).

Let us begin to resolve this problem by a reformulation. The following lemma character-

izes necessary and sufficient conditions for (IC ).

Lemma 4. (Ollier and Thomas (2013)). The allocation 〈U(θ),∆u(θ)〉 is incentive compat-

ible if and only if, ∀θ ∈ Θ

U ′(θ) = −ψ2(p(∆u(θ), θ), θ), (IC 1)

∆u′(θ) ≥ 0. (IC 2)

To ensure revelation, the constraint (IC 1) tells us that the agent’s expected utility, U(θ),

must follow the path U ′(θ) = −ψ2(p(∆u(θ), θ), θ). Thus, using Property 1, it is increasing

with efficiency. Moreover, following (IC 2), the principal must ensure that the power of

incentives, ∆u(θ), increases with the type. This is the implementability condition.

Next, we already know that U is costly for the principal. Since it is increasing with the

agent’s efficiency, it is optimal for the principal not to give up an informational rent to the

least efficient agent. That is

U(θ) = U0. (PC 1)
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Finally, the principal’s problem is max(∆u(.),U(.))(11) s.t. (IC 1), (IC 2), and (PC 1). This

is an optimal control problem, where U(θ) and ∆u(θ) are state variables.

For ease of analysis, we begin by assuming a fully separating contract, i.e. ∆u′(θ) >

0, ∀θ ∈ Θ. This allows us to identify the first-round effects of adding adverse selection to

moral hazard. We study the possibility of pooling in a subsequent step.

6.1 Fully separating contract

We can present our first result.

Proposition 1. Assume a fully separating contract. The mixed contract entails

• U∗(θ) = U0 −
∫ θ

θ

ψ2(p(∆u
∗(τ), τ), τ)dτ, (MM 1)

•∆u∗(θ) such that

∆x =
(
w(∆u∗(θ) + u∗(θ))− w(u∗(θ))

)

+ p(∆u∗(θ), θ)
(
1− p(∆u∗(θ), θ)

)
×

(
w′(∆u∗(θ) + u∗(θ))− w′(u∗(θ))

)
ψ11(p(∆u

∗(θ), θ), θ)

−
∫ θ
θ

{
w′(u∗(τ)) + p(∆u∗(τ), τ)

(
w′(∆u∗(τ) + u∗(τ))− w′(u∗(τ))

)}
f(τ)dτ

f(θ)
×

ψ12(p(∆u
∗(θ), θ), θ), (MM 2)

with

u∗(θ) = U∗(θ) + ψ(p(∆u∗(θ), θ), θ)− p(∆u∗(θ), θ)∆u∗(θ). (MM 3)

Proof. See appendix 9.3.

Several comments can be made.

Marginal cost to induce a positive probability of success. When the principal does

not observe the agent’s type, she needs to elicit truthful information. To do this, she must

give up an informational rent to the agent, U > U0, except at θ (see (MM 1)). Such a

rent implies that the marginal cost to induce a positive probability of success is modified

compared to pure moral hazard (i.e. the right-hand side of (MH 2)).

14



The first change is the presence of the last term in (MM 2), which reflects the marginal

cost of the informational rent and is usual in adverse-selection problems. It is composed

of two factors. Because U is costly and must satisfy (IC 1), i.e. U ′ = −ψ2, it is optimal

to moderate its slope, through the probability of success, to reduce the informational rent.

This corresponds to ψ12. The second factor is the shadow cost of U weighted by 1
f
. Indeed,

to benefit from the participation of the type θ, the principal must increase the informational

rent, and so the expected payment, w(u) + ρ
(
w(u)−w(u)

)
(make use of (10)), of all agents

with higher efficiency. Thus, the shadow cost is −
∫ θ
θ
{w′(u) + p(w′(∆u+ u)− w′(u))}fdτ .7

The second modification arises because U is higher than U0. Therefore, using (MH 2),

(MM 2), and (MM 3), adverse selection also influences the moral-hazard marginal cost. Com-

bining the right-hand sides of (MH 2) and (MM 2) with (MH 3) and (MM 3), the difference

in marginal costs is given by

∫ U

U0

∫ ∆u

0

{w′′(γ + ǫ+ ψ − p∆u) + p
(
1− p

)
w′′′(γ + ǫ+ ψ − p∆u)ψ11}dγdǫ. (12)

Thus, the informational rent influences the HPIMC through w′′ and the RPMC through

p(1 − p)w′′′ψ11. Consider first the HPIMC. The effect depends on w′′, or equivalently on

−u′′ using Property 2 since u′ > 0. This is positive. Indeed, due to risk aversion, the

bonus incentivizing the agent to bear a risk is even more costly when the agent obtains a

higher utility in the event of failure. But, using (MH 3) and (MM 3), the informational rent

increases such utility compared with pure moral hazard. Thus, adverse selection implies that

the HPIMC is increased.

Then, consider the RPMC. Since ψ11 > 0 from Property 1, the effect of the informational

rent depends on the sign of w′′′, or equivalently on 3rA− rP using Property 2. So the agent’s

risk aversion and prudence have a key role. In fact, a rent is equivalent to transferring the risk

borne by the agent toward higher utility levels than the reservation utility. This constrains

the principal to pay a risk premium that guarantees a higher utility in the mixed model

than in the moral-hazard model. At the margin, this is costly for the principal because

of risk aversion. The term 3rA reflects this phenomenon. The role of prudence is more

7Since the agent is not risk-neutral, the shadow cost does not reduce to −
∫ θ

θ fdτ = −(1 − F ), as with

risk-neutrality in the canonical adverse-selection model.
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complex. According to decision theory, the transfer of the risk toward higher levels of utility

is not welcomed by an imprudent agent, but the contrary is true for a prudent one. So, in

the former case, i.e. −rP > 0, imprudence makes the transfer of risk costly, as does risk

aversion. The RPMC increases in the presence of adverse selection. In the latter case, i.e.

−rP < 0, risk aversion and prudence work in opposite directions. Thus prudence reduces

the RPMC contrarily to risk aversion. The ultimate effect depends on the level of prudence.

Using Definition 1, when the agent is weakly prudent, risk aversion dominates prudence

and the informational rent still increases the RPMC because 3rA− rP remains positive. But

when the agent is moderately or highly prudent, adverse selection decreases the RPMC since

3rA − rP < 0.

Finally, the overall effect of adverse selection on the moral-hazard marginal cost depends

on the sign of the integrand in (12), or equivalently using Property 2, of (since u′ > 0)

−(u′′u′2 + p(1− p)(u′′′u′ − 3u′′2)ψ11)

or
u′

p(1− p)ψ11

+ 3rA − rP .

by factoring −u′′u′ and making use of Property 1, Definition 1, and u′′u′ < 0.

From the above analysis, we can conclude that in presence of adverse selection

a. if the agent is imprudent, (12) is positive. Risk aversion and prudence both contribute

to increasing the moral-hazard marginal cost,

b. if the agent is weakly or moderately prudent, (12) is still positive. But prudence

alleviates the increase in moral-hazard marginal cost due to risk aversion,

c. if the agent is highly prudent, (12) is negative. So, a reduction in the moral-hazard

marginal cost occurs because prudence offsets risk aversion.

Altogether, the right-hand side of (MM 2) is the mixed-model marginal cost to induce a

positive probability of success.

Distortions with respect to moral hazard. These two modifications in the marginal

cost to induce a positive probability of success imply two distortions in the probability of
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success, compared to its moral-hazard level. To see this, notice that (MM 2) is equivalent to

∆x+

∫ θ
θ

{
w′(u) + p

(
w′(u)− w′(u)

)}
fdτ

f(θ)
ψ12(p, θ)

=
(
w(u)− w(u)

)
+ p

(
1− p

)(
w′(u)− w′(u)

)
ψ11(p, θ). (MM 2′)

We know that ∆x +
∫ θ
θ {w′(u)+p(w′(∆u+u)−w′(u))}fdτ

f
ψ12 ≤ ∆x, with equality holding at θ. So

comparing (MH 2) and (MM 2′), the first modification forces a reduction in p because the

moral-hazard marginal cost is increasing in p.8 This reduction is standard in adverse-selection

problems and reflects the usual rent extraction efficiency trade-off: this tends to distort the

probability downward from its reference level (here its moral-hazard level) in order to reduce

the informational rent of more efficient agents.

Moreover, the second modification is due to the increase in U . As shown above, this

can increase (cases a. and b.) or reduce (case c.) the moral-hazard marginal cost. In cases

a. and b., adverse selection contributes to a second reduction in p because the transfer of

risk toward higher levels of utility involved makes the insurance-efficiency trade-off worse.

In case c., adverse selection leads to an opposite effect and tends to increase p. In this case,

the informational rent combined with the high level of prudence softens the trade-off due to

moral hazard.

These distortions reflect the overall trade-off between rent extraction, insurance, and

efficiency. More specifically, we observe that the adverse-selection cost acts through two

channels. The first distortion implies that it is added to the moral-hazard cost. The second

distortion shows that it can reinforce or mitigate the moral-hazard trade-off.

Using the above analysis, we can conclude in the following corollary that adverse-selection

can have a (somewhat) surprising increasing effect on the probability of success, despite the

informational rent cost involved.

Corollary 1. Consider a highly prudent agent. The mixed probability of success p(∆u∗(θ), θ)

is higher than the moral-hazard probability p(∆uMH(θ), θ) if the agent is sufficiently prudent,

that is, an agent for whom the decrease in the moral-hazard marginal cost is higher than the

8By concavity of the moral-hazard problem, the moral-hazard marginal cost increases in p. See equation

(??) in appendix 9.2.

17



marginal cost of the informational rent.

Otherwise, it is lower.

Moral-hazard cost versus adverse-selection cost. From the preceding discussion, it

follows that the nature of distortions is not equivalent among [θ, θ]. Indeed, when θ is close

to θ, we have U ≃ U0 and −
∫ θ
θ {w′(u)+p(w′(∆u+u)−w′(u))}fdτ

f
ψ12 ≫ 0. So the distortion associated

with inefficient types is due rather to the rent extraction-efficiency trade-off. The principal

is more concerned about the adverse-selection cost. The probability of success is distorted

to limit the informational rent. The reverse is true for θ close to θ since U ≫ U0 and

−
∫ θ
θ
{w′(u)+p(w′(∆u+u)−w′(u))}fdτ

f
ψ12 ≃ 0. The distortion associated with efficient types occurs

rather from the insurance-efficiency trade-off, because the principal is more interested in the

moral-hazard cost. The distortion arises from the desire to limit the cost to induce a positive

probability of success, i.e. the high-powered incentives and the risk-premium. It follows that

in presence of adverse selection, each moral-hazard probability of success is distorted. In

particular, even if the marginal cost of the informational rent is null for the highest type,

because
∫ θ
θ {w′(u)+p(w′(∆u+u)−w′(u))}fdτ

f
= 0 at θ = θ, there is a distortion at the top. This

contradicts the well-known result of pure adverse selection.

The following corollary summarizes this phenomenon.

Corollary 2. Moving from the lowest to the highest agent’s efficiency, the mixed contract

replaces distortions due to adverse-selection cost by distortions due to moral-hazard cost.

6.2 Partially separating contract

The difference in the nature of distortions raises the question whether the assumption of full

separation in Proposition 1 is relevant. Let η(θ) represent the shadow cost of U , η(θ) =

−
∫ θ
θ
{w′(u) + p(w′(∆u+ u)− w′(u))}fdτ . The following proposition answers this question.

Proposition 2. The optimal adverse-selection moral-hazard contract is separating if, ∀θ ∈
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[θ, θ]

p12(∆u
∗(θ), θ)

(
∆x−

(
w(u∗(θ))− w(u∗(θ))

))

− p2(∆u
∗(θ), θ)

(
1− 2p(∆u∗(θ), θ)

)(
w′(u∗(θ))− w′(u∗(θ))

)

+ p2(∆u
∗(θ), θ)

(
η∗(θ)

f

)′
+ p22(∆u

∗(θ), θ)
η∗(θ)

f(θ)
> 0. (13)

Proof. See appendix 9.4.

Two comments can be made. First, this proposition highlights that pooling in this mixed

framework can have two sources. The first source is the common-value nature of the model.

So non-responsiveness can occur. That is, ∆uMH(θ) does not satisfy the incentive constraint

(IC 2). In this case, the principal would like to implement a power of incentives decreasing in

θ for reasons of moral hazard. Thus, a conflict appears with the implementability condition.

The first two terms in (13) reflect this phenomenon. But, because u depends on U > U0 when

there is adverse selection, the conflict between the principal’s preference and the monotonicity

condition (IC 2) is somewhat modified compared to moral-hazard alone. The second source

is due to the possible lack of monotonicity of the marginal cost of the informational rent. In

such a situation, this cost is not ranked exactly as the agent’s efficiency and the principal

would like to implement a decreasing power of incentives over some interval. Again, this

conflicts with the implementability condition. This concerns the final two terms in (13).

This effect is well-known in pure adverse-selection models. But, because the agent is risk-

averse, the standard monotone hazard rate property, i.e. 1−F
f

non-increasing in θ, is no

longer sufficient to avoid non-monotonicity.

Second, examining (13), we observe that since p2 = −ψ12

ψ11
> 0 and w′′ > 0 (see Property

2), a probability less than 1
2
contributes to the non-responsiveness of the model. The reverse

is true if p ≥ 1
2
. Moreover, since ∆x −

(
w(u) − w(u)

)
> 0, η′ > 0 and η < 0, (13) is more

easily satisfied when

p12 ≥ 0 and p22 ≤ 0. (14)

These conditions structure the function ψ even more than Property 1 and Assumption 1 do.
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Indeed, we get

p12(∆u, θ) =
ψ111(p(∆u, θ), θ)ψ12(p(∆u, θ), θ)− ψ112(p(∆u, θ), θ)ψ11(p(∆u, θ), θ)

ψ3
11(p(∆u, θ), θ)

,

p22(∆u, θ) =
ψ112(p(∆u, θ), θ)ψ12(p(∆u, θ), θ)− ψ212(p(∆u, θ), θ)ψ11(p(∆u, θ), θ)

ψ2
11(p(∆u, θ), θ)

− ψ12(p(∆u, θ), θ)

ψ11(p(∆u, θ), θ)

ψ111(p(∆u, θ), θ)ψ12(p(∆u, θ), θ)− ψ112(p(∆u, θ), θ)ψ11(p(∆u, θ), θ)

ψ2
11(p(∆u, θ), θ)

.

So a separating contract is subject to a combination of many second and third partial

derivatives of the indirect disutility ψ. Thus, except maybe for very simple functions ψ, one

can reasonably have doubts about the existence of a contract that strictly satisfies (IC 2) for

all types. In this case, the monotonicity constraint is binding on some intervals.

We state the shape of the optimal mixed contract in the following proposition.

Proposition 3. Consider a single interior interval [θ0, θ1] where there is pooling. The mixed

contract entails

• U∗∗(θ) = U0 −
∫ θ

θ

ψ2(p(∆u
∗∗(τ), τ), τ)dτ,

•∆u∗∗(θ) equal to

◦∆u∗(θ) if θ ∈ [θ, θ0] ∪ [θ1, θ],

◦∆uk if θ ∈ [θ0, θ1], with

∆x−
∫ θ1

θ0

{(
w(∆uk + u∗∗(θ))− w(u∗∗(θ))

)

− p(∆uk, θ)
(
1− p(∆uk, θ)

)
×

(
w′(∆uk + u∗∗(θ))− w′(uk(θ))

)
ψ11(p(∆u

k, θ), θ)

+

∫ θ
θ

{
w′(u∗∗(τ)) + p(∆uk, θ)

(
w′(∆uk + u∗∗(τ))− w′(u∗∗(τ))

)}
f(τ)dτ

f(θ)
×

ψ12(p(∆u
k, θ), θ)

}
f(θ)dθ = 0

and u∗∗(θ) = U∗∗(θ) + ψ(p(∆u∗∗(θ), θ), θ)− p(∆u∗∗(θ), θ)∆u∗∗(θ).

This proposition shows that when pooling arises, the optimal contract consists in verifying

(MM 2) on average, and no longer pointwise. This result is well-known in pure adverse-

selection models.
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In the light of Propositions 2 and 3, we observe that pooling in the mixed contract has

no different causes and consequences from those already known in adverse-selection models

alone. However, pooling is most likely to emerge since the conditions to avoid pooling are

more difficult to satisfy because of the different kinds of incentives the principal has to

manage and the overall trade-off between rent extraction, insurance, and efficiency involved.

7 An example

It is important to notice that the optimal power of incentives ∆u∗ defined in Proposition

1 is the solution of a non-linear integral state equation. Thus, the goal of this example is

not to find an explicit solution but to give a simple setting in order (1) to have a concrete

overview of what distortions can be, (2) to see whether the conditions ensuring the existence

of a highly prudent agent or a separating contract can arise.

To do this, let x = u(y) = (αy)
1
α , with 1 < α ≤ 2.9 We get

u′ = α
1−α
α y

1−α
α ; u′′ =

1− α

α
α

1−α
α y

1−2α
α ; u′′′ =

1− 2α

α

1− α

α
α

1−α
α y

1−3α
α ,

so

rA = −1 − α

α
y−1, rP = −1− 2α

α
y−1,

and

rP − 3rA =
2− α

α
y−1. (15)

Moreover, let ψ(ρ, θ) = ρ2

θ
. It follows immediately that ψ1 =

2ρ
θ
, ψ2 = −ρ2

θ2
, ψ11 =

2
θ
, and

ψ12 = −2ρ
θ2
.

7.1 Overview of distortions

In this subsection, we let α = 2 and denote p(θ) = p(∆u(θ), θ) to simplify. So, we obtain

y = w(x) = x2

2
, w′(x) = x and w′′(x) = 1.

9Using this utility function requires a positive payment in the event of failure. Since ρψ1 − ψ = ρ2

θ > 0,

∆u = ψ1 from (7), and u = U + ψ(ρ, θ) − ρ∆u from (6), we assume that U0 >
ρ2

θ to ensure that u, and so

a, are positive.
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Complete information. Since U = U0, ∆u = 0, and u = ψ + U0, (FB) becomes

∆x =

(
U0 +

ρFB(θ)2

θ

)
2ρFB(θ)

θ
. (16)

Moral hazard. We have

w(∆u+ u)− w(u) = (U0 + ψ)ψ1 +
1− 2ρ

2
ψ2
1

=

(
U0 +

ρ2

θ

)
2ρ

θ
+

1− 2ρ

2

(
2ρ

θ

)2

,

w′(∆u+ u)− w′(u) = ψ1 =
2ρ

θ
.

So (MH 2) becomes

∆x =

(
U0 +

pMH(θ)2

θ

)
2pMH(θ)

θ

+
1− 2pMH(θ)

2

(
2pMH(θ)

θ

)2

+ pMH(θ)(1− pMH(θ))

(
2pMH(θ)

θ

)(
2

θ

)
. (17)

Comparing (16) and (17), the distortion due to moral hazard is

1− 2p

2

(
2p

θ

)2

+ p(1− p)

(
2p

θ

)(
2

θ

)
.

Mixed model. Since −
∫ θ
θ
ψ2dτ =

∫ θ
θ
ρ2

τ2
dτ , we have

w(∆u+ u)− w(u) = (U + ψ)ψ1 +
1− 2ρ

2
ψ2
1

=

(
U0 +

∫ θ

θ

ρ2

τ 2
dτ +

ρ2

θ

)
2ρ

θ
+

1− 2ρ

2

(
2ρ

θ

)2

,

w′(∆u+ u)− w′(u) = ψ1 =
2ρ

θ
,

w′(u) + ρ(w′(∆u+ u)− w′(u)) = U + ψ

= U0 +

∫ θ

θ

ρ2

τ 2
dτ +

ρ2

θ
.
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So, using Proposition 1, the optimal probability of success is such that

∆x =

(
U0 +

p∗(θ)2

θ

)
2p∗(θ)

θ

+
1− 2p∗(θ)

2

(
2p∗(θ)

θ

)2

+ p∗(θ)(1− p∗(θ))

(
2p∗(θ)

θ

)(
2

θ

)

+

∫ θ

θ

p∗(τ)2

τ 2
dτ

2p∗(θ)

θ

+
2p∗(θ)

θ

∫ θ
θ

(
U0 +

∫ ǫ
θ
p∗(ǫ)2

ǫ2
dǫ+ p∗(θ)2

θ

)
f(τ)dτ

f(θ)
. (18)

If we compare (18) to (17), the two last lines of the preceding equation reflect the distortions

due to adverse selection. The first term is the increase in the moral hazard marginal cost

because the agent is weakly prudent (i.e. rP −3rA = 0 when α = 2 from (15)). The last term

is the marginal cost of the informational rent. So the mixed model probability of success is

distorted twice downward from its moral-hazard level.

7.2 Highly prudent agent

According to Definition 1 and (15), a highly prudent agent satisfies

y−1

(
2− α

α

)
>
α

1−α
α y

1−α
α

p(1− p)2
θ

⇔2− α

α
>

α
1−α
α y

1
α

p(1− p)2
θ

. (19)

Taking the limit of (19) when α→ 1, we get

1 >
y

p(1− p)2
θ

. (20)

Moreover, from (12), we obtain γ ∈ [0,∆u] ⇒ u ∈ [u, u] ⇒ y ∈ [a, a+b]. So if there exists

a contract 〈a, a+b〉, implying a probability of success p and a payment y between a and a+b

such that (20) is satisfied, then the agent is highly prudent. The presence of adverse selection

will lead to a decrease in the moral-hazard marginal cost. Sufficiently efficient agents are

thus induced to generate a higher probability of success in the mixed model than in the pure

moral hazard setting.
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7.3 Separating contract

According to (9), the agent chooses to generate a probability of success such that

p(∆u(θ̂), θ) =
∆u(θ̂)θ

2
. (21)

It follows immediately that p12 = 1
2
and p22 = 0. Thus the conditions in (14) are satisfied.

They contribute to obtaining a separating contract.

8 Conclusion

In this paper, we have studied the contract between a risk-neutral principal and a risk-

averse agent who has private information about his efficiency and action that both improve

the probability of success. In a two-output model, we have shown that if the agent is highly

prudent and sufficiently efficient, the principal induces a higher probability of success than

under moral-hazard, despite the costly informational rent given up. Moreover the conditions

for avoiding pooling are difficult to satisfy because of the different kinds of incentives to be

managed and the overall trade-off between rent extraction, insurance, and efficiency involved.

Two natural extensions would be interesting. The first one would be to consider more

than two outputs, even a continuum. The complexity arises from finding a tractable form of

the moral-hazard marginal cost to be able to analyze the influence of the informational rent

on the moral-hazard trade-off. Secondly, this two-output model can be used to investigate

an insurance relationship. However, such a contract must consider an outside option corre-

sponding to the expected utility obtained by the agent when he does not purchase insurance.

The difficulty is thus to measure the influence of the outside option on the contract offered

by the principal.

9 Appendix

For the sake of simplicity in the appendix, we focus on interior solutions.
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9.1 Proof of Lemma 2

In this informational setting, an interior solution means that ∆u ∈ R and ρ ∈ (0, 1).

We denote µ the Kuhn and Tucker multiplier associated to (PC ). The Lagrangian is

L = x+ ρ∆x− w(U + ψ − ρ∆u)

− ρ(w(U + ψ + (1− ρ)∆u)− w(U + ψ − ρ∆u))) + µ(U − U0). (22)

Necessary conditions are

∂L

∂ρ
= ∆x− w′(u)(ψ1 −∆u)− (w(∆u+ u)− w(u))

− ρ(w′(∆u+ u)(ψ1 −∆u)− w′(u)(ψ1 −∆u)) = 0 (23)

∂L

∂U
= −w′(u)− ρ(w′(∆u+ u)− w′(u)) + µ = 0 (24)

∂L

∂∆u
= w′(u)ρ− ρ(w′(∆u+ u)(1− ρ) + w′(u)ρ) = 0 (25)

µ ≥ 0, µ(U − U0) = 0. (26)

From (25), we have

w′(∆u+ u) = w′(u) ⇒ ∆u = 0.

Then, plugging this result into (24), we have µ = w′(u) > 0 using Property 2. So, from

(26), we get U = U0. After simplifications in (23), the probability ρFB(θ) is given by (FB).

9.2 Proof of Lemma 3

Looking for ρ ∈ (0, 1), the Lagrangian is similar to (22),

L = x+ p∆x− w(U + ψ − p∆u)

−p(w(U + ψ + (1− p)∆u)− w(U + ψ − p∆u)) + µ(U − U0).

Necessary conditions. Given (7), the necessary conditions are

∂L

∂U
= −w′(u)− p(w′(∆u+ u)− w′(u)) + µ = 0 (27)

∂L

∂∆u
= p1∆x+ w′(u)p− p1(w(∆u+ u)− w(u))

− p(w′(∆u+ u)(1− p) + w′(u)p) = 0 (28)

µ ≥ 0, µ(U − U0) = 0. (29)
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From (27), we have µ > 0, since w′′ > 0 by Property 2 and ∆u > 0 by (7). Then U = U0

using (29). Moreover, collecting terms in (28), we get (MH 2), since p1 =
1
ψ11

from (7).

Sufficient conditions. Since the constraint is linear in U , necessary conditions are sufficient

if V in (4) is concave in (∆u, U). We need to verify

∂2V

∂U2
= −pw′′(∆u+ u)− (1− p)w′′(u) < 0 (30)

∂2V

∂∆u2
= p11

(
∆x−

(
w(∆u+ u)− w(u)

))

− p1
(
w′(∆u+ u)(1− p) + w′(u)p

)
− p1(1− 2p)

(
w′(∆u+ u)− w′(u)

)

− p(1− p)
(
w′′(∆u+ u)(1− p) + w′′(u)p

)
< 0 (31)

∂2V

∂∆u2
∂2V

∂U2
−

(
∂2V

∂∆u∂U

)2

≥ 0, (32)

with ∂2V
∂∆u∂U

= −p1(w′(∆u+ u)− w′(u))− p(1− p)(w′′(∆u+ u)− w′′(u)).

Using Property 2, (30) is indeed negative. By contrast, the sign of (31) is not warranted.

Recall that, w′ > 0, w′′ > 0 from Property 2, and p1 = 1
ψ11

> 0 from Property 1, so the

second and the fourth terms are negative. But the first and the third are undetermined.

Finally, it is difficult to compute the sign of (32). Thus, unfortunately, we cannot be sure

that necessary conditions ensure a global maximum.

However, notice that p11 = −ψ111

ψ3
11

≤ 0 from Property 1 and Assumption 1, and ∆x −
(
w(∆u+ u) − w(u)

)
> 0 from (MH 2). So the first term in (31) is negative at the solution

(MH 2). Moreover, the third term in (31) is non positive if p ≤ 1
2
. It is positive otherwise.

So (31) is verified, in particular, as long as p is not too much higher than 1
2
, when 1−2p < 0.

So a local maximum is likely to emerge. But the difficulty to ensure the sign of (32) remains.

9.3 Proofs of Propositions 1 and 3

We omit arguments for the sake of clarity. First, using (IC 1) and (PC 1), we get

U = U0 −
∫ θ

θ

ψ2dτ.

Second, consider the optimal control problem. Let ∆u′ = y ≥ 0 where y is a control. We
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associate the adjoint variable η (resp. µ) with U (resp. ∆u). The Hamiltonian is

H =
{
x+ p∆x− w(U + ψ − p∆u)− p

(
w(U + ψ + (1− p)∆u)− w(U + ψ − p∆u)

)}
f

− ηψ2 + µy.

Necessary and transversality conditions. Using (9) and (10), the maximum principle

yields10

• as necessary conditions

∂H

∂y
= µ ≤ 0; y

∂H

∂y
= yµ = 0 (33)

η′ = −∂H
∂U

=
{
w′(u) + p

(
w′(∆u+ u)− w′(u)

)}
f > 0 (34)

µ′ = − ∂H

∂∆u
= −

{
p1∆x+ w′(u)p− p1

(
w(∆u+ u)− w(u)

)

−p
(
w′(∆u+ u)(1− p) + w′(u)p

)}
f + ηψ12p1, (35)

• as transversality conditions

η(θ) no condition,

η(θ) = 0. (36)

From (34) and (36), we have

η = −
∫ θ

θ

{
w′(u) + p

(
w′(∆u+ u)− w′(u)

)}
f(τ)dτ ≤ 0. (37)

Proof of Proposition 1. A fully separating contract, i.e. ∆u′ > 0, implies y > 0. Using (33),

we get µ = 0 on Θ. So µ′ is equal to 0 on Θ. Using (35) and (37), ∆u is equal to ∆u∗ since

p1 =
1
ψ11

from (9). Using (33), if it is increasing, i.e. y∗ > 0, this is the solution.

Proof of Proposition 3. If y∗ < 0, y must be set equal to 0, and ∆u is constant. Consider

this occurs on a single interior interval [θ0, θ1]. By continuity, µ(θ0) and µ(θ1) are both equal

to 0. Thus, the constant solution, denoted ∆uk is obtained by integration of (35) between

θ0 and θ1, knowing that ∆u∗(θ0) = ∆u∗(θ1) = ∆uk.

10See Seierstadt and Sydsaeter (1987).
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Sufficient conditions. Sufficient conditions require H to be concave in (∆u, U). First, it

is straightforward to check that ∂2H
∂U2 =

(
∂2V
∂U2

)
f and ∂2H

∂∆u∂U
=

(
∂2V

∂∆u∂U

)
f .

Second, let us compute ∂2H
∂∆u2

. Since p1 =
1
ψ11

and p2 = −ψ12

ψ11
from (9), we get using (35)

∂H

∂∆u
= (p1(∆x− (w(∆u+ u)− w(u)))− p(1− p)(w′(∆u+ u)− w′(u)))f + ηp2. (38)

So we have

∂2H

∂∆u2
=

(
∂2V

∂∆u2

)
f + ηp12.

By analogy with the proof of Lemma 3, we cannot warranty the concavity of H . But

it is important to notice that since f > 0, V concave implies that H is concave for sure if

ηp12 < 0. Since η ≤ 0, a sufficient condition is p12 > 0 (see the discussion below Proposition

2). So if a global maximum with moral hazard is ensured, a global maximum with mixed

model is.

9.4 Proof of Proposition 2

Using the concavity of H in ∆u, differentiating (38) and using (IC 1) and (9), we get (13).
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