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Abstract

This paper deals with Harsanyi power solutions for cooperative games in which partial cooperation
is based on specific union stable systems given by the winning coalitions derived from a voting
game. This framework allows for analyzing new and real situations in which there exists a feedback
between the economic influence of each coalition of agents and its political power. We provide an
axiomatic characterization of the Harsanyi power solutions on the subclass of union stable systems
arisen from the winning coalitions from a voting game when the influence is determined by a power
index. In particular, we establish comparable axiomatizations, in this context, when considering the
Shapley-Shubik power index, the Banzhaf index and the Equal division power index which reduces
to the Myerson value on union stable systems. Finally, a new characterization for the Harsanyi
power solutions on the whole class of union stable systems is provided and, as a consequence, a
characterization of the Myerson value is obtained when the equal power measure is considered.

Keywords: Cooperative TU-game, Harsanyi dividend, Harsanyi power solution, Union stable
system, Shapley value, Banzhaf value, Voting games, power measures, Myerson value.

1. Introduction

For a firm, it is one thing to have the ability to produce, but it is useless unless the firm is allowed
to produce. In other words, the economic power of a firm emerges only if it is accompanied by
political or legal power. As an example, Google has a huge worldwide economic power, but cannot
exert it in China where its government currently prevents Google’s search service to operate without
censure. As a more concrete example, let us consider the social cost problems first suggested by
Coase (1960) in which are involved a set of victims and a set of polluters. The activity of the
latter creates damage that affect the victims. In order to iron those conflicts and to solve the
problem of social cost, a negotiation will take place within a coalition of polluters and victims
with the objective to sign a binding agreement about how much activity the polluter will be able
to undertake. Now, the permission granted to each coalition which wants to sign such binding
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eric.remila@univ-st-etienne.fr (Eric Rémila), philippe.solal@univ-st-etienne.fr (Philippe Solal)

Preprint submitted to Elsevier November 14, 2018



agreements about the level of activity of the polluter is interpreted as the ability for the coalition
to control the decision of a committee that assigns these rights (see Gonzalez et al., 2018, for
details).

In this article, we provide a model based on cooperative game theory in order to apprehend
such situations. We enrich the classical model of a (economic) cooperative game — a set of agents
and a characteristic function specifying the economic power of each coalition of agents — with
a voting game on the same set of agents. This voting game is modeled by a nonempty set of
winning coalitions with the usual monotonicity property: each superset of a winning coalition is
also a winning coalition. In this framework, an allocation rule specifies a utility for each agent for
participating in each pair of economic and voting games. The latter two structures are likely to
influence each other in the design of an allocation rule. On the one hand, as suggested above, the
sharing of economic resources can depend on the political power of coalitions of agents. On the
other hand, the measure of political power might be impacted by the economic power of coalitions,
for example because of their ability to incur lobbying expenses.

Here, we explore the first of the two types of influence. For classical cooperative games a
class of well-known allocation rules is the class of Harsanyi solutions introduced by Vasil’ev (1982)
and then studied by Derks et al. (2000), among others. Each Harsanyi solution distributes the
Harsanyi dividend of each coalition among its members in proportion to exogenously given weights.
For voting games, two well-known power indices are provided by Shapley and Shubik (1954) and
Banzhaf (1965). The Shapley-Shubik index measures the likelihood that an agent is decisive if the
agents are called upon to vote one by one in favor of a decision. The Banzhaf index measures
the proportion of coalitions for which a given agent is pivotal (i.e. a winning coalition that is
not winning anymore without this agent). We combine both types of allocation rules in order to
study a specific class of Harsanyi (power) solutions in which the Harsanyi dividend of each winning
coalition is shared among its members in proportion to their relative political power as measured
by an arbitrary power index σ in the voting subgame induced by the coalition. The idea to combine
economic and political power also appears in Laruelle and Valenciano (2007) where the weights
on an asymmetric Nash bargaining solution are specified by the Shapley-Shubik index of a voting
game.

Theorem 1 characterizes the Harsanyi power solution induced by the power index σ. In addition
to the classical axioms of Efficiency and Additivity, we introduce three other axioms. The first one
is a variant of the Null agent out axiom (Derks and Haller, 1999), which requires that an allocation
rule is not sensitive to the removal of a null agent in the economic game. The second one requires
that if all winning coalitions enjoy a null worth in the economic game, then all agents should be
treated equally. The third one is inspired by the axioms of σ-point unanimity (Algaba et al., 2015)
and communication ability (Borm et al., 1992). If only the grand coalition has a non null worth in
the economic game, the axiom imposes that the agents are paid in proportion to the power index
σ.

Our contribution possesses some similarities with the literature on games played on combinato-
rial structures. The closest article is perhaps Algaba et al. (2015), where the exogenous structure
is a union stable system, i.e. a set of feasible coalitions such that the union of two intersecting
coalitions is also feasible. The authors provide a similar characterization of a class of Harsanyi
power solutions. There are, however, two major differences with our work. Firstly, while the set
of winning coalitions in a voting game is a union stable system, the converse is not true. As a
consequence, some of the axioms invoked by Algaba et al. (2015) cannot be reused in our case as,
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for instance, the Inessential support property. Secondly, any set of connected coalitions on a graph
is a union stable system, which implies that games played on union stable systems can be seen as a
generalization of communication graph games introduced in Myerson (1977). To the contrary, the
voting structure that we consider cannot be assimilated to a graph structure. In fact, the set of
winning coalitions of a voting game does not always correspond to the set of connected coalitions
of a graph on the agent set as pointed by van den Brink (2012). This allows us to replace the
classical power measures on graph (such as the degree of each node) by voting power indices.

Another advantage of our contribution is that Theorem 1 is still valid on the larger class of games
played on union stable systems subject to a minor adaptation of the axiom of Efficiency (Theorem
3). We also single out the relevant Harsanyi power solutions obtained by using, in the voting
game, the Shapley-Shubik power index, the Banzhaf index and the Equal division power index,
respectively. The latter one coincides with the Myerson value for games played on union stable
systems introduced by Algaba et al. (2001). Theorem 2 provides a comparable axiomatization of
these three Harsanyi power solutions.

The rest of the article is organized as follows. Section 2 introduces the material necessary to
state our results. The main result is stated in Section 3. Section 4 presents the characterization of
three relevant Harsanyi power solutions. Section 5 adapts our main result to the broader class of
games on union stable systems. Section 6 concludes.

2. Preliminaries

2.1. Notation

The cardinality of a finite set S will be denoted either by the lower case s or by the symbol
|S|. The collection of all subsets of S will be denoted by 2S , and, for notational convenience, we
will write singleton {i} as i. If a linear space V is the direct sum of the subspaces V 1 and V 2, we
write V = V 1 ⊕ V 2.

2.2. Cooperative games

Let N be the universe of potential agents and let N ⊆ N a finite set of n agents. Each subset
S of N is called a coalition and N is often called the grand coalition. A cooperative transferable
utility (TU)-game is a pair (N, v) where N ⊆ N and v : 2N −→ R is a coalition function such that
v(∅) = 0. For each coalition S ⊆ N , v(S) describes the worth of S when its members cooperate.
Denote by G the set of all TU-games. The subgame of a TU-game (N, v) ∈ G with respect to an
agent set S ⊆ N is the TU-game (S, vS) ∈ G where for each T ⊆ S, vS(T ) = v(T ).

Two distinct agents i, j ∈ N are equal agents in (N, v) ∈ G if, for each coalition S ⊆ N \ {i, j},
v(S∪i) = v(S∪j). Agent i ∈ N is a null agent in (N, v) ∈ G, if, for each S ⊆ N \i, v(S∪i) = v(S).

Given a finite set of agents N and a nonempty coalition S ⊆ N , the unanimity TU-game
(N, uS) ∈ G is defined as uS(T ) = 1 if T ⊇ S and uT (S) = 0 otherwise. It is well known that the
collection of unanimity TU-games uS , S ⊆ N , S 6= ∅, forms a basis for the linear space of coalition
functions v on a fixed agent set N ⊆ N. As a result, each TU-game (N, v) can be written as a
linear combination of unanimity TU-games in a unique way, as follows

v =
∑

S⊆N,S 6=∅

∆v(S)uS , (1)
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where the coordinates ∆v(S) are called the Harsanyi dividends (Harsanyi, 1959) of (N, v), and are
computed through the following expression,

∆v(S) = v(S)−
∑
T(S

∆v(T ), ∀S ⊆ N,S 6= ∅. (2)

Remark 1 From the recursive formula (2), it is satisfied,

1. If agent i ∈ N is a null agent in (N, v) ∈ G, then, for each S 3 i, we have ∆v(S) = 0.

2. Given a TU-game (N, v) ∈ G and its subgame (S, vS), it holds that, for each nonempty
T ⊆ S, ∆vS (T ) = ∆v(T ).

�

2.3. Union stable systems

A set system is a pair (N,F) where N represents a finite set of agents and F ⊆ 2N is a collection
of feasible coalitions. A set system (N,F) is union stable if for S, T ∈ F such that S ∩ T 6= ∅ it
holds that S ∪ T ∈ F . Denote by US the set of union stable systems (N,F) where N ⊆ N and
F ⊆ 2N .

In most cases, it is more transparent to represent a union stable system (N,F) by its supports,
being a subset of F from which, with some specified operations, we can generate the full union
stable system. Consider the set

E(F) =
{
R ∈ F : there are S, T ∈ F , S 6= R, T 6= R, S ∩ T 6= ∅, with R = S ∪ T

}
,

consisting of those feasible coalitions, which can be written as the union of two distinct feasible
coalitions with a nonempty intersection. The complement of the set E(F) with respect to F , de-
noted by B(F), is called the basis of (N,F) and its elements are the supports of (N,F). Therefore,
each support cannot be expressed as the union of two distinct feasible coalitions with a nonempty
intersection. In Algaba et al. (2000), it is shown that F can be generated inductively from the
basis B(F). Precisely, this inductive process defines a closure operator ¯: 2F −→ 2F , and B(F) is
the minimal subset of F such that B(F) = F .

Given a set system (N,F), a coalition T ⊆ S ⊆ N is called a F-component of S if T ∈ F and
there exists no R ∈ F such that T ( R ⊆ S. Therefore, the F-components of S are the maximal
feasible coalitions that belong to F and are contained in S. We denote by CF (S) the collection,
possibly empty, of the F-components of S. Union stable systems can be characterized in terms of
the F-components of a coalition in the following way: The set system (N,F) is union stable if and
only if for any S ⊆ N such that CF (S) 6= ∅, the F-components of S are a collection of pairwise
disjoint subsets of S (see Algaba et al., 2000).

For a union stable system (N,F) ∈ US and coalition S ⊆ N , we denote by (S,FS) the
subsystem induced by S and given by FS = {T ∈ F : T ⊆ S}. It is easy to see that (S,FS) ∈ US.

2.4. Cooperative games on union stable systems and Harsanyi power solutions

In a TU-game (N, v) ∈ G, any coalition S ⊆ N is assumed to be able to form and earn
the worth v(S). However, in most applications not every set of participants can form a feasible
coalition. Therefore, cooperative game-theoretic models have been developed that take into account
restrictions on coalition formation. They consider a set of feasible coalitions F ⊆ 2N that need
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not contain all subsets of the agent set N . Formally, a TU-game on a union stable system is
a triplet (N, v,F) where (N, v) is TU-game in G and (N,F) is a union stable set system in US
representing the set of feasible coalitions. The possible gains from cooperation as modeled by (N, v)
and the restrictions on cooperation reflected by the union stable system (N,F) are incorporated
in a F-restricted TU-game (N, vF ) defined as

vF (S) =
∑

T∈CF (S)

v(T ), ∀S ⊆ N. (3)

The definition of the F-restricted game can be understood as follows. If coalition S ∈ F , then
the members are allowed to cooperate to obtain v(S). If S is not a feasible coalition, i.e. S ∈
2N \ F , then not all agents belonging to S are allowed to cooperate. Then, coalition S splits into
components (if any) and the best that members of S can accomplish is to cooperate within each
of these components T ∈ CF (S) to obtain v(T ).

Fix a union stable set system (N,F). The set of coalition functions

GN =
{
v : 2N −→ R, v(∅) = 0

}
,

forms a linear space GN of dimension 2n − 1. The subspaces GNF and GNF of GN are defined as
follows

GNF =
{
v ∈ GN : ∀S ⊆ N, v(S) = vF (S)

}
and GNF =

{
v ∈ GN : ∀S ∈ F , v(S) = 0

}
.

Obviously, it is satisfied
GN = GNF ⊕GNF .

Notice that vF is the projection of v on GNF along GNF .
Denote by GUS the set of games on union stable systems (N, v,F) where (N, v) ∈ G and

(N,F) ∈ US. An allocation rule on GUS is a map Φ that assigns to each (N, v,F) ∈ GUS a
payoff vector Φ(N, v,F) ∈ Rn. Each coordinate Φi(N, v,F) ∈ R represents agent’s i payoff for his
or her participation in (N, v,F).

In Algaba et al. (2015), the class of Harsanyi power solutions on GUS is introduced as follows.
A power measure for union stable systems is a function σ defined on US which assigns to each
union stable system (N,F) ∈ US a nonnegative vector σ(N,F) ∈ Rn+. Given a power measure σ,
the corresponding Harsanyi power solution Φσ on US is defined as

∀i ∈ N, Φσ
i (N, v,F) =

∑
S⊆N,S3i∑

j∈S σj(S,FS)>0

σi(S,FS)∑
j∈S σj(S,FS)

∆vF (S) (4)

Hence, the Harsanyi power solution Φσ
i assigns to each game on union stable systems (N, v,F)

the Harsanyi solution (see Vasil’ev, 2003) of the corresponding F-restricted game (N, vF ), where
any Harsanyi dividend ∆vF (S) of coalition S in the restricted game is distributed to the agents in
S proportional to their power in (S,FS).

Lemma 1 (Algaba et al., 2015, Lemma 1)
Let (N, v,F) ∈ USN be a union stable structure. Then ∆vF (S) = 0, for each S 6∈ F .

Thanks to Lemma 1, each Harsanyi power solution Φσ can be rewritten as follows

∀i ∈ N, Φσ
i (N, v,F) =

∑
S∈F ,S3i∑

j∈S σj(S,FS)>0

σi(S,FS)∑
j∈S σj(S,FS)

∆vF (S). (5)
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2.5. Cooperative games on political structure

Games on union stable systems extend communication graph games as considered in Myerson
(1977) and Meessen (1988) and have a close relationship with hypergraphs (Algaba et al., 2004).
A communication graph game is a triplet (N, v, L) where (N, v) is a TU-game and (N,L) is a
communication graph. It is easy to see that the set system (N,F) defined by those coalitions
S ⊆ N which induce connected subgraphs (S,L(S)), where L(S) denotes the subset of links which
are incident to the elements of S, is a union stable system. The Harsanyi power solutions on
GUS as defined in (4) also extend the Harsanyi power solutions on communication graph games
introduced by van den Brink et al. (2011).

On GUS, Algaba et al. (2015) provide axiomatic characterizations of the Harsanyi power so-
lutions and of two well-known Harsanyi power solutions, namely the Myerson value (Myerson,
1977) and the position value (Meessen, 1988). As the latter two Harsanyi power solutions have
been initially defined for communication graph games, union stable systems are mainly viewed as
generalizations of communication graphs or networks (see also Algaba et al., 2018). In the same
way, the proposed power measures are generalizations of power measures for graphs (the degree
measure, the equal power measure, etc).

Our main objective is to propose another application of the union stable systems. Assume that
a coalition of agents may have the capacity to produce v(S) but does not have the legal authority
or political power to implement this activity. It such a situation, it is necessary to separate the
economic and political structures. The economic structure is modeled by a classical cooperative
game. In order to model the political structure in a population, we consider voting games. A voting
game is a pair (N,W) where N ⊆ N is a finite set of agents and W is a collection of elements of
2N satisfying the following properties:

1. W 6= ∅;
2. ∅ 6∈ W;

3. If T ⊇ S and S ∈ W, then T ∈ W.

Coalitions in W are called winning coalitions. Properties 1 and 2 indicate that the voting game
admits at least one winning coalition and that the empty set is not a winning coalition. Property
3 is monotonicity property ensuring that if a coalition is winning, then any superset inherits this
quality. Combining Properties 1 and 3, one obtains that the full set of agents N is a winning
coalition, i.e N ∈ W . Intuitively a voting game represents a committee where the coalition N is
the set of members of this committee and W is the set of coalitions that can control the decision
of the committee. The subset M(W) ⊆ W denotes the (nonempty) subset of minimal winning
coalitions in W with respect to set inclusion, i.e. a coalition is a minimal winning coalition if it
does not include any other winning coalition. By V is denoted the set of voting games.

It is easy to check that V ⊆ US, (joining to the set of winning coalitions, the empty set).
Indeed, for each voting game (N,W) ∈ V and each S, T ∈ W such that S ∩ T 6= ∅, S ∪ T ∈ W by
point 3 of the definition of a voting game. The subset of minimal winning coalition M(W) is the
basis of (N,W) viewed as a union stable set system, and each S ∈M(W) is a support.

The subgame of a voting game (N,W) ∈ V with respect to a winning coalition S ⊆ W is the
voting (S,WS) ∈ V such that WS = {T ∈ W : T ⊆ S}.

For each nonempty coalition S ∈ N , we denote by (N,W∗S) the voting game on N such that S
is the unique minimal winning coalition of W∗S ,

W∗S =
{
T ⊆ N : S ⊆ T ⊆ N

}
.
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By definition, each (N,W) ∈ V can be represented as the union of the voting games (N,W∗S),
with S ∈M(W), i.e.,

W =
⋃

S∈M(W)

W∗S . (6)

A power measure on V is usually named a power index. Formally, a power index σ is a map
on V that assigns a numerical voting power to each agent in each voting game, that is, for each
(N,W) and each i ∈ N , σi(N,W) ∈ R+ is a numerical measure of i’s voting power in the committee
N where the winning coalitions are represented by W. For convenience, we do not consider here
the null power index σ0, which distributes a null power to every member of a committee, i.e.,
σ0(N,W) = (0, . . . , 0).

The most well-known power indices in the literature are undoubtedly the Shapley-Shubik power
index (Shapley and Shubik, 1954) and the Banzhaf power index (Banzhaf, 1965). Essential to
the construction of these power indices is the concept of pivotal agent. Given a voting game
(N,W) ∈ V , agent i ∈ N is pivotal in coalition S 3 i if leaving this coalition turns it from a
winning coalition (S ∈ W) into a losing coalition (S \ i ∈ 2N \W).

The Banzhaf power index Bzi(N,W) of an agent i ∈ N in a voting game (N,W) ∈ V is defined
as the fraction of coalitions for which i is pivotal under the assumption that each coalition of agents
has the same probability to be formed. Formally,

∀i ∈ N, Bzi(N,W) =
1

2n−1
∣∣{S ∈ W : S \ i ∈ 2N \W

}∣∣.
The Shapley-Shubik index is based on a different probabilistic model of coalition formation. The
agents are totally ordered according to a bijection π : N −→ N . Let ΠN be the set of bijections
on N . For N , i ∈ N and π ∈ ΠN , coalition

Pi(π) =
{
j ∈ N : π(j) ≤ π(i)

}
⊆ N,

contains agent i together with the agents that appear before i according to π. Assuming that
the probability of drawing each π ∈ ΠN is 1/n!, the Shapley-Shubik power index for voter i in
(N,W) ∈ V is defined as the fraction of orderings π in which i is pivotal in Pi(π):

∀i ∈ N, Shi(N,W) =
1

n!

∣∣{π ∈ Π : Pi(π) ∈ W, Pi(π) \ i ∈ 2N \W
}∣∣.

Another well-known power index is the Equal division power index ED which distributes the
same fraction of power to each agent, i.e,

∀i ∈ N, EDi(N,W) = n−1.

Note that the Harsanyi power solution obtained for the Equal division power index ,ΦED on
GV , is the Myerson value for union stable systems (Algaba et al. 2001), i.e.,

∀i ∈ N, ΦED
i (N, v,W) =

∑
S⊆W,S3i

1

s
∆vW (S), . (7)

In this paper, we consider mainly the subclass of games on union stable systems (N, v,W)
where (N, v) ∈ G and (N,W) ∈ V . Denote by GV ⊆ GUS this class of games. In particular, we
provide an axiomatic characterization of the Harsanyi power solutions, as defined in (4), on GV .
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It should be noted that such a restriction is not as innocent as it seems. To characterize
the Harsanyi power solutions on GUS, Theorem 5 in Algaba et al. (2015) invokes the inessential
support property. This axiom says that given a unanimity game (N, uS) on a nonempty feasible
coalition S ∈ F , the allocation rule does not depend on those supports which contain at least one
agent outside of coalition S.

Inessential support property An allocation rule Φ on GUS satisfies the inessential support
property if, for each union stable system (N,F) ∈ US, c ∈ R, S ∈ F , S 6= ∅, and T ∈ B(F) such
that T 6⊆ S, it holds that

Φ(N, cuS ,F) = Φ(N, cuS , B(F) \ {T}).

We cannot use this axiom on GV because B(F) \ {T} does not necessarily belongs to V as
illustrated in the following example.

Example 1 Let (N,W) be a voting game, with N = {1, 2, 3} and W = {{1, 2}, {1, 3}, {1, 2, 3}}.
The basis B(W) or the set of minimal winning coalitions is given by M(W) = {{1, 2}, {1, 3}}. If
the support {1, 3} is removed of the structure then B(W) \ {1, 3} = {{1, 2}}, but (N, {{1, 2}})
does not belong to V since N is not a winning coalition. �

Theorem 6 in Algaba et al. (2015) considers the superfluous agent property to provide an
alternative characterization of the Harsanyi power solutions on GUS. Agent i is superfluous in
(N, v,F) ∈ GUS if i is null in the F-restricted game (N, vF ). The superfluous agent property
indicates that the allocation rule is insensible to the removal of feasible coalitions containing agent
i.

Superfluous agent property An allocation rule Φ on GUS satisfies the superfluous agent prop-
erty if for each (N, v,F) ∈ GUS and each superfluous agent i, it holds that

Φ(N, v,F) = Φ(N, v,FN\i),

where F−i = {S ∈ F : i /∈ S} is given by all those feasible coalitions in F which do not contain
agent i. When deleting coalitions containing a particular agent of a union stable system, the
remaining collection of coalitions is still a union stable system. However, this property cannot be
used on GV since the set of feasible coalitions defined by WN\i does not contain N . Consequently,
the set system (N,WN\i) does not belong to the set V of voting games on N .

Remark 2 For each (N, v,W) ∈ GV , the expression of the F-restricted game (N, vW) ∈ GW as
defined in (3) takes the following form

vW(S) =

{
v(S), if S ∈ W,
0, otherwise.

Moreover, note that
GNW =

{
v ∈ GN : ∀S ∈ 2N \W, v(S) = 0

}
. (8)

Indeed, from the above expression of vW , it is obvious that

GNW ⊆
{
v ∈ GN : ∀S ∈ 2N \W, v(S) = 0

}
.
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Conversely, consider v such that, for each S ∈ 2N \ W, v(S) = 0. First, if S ∈ 2N \ W, then, by
definition of (N,W), CW(S) = ∅ and so vW(S) = 0 = v(S). Second, if S ∈ W we also have, by
definition of vW , v(S) = vW(S). Therefore,

GNW ⊇
{
v ∈ GN : ∀S ∈ 2N \W, v(S) = 0

}
,

showing that equality (8) holds. �

By Lemma 1, for each power index σ on GV , the corresponding Harsanyi power solution Φσ

on GV can be written as

∀i ∈ N, Φσ
i (N, v, V ) =

∑
S∈W,S3i

σi(S,WS)∑
j∈S σj(S,WS)

∆vW (S) (9)

The above expression is well-defined since, by assumption, we do not consider the null power index
(i.e., the situation

∑
j∈S σj(S,WS) = 0 is excluded).

3. Axiomatic characterizations on GV

In this section, we propose a characterization of the Harsanyi power solutions on GV . First,
we recall two standard axioms for allocation rules Φ on GV .

Efficiency For each (N, v,W) ∈ GV , it holds that∑
i∈N

Φi(N, v,W) = v(N).

Additivity For every (N, v,W) ∈ GV and (N, u,W) ∈ GV , it holds that

Φ(N, v,W) + Φ(N, u,W) = Φ(N, v + u,W),

where the TU-game (N, v + u) ∈ GV is defined as (v + u)(S) = v(S) + u(S) for each S ⊆ N .
Next, we introduce two new axioms. The first one indicates that if the game (N, v) van-

ishes on the subset W of winning coalitions, then all agents are treated equally. If we interpret
(N,W ) as a political game and (N, v) as an economic game, this axiom indicates that differences in
payoffs between agents can only appear if coalitions with political power also have economic power.

Equality For each (N, v,W) ∈ GV such that v ∈ GNW , it holds that for each i, j ∈ N ,

Φi(N, v,W) = Φj(N, v,W).

Proposition 1 If Φ is an allocation rule on GV that satisfies efficiency, additivity, and equality,
then

Φ(N, v,W) = Φ(N, vW ,W). (10)

Proof. Let Φ be an allocation rule as hypothesized, and take any (N, v,W) ∈ GV . We have
(N, v,W) = (N, v − vW + vW ,W). By additivity,

Φ(N, v − vW + vW ,W) = Φ(N, v − vW ,W) + Φ(N, vW ,W).

9



The coalition function v− vW belongs to GNW and (v− vW)(N) = 0 since N ∈ W. By equality and
efficiency, we obtain

Φ(N, v − vW ,W) = (0, . . . , 0),

and, hence,
Φ(N, v − vW + vW ,W) = Φ(N, v,W) = Φ(N, vW ,W).

�

The second axiom is a weak version of the null agent out axiom introduced by Derks and Haller
(1999) for allocation rules on G. This axiom indicates that deleting a null agent from the game
does not affect the payoff of the other agents. An agent is a null agent in (N, v) ∈ G if, for each
S 3 i, v(S) = v(S \ i).

Weak null agent out For each (N, v,W) ∈ GV such that v ∈ GNW and each null agent i ∈ N in
(N, v), it holds that for each j ∈ N \ i,

Φj(N, v,W) = Φj(N \ i, vN\i,WN\i).

Remark 3 Weak Null agent out is equivalent to the fact that, for each (N, v,W) ∈ GV such that
v ∈ GNW and each S 6= N of null agents in (N, v), it holds that for each j ∈ N \ S,

Φj(N, v,W) = Φj(N \ S, vN\S ,WN\S).

�

Remark 4 The combination of efficiency and weak null agent out implies that for each (N, v,W) ∈
GV such that (N, v) ∈ GNW and each null agent in (N, v), the latter receives a null payoff. To see
this, note that by weak null agent out and efficiency we have∑

j∈N\i

Φj(N, v,W) =
∑
j∈N\i

Φj(N \ i, vN\i,WN\i) = v(N \ i) = v(N),

where the last equality comes from the fact that i is null in (N, v). Therefore,∑
j∈N\i

Φj(N, v,W) = v(N),

implies Φi(N, v,W) = 0. In particular, for each (N,∆vW (S)uS ,W) ∈ GV such that S ∈ W, we
have ∆vW (S)uS ∈ GNW and agent i ∈ N \S is null in (N,∆vW (S)uS). So, Φi(N,∆vW (S)uS ,W) = 0.
�

Proposition 2 If Φ is an allocation rule on GV that satisfies efficiency, additivity, weak null agent
out, and equality, then for each i ∈ N,

Φi(N, v,W) =
∑

S∈W:S3i
Φi(S,∆vW (S)uS ,WS). (11)
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Proof. By Proposition 1, it holds that

Φ(N, v,W) = Φ(N, vW ,W).

By additivity of Φ and Lemma 1, we have

Φ(N, vW ,W) =
∑
S∈W

Φ(N,∆vW (S)uS ,W).

Next, take any S ∈ W. As mentioned in Remark 4, each agent i ∈ N \ S is null in (N,∆vW (S)uS)
and ∆vW (S)uS ∈ GNW . Again by Remark 4, we get that for each S ∈ W, i ∈ N \ S,

Φi(N,∆vW (S)uS ,W) = 0.

Therefore, we conclude that for each i ∈ N,

Φi(N, v,W) =
∑

S∈W:S3i
Φi(N,∆vW (S)uS ,W).

On the other hand, since each agent of N \ S is null in (N,∆vW (S)uS) and ∆vW (S)uS ∈ GNW ,
an application of Remark 3 yields that for each S ∈ W, i ∈ S,

Φi(N,∆vW (S)uS ,W) = Φi(S,∆vW (S)uS ,WS).

Thus, we finally get for each i ∈ N,

Φi(N, v,W) =
∑

S∈W:S3i
Φi(S,∆vW (S)uS ,WS),

that is (11) holds, as desired. �

The next axiom plays the same role as the axiom of σ-point unanimity used in Algaba et al.
(2015). The latter axiom generalizes the communication ability axiom for communication graph
TU-games introduced by Borm et al. (1992).

σ-unanimity Let σ be a power index. For each (N, auN ,W) ∈ GV , where a ∈ R, there exists
b ∈ R such that

Φ(N, auN ,W) = bσ(N,W).

Theorem 1 Let σ a power index. The Harsanyi power solution Φσ on GV is the unique allocation
rule that satisfies efficiency, additivity, weak null agent out, equality and σ-unanimity.

Proof. (Uniqueness). Let Φ be an allocation rule on GV satisfying efficiency, additivity, null
agent out, and equality and σ-unanimity. Let (N, v,W) ∈ GV . By Proposition 2, for each i ∈ N,

Φi(N, v,W) =
∑

S∈W:S3i
Φi(S,∆vW (S)uS ,WS). (12)

Let S ∈ W be a winning coalition. We can apply σ-unanimity on (S,∆vW (S)uS ,WS) to obtain

Φ(S,∆vW (N)uS ,WS) = bσ(S,WS),
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for some b ∈ R. By efficiency,∑
i∈N

Φi(S,∆vW (S)uS ,WS) = ∆vW (S) = b
∑
i∈S

σi(S,WS),

so that

b =
∆vW (S)∑

i∈S σi(S,WS)
.

It follows that Φ(S,∆vW (S)uS ,WS) is uniquely determined and for each i ∈ N,

Φi(S,∆vW (S)uS ,WS) =
σi(S,WS)∑

j∈S
σj(S,WS)

∆vW (S).

This complete the proof of the uniqueness part.

(Existence) We show that the Harsanyi power solution Φσ satisfies the five axioms.
Efficiency. For each (N, v,W) ∈ GV , we have∑

i∈N
Φσ(N, v,W) =

∑
i∈N

∑
S⊆W:S3i

σi(S,WS)∑
j∈S

σj(S,WS)
∆vW (S)

=
∑
S∈W

∑
i∈S

σi(S,WS)∑
j∈S

σj(S,WS)
∆vW (S)

=
∑
S∈W

∆vW (S)

= vW(N)

= v(N),

where the fourth equality is a consequence of Lemma 1. This shows that Φσ satisfies efficiency.
Additivity. The proof is similar to the one given by Algaba et al. (2015, Theorem 1), and so it
is omitted.
Weak null agent out. Consider any (N, v,W) ∈ GV such that v ∈ GNW and some null agent i ∈ N
in (N, v). Because v ∈ GNW , v = vW . Therefore, for each nonempty S ⊆ N , ∆v(S) = ∆vW (S). In
particular, by point 1 of Remark 1, for each S 3 i, ∆v(S) = 0. By point 2 of Remark 1, we also
have, for each S ⊆ N \ i, ∆v(S) = ∆vN\i(S). It follows that for each j ∈ N \ i,

Φσ
j (N, v,W) =

∑
S∈W:S3j

σj(S,WS)∑
k∈S

σk(S,WS)
∆vW (S)

=
∑

S∈WN\i:S3j

σj(S,WS)∑
k∈S

σk(S,WS)
∆vW (S)

=
∑

S∈WN\i:S3j

σj(S,WS)∑
k∈S

σk(S,WS)
∆((vN\i)W )(S)

= Φσ
j (N \ i, vN\i,WN\i),
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showing that Φσ satisfies weak null agent out.
Equality. Let (N, v,W) ∈ GV such that v ∈ GNW . In such a case, the W-restricted-game (N, vW)
is the null game, which implies that ∆vW (S) = 0, for each nonempty coalition S ⊆ N . By definition
of Φσ, we have

Φσ(N, v,W) = (0, . . . , 0).

Thus, Φσ satisfies equality.
σ-unanimity. Let (N, auN ,W) ∈ GV for some a ∈ R. We have ∆auN (N) = a, and, by definition,
Φσ distributes the following payoffs

∀i ∈ N, Φσ
i (N, auN ,W) =

σi(N,W)∑
j∈N

σj(N,W)
∆vW (N).

By setting b = ∆vW (N)/(
∑

j∈N σj(N,W)), we have

∀i ∈ N, Φσ
i (N, auN ,W) = bσi(N,W),

showing that Φσ satisfies σ-unanimity. �

Note that Theorem 4 (Theorem 6, respectively), in Algaba et al. (2015), characterizes the
Harsanyi power solution Φσ with respect to σ on the full domain GUS by using component ef-
ficiency, component-dummy, additivity, σ-point unanimity, the inessential support property (the
superfluous agent property respectively) and connectedness. Component-dummy indicates that
agents who do not belong to any support receive a null payoff. Component efficiency, already
used in Myerson (1977), indicates that the worth of each component of the grand coalition is dis-
tributed among these members. Connectedness indicates that the worth of non-feasible coalitions
are irrelevant to compute the payoffs. We have already mentioned why it is not possible to use
the inessential support property or the superfluous agent property on the restricted domain GW .
Instead, we use a weak version of the null agent out axiom. The main difference between these two
axioms is that the former indicates that the allocation rules is indifferent to the removal of some
supports in specific situations, whereas the second indicates that the allocation rule is insensible to
the removal of some agents – in this case, these are null agents – in specific situations. When some
supports are removed, some agents may become isolated. To determine the payoff of these isolated
agents, the axiom of component-dummy is used. Conversely, when null agents are removed, the
combination of weak null agent and efficiency implies that these agents receive a null payoff (see
Remark 4). That is the reason why we don’t need to use component-dummy. We use efficiency in-
stead of component-efficiency because in each voting game the grand coalition N is feasible so that
each Harsanyi power solution on GW distributes the worth obtained by the members of N when
they cooperate. The axioms of σ-point unanimity and σ-unanimity are similar. The requirement
contained in connectedness is partially encapsulated in equality which indicates that in situations
where the worth of feasible coalitions is null, the worth of non-feasible coalitions are of no use in
differentiating agents’ payoffs.

4. The Harsanyi-Shapley-Shubik solution, the Harsanyi-Banzhaf solution, and the
Myerson value

In this section, we focus our attention on three Harsanyi power solutions on GV . The Myerson
value, given by (7), is the Harsanyi power solution ΦED, where the Equal division power index
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ED is used to distribute the Harsanyi dividends of the W-restricted game. We introduce two
other Harsanyi power solutions. The first one, defined as ΦSh, is such that the Harsanyi dividend
of each coalition in the W-restricted game is distributed to its members proportionally to their
Shapley-Shubik power index with respect to this coalition. For this reason, it is referred to as
the Harsanyi-Shapley-Shubik solution. The third Harsanyi power solution is the Harsanyi-Banzhaf
solution defined as ΦBz. It is such that the Banzhaf power index is used to distribute the Harsanyi
dividends of the W-restricted game. Formally, we have

∀i ∈ N ΦSh
i (N, v,W) =

∑
S⊆W:S3i

Shi(S,WS)∑
j∈S

Shj(S,WS)
∆vW (S),

and

∀i ∈ N, ΦBz
i (N, v,W) =

∑
S⊆W:S3i

Bzi(S,WS)∑
j∈S

Bzj(S,WS)
∆vW (S).

We provide a comparable axiomatization of these three Harsanyi power solutions on GV . To
this end, we need to introduce other axioms for an allocation rule Φ on GV .

Strong equal treatment of equal agents For every (N, v,W) ∈ GV and pair of agents {i, j} ⊂
N which are equal in (N, v) and (N,W), it holds that

Φi(N, v,W) = Φj(N, v,W).

Null voting power For every (N, v,W) ∈ GV and null agent i ∈ N in (N,W), it holds that

Φi(N, v,W) = 0.

Strong equal treatment of equal agents indicates that two equal agents both in the economic
game (N, v) and the voting game (N,W) are treated equally. Null voting power is the null agent
principle applied to the voting game: if an agent is null in the voting game, his or her payoff is null
whatever his or her role in the economic game (N, v) ∈ G is. This axiom reveals that although an
agent is productive in an economic game, if he or she is never pivotal in the voting game, then he
or she will still get a null payoff. The three other axioms concern situations (N, auN ,W) where
agents are involved in (a multiple of ) a unanimity game on the grand coalition and the voting
structure is arbitrary.

Weak modularity For every (N, auN ,W) and (N, auN ,W ′), where a ∈ R, it holds that

Φ(N, auN ,W) + Φ(N, auN ,W ′) = Φ(N, auN ,W ∩W ′) + Φ(N, auN ,W ∪W ′).

Laruelle and Valenciano (2001) reformulate “modularity” in an equivalent but more transparent
version stating that the effect (gain or loss) on any agent’s payoff of eliminating a single minimal
winning coalition from the set of winning ones is the same in any game in which this coalition
is minimal winning. Formally, for any (N,W) different from (N,W∗N ), and any minimal winning
coalition S ∈M(W) ∩M(W ′), weak modularity can be rewritten as

Φ(N, auN ,W)− Φ(N, auN ,W \ S) = Φ(N, auN ,W ′)− Φ(N, auN ,W ′ \ S).
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The principle of modularity, also called transfer, has been extensively used in the cooperative game
literature to characterize the Shapley-Shubik index and the Banzhaf index (Dubey, 1975; Dubey
and Shapley, 1979; Feltkamp, 1995; Laruelle and Valenciano, 2001, among others).

The next axiom is a slight modification of the previous one which takes into account the role
of a power index.

Weak σ-modularity Let σ be a power index on V . For every (N, auN ,W) and (N, auN ,W ′),
where a ∈ R, it holds that

σN (N,W)Φi(N, auN ,W) + σN (N,W ′)Φi(N, auN ,W ′) =

σN (N,W ∩W ′)Φi(N, auN ,W ∩W ′) + σN (N,W ∪W ′)Φi(N, auN ,W ∪W ′),

where σN (N,W) stands for the sum of the σi(N,W) over N .
The last axiom relies on an invariance principle. It says that if a set of agents are involved in

(a multiple of ) a unanimity game on the grand coalition, then their payoffs are indifferent to a
change of the voting game.

Invariance to the voting structure for unanimity situations For every (N, auN ,W) and
(N, auN ,W ′) in GV , it holds that

Φ(N, auN ,W) = Φ(N, auN ,W ′).

Using these axioms, we can determine the distribution of the payoffs for unanimity situations
(N, auN ,W) ∈ GV . Formally, we have the following result.

Proposition 3 Let Φ be an allocation rule on GV, satisfying efficiency and strong equal treatment
of equal agents. Then, for each (N, auN ,W) ∈ GV , it holds that Φ(N, auN ,W) is uniquely
determined, in the two following cases.

1. The allocation rule Φ satisfies null voting power and either weak modularity or weak σ-
modularity.

2. The allocation rule Φ satisfies invariance to the voting structure for unanimity situations.

Proof.
Point 1. Let Φ be any allocation rule on GV satisfying efficiency, strong equal treatment of equal
agents, null power agent and weak modularity. Take (N, auN ,W) ∈ GV where a ∈ R. The proof
is by induction on the number of elements in the set M(W) of minimal winning coalitions.

Initialization. Suppose that M(W) contains a unique coalition, say S, so that W = W∗S . On
the one hand, each agent in N \ S is null in (N,W∗S). By null voting power, Φi(N, v,W∗S) = 0 for
each i ∈ N \ S. On the other hand, each pair of distinct agents in S are equal agents in (N, auN )
and (N,W∗S). By strong equal treatment of equal agents, for each pair {i, j} ⊆ S, we have
Φi(N, auN ,W∗S) = Φj(N, auN ,W∗S). Applying efficiency, we get, for each i ∈ S, Φi(N, auN ,W∗S) =
as−1. Thus, Φ(N, v,W∗S) is uniquely determined.

Induction hypothesis. Assume that Φ(N, v,W) is uniquely determined for situations where
M(W) contains at most q elements for some q ≥ 1.
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Induction step. Suppose that M(W) contains q+1 minimal winning coalitions, S1, S2, . . . , Sq+1.
By (6), W admits the following decomposition

W = (W∗S1
)
⋃(q+1⋃

k=2

W∗Sk

)
.

Denote byW−S1 the voting structureWS2 ∪ · · ·∪WSq+1 . Note that M(W−S1) contains q elements.
By weak modularity, we obtain

Φ(N, auN ,W) = −Φ(N, auN ,W∗S1
∩W−S1) + Φ(N, auN ,W∗S1

) + Φ(N, auN ,W−S1)

By the induction hypothesis, Φ(N, auN ,W∗S1
) and Φ(N, auN ,W−S1) are uniquely determined. In

addition, we have

W∗S1
∩W−S1 =

q+1⋃
k=2

(
W∗S1

∩W∗Sk

)

=

q+1⋃
k=2

W∗S1∪Sk
,

so that M(W∗S1
∩W−S1) contains exactly q elements. By the induction hypothesis, the payoff vector

Φ(N, auN ,W∗S1
∩W−S1) is uniquely determined. Thus, Φ(N, auN ,W) is uniquely determined, as

desired.
The proof for the case where Φ satisfies weak σ-modularity is similar, so it is omitted.

Point 2. Assume that Φ on GV satisfies efficiency, strong equal treatment of equal agents, and
invariance to the voting structure for unanimity situations. Take (N, auN ,W) ∈ GV where a ∈ R.
By invariance to the voting structure for unanimity situations,

Φ(N, (N, auN ,W) = Φ(N, auN ,W∗N ).

Each pair of distinct agents are equal agents in (N, auN ) and (N,W∗N ). By strong equal treatment
of equal agents and efficiency, Φ(N, auN ,W∗N ) = (a/n . . . , a/n), and so is uniquely determined.
Thus, Φ(N, (N, auN ,W) is uniquely determined. This completes the proof of Proposition 3. �

Next, we obtain comparable axiomatizations for the three specific Harsanyi power solutions
above mentioned.

Theorem 2 Among all those allocation rules in GV satisfying efficiency, additivity, weak null
agent out, equality, and strong equal treatment of equal agents,

1. The Myerson value ΦED is the only one which satisfies invariance to the voting structure for
unanimity situations.

2. The Harsanyi-Shapley-Shubik solution ΦSh is the only one which satisfies null voting power
and weak modularity.

3. The Harsanyi-Banzhaf solution ΦBz is the only one which satisfies null voting power and
weak σ-modularity.
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Proof. (Uniqueness) Let Φ be an allocation rule on GV satisfying efficiency, additivity, weak null
agent out, equality, and strong equal treatment of equal agents. By Proposition 2, we have

∀i ∈ N, Φi(N, v,W) = Φi(N, v
W ,W) =

∑
S∈W:S3i

Φi(S,∆vW (S)uS ,WS) (13)

Take i ∈ N and S ∈ W such that S 3 i.

Point 1. Suppose that Φ satisfies invariance to the voting structure for unanimity situa-
tions. By point 2 of Proposition 3, the payoff Φi(S,∆vW (S)uS ,WS) is uniquely determined. Thus,
Φ(N, v,W) is uniquely determined.

Point 2. Assume that Φ satisfies null voting power and weak modularity. By point 1 of Propo-
sition 3, the payoff Φi(S,∆vW (S)uS ,WS) is uniquely determined. Thus, Φ(N, v,W) is uniquely
determined.

Point 3. Similar to point 2.

(Existence) The allocation rules ΦED, ΦSh and ΦBz belong to the family of Harsanyi power solu-
tions. By Theorem 1, they satisfy efficiency, additivity, weak null agent out and equality.
Strong equal treatment of equal agents. Let (N, v,W) ∈ GV such that there exists a pair of
(distinct) equal agents {i, j} ⊆ N in (N, v) and (N,W). Take S 63 i, j. If S ∈ W, then S ∪ i and
S ∪ j belong to W and so

vW(S ∪ i) = v(S ∪ i) = v(S ∪ j) = vW(S ∪ j).
Next, assume that S ∈ 2N \W. As i and j are equal agents in W, either S ∪ i and S ∪ j belong to
W or S ∪ i and S ∪ j belong to 2N \ W. In both cases, vW(S ∪ i) = vW(S ∪ i). It follows, that i
and j are equal agents in vW so that, for any S 63 i, j, ∆vW (S ∪ i) = ∆vW (S ∪ j). It is well-known
that the power indices ED, Sh and Bz treat equally equal agents. From this fact, we can easily
deduce that, for two equal agents i and j in (N,W) and for each S ∈ W containing neither i nor
j, we have σi(S ∪ i,WS∪i) = σj(S ∪ j,WS∪j) for σ ∈ {ED,Sh,Bz}. Therefore, for Φσ, where
σ ∈ {ED,Sh,Bz}, we obtain

Φσ
i (N, v,W) =

∑
S∈W:S3i

σi(S,WS)∑
j∈S

σk(S,WS)
∆vW (S)

=
∑

S∪i∈W

σi(S ∪ i,WS∪i)∑
k∈S

σk(S ∪ i,WS∪i)
∆vW (S ∪ i)

=
∑

S∪j∈W

σj(S ∪ j,WS∪j)∑
k∈S

σk(S ∪ j,WS∪j)
∆vW (S ∪ j)

= Φσ
j (N, v,W).

Invariance to the voting structure for unanimity situations. This follows directly from the
definition of the Myerson value ΦED.
Null voting power. If i ∈ N is null in (N,W), then, i remains a null agent in each voting game
(S,WS) ∈ V such that S ∈ W and S 3 i. If σ ∈ {Bz, Sh}, then σi(S,WS) = 0 by definition of Bz
and Sh, and so ΦBz

i (N, v,W) = ΦSh
i (N, v,W) = 0.
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Weak modularity For every (N, auN ,W) and (N, v,W ′) in GV . By definition of theW-restricted
TU-game and by efficiency of the Shapley-Shubik power index, we obtain (auN )W = auN and∑

i∈N Shi(N,W) = 1. Therefore,

∀i ∈ N, ΦSh
i (N, auN ,W) = aShi(N,W).

From Dubey (1975), the Shapley-Shubik power index satisfies modularity on V , from which we
deduce that ΦSh

i satisfies weak modularity.
Weak σ-modularity The proof is similar to the previous one, except that weak σ-modularity
takes into account that the Banzhaf power index is not efficient on V . Then, it suffices to use the
fact that the Banzhaf power index satisfies modularity (Dubey and Shapley, 1979).

This completes the proof of Theorem 2. �

5. Extension to GUS

Another advantage of Theorem 1 over Theorem 4 and Theorem 6 in Algaba et al. (2015) is
that it is still valid on the full domain GUS, provided that the efficiency axiom is slightly adapted.
Indeed, on GUS, the grand coalition is not necessarily feasible so that a Harsanyi power solution
might not satisfy efficiency.

Restricted efficiency For each (N, v,F) ∈ GUS, it holds that∑
i∈N

Φi(N, v,F) = vF (N).

Note that restricted efficiency is a weaker requirement that the combination of component effi-
ciency and component-dummy: if an allocation rule satisfies component efficiency and component-
dummy, then it satisfies restricted efficiency, but the converse is not true.

All other axioms in the statement of Theorem 1 are extended to the domain GUS in a natural
way. In particular, weak null agent out and σ-unanimity can be written as follows.

Weak null agent out For each (N, v,F) ∈ GUS such that v ∈ GNF and each null agent i ∈ N in
(N, v), it holds that

∀j ∈ N \ i, Φj(N, v,F) = Φj(N \ i, vN\i,FN\i).

σ-unanimity Let σ be a power measure. For each (N, auN ,F) ∈ GUS, such that N ∈ F and
a ∈ R, there exists b ∈ R such that

Φ(N, auN ,F) = bσ(N,F).

Theorem 3 Let σ be a power index. The Harsanyi power solution Φσ on GUS is the unique
allocation rule that satisfies restricted efficiency, additivity, weak null agent out, equality and
σ-unanimity.

Before turning to the proof of this result, we verify that an analog of Proposition 1 and Propo-
sition 2 hold when efficiency is replaced by restricted efficiency.
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Proposition 4 Let Φ be an allocation rule on GUS satisfying restricted efficiency, additivity, and
equality, for each (N, v,F) ∈ GUS, it holds that

1. Φ(N, v,W) = Φ(N, vF ,F).

2. If, moreover, Φ satisfies weak null agent out, then

∀i ∈ N, Φi(N, v,F) =
∑

S∈F :S3i
Φi(S,∆vF (S)uS ,FS).

Proof. Point 1. consider Φ satisfying restricted efficiency, additivity, and equality, and
(N, v,W) ∈ GUS. We have (N, v,F) = (N, v − vF + vF ,F). By additivity,

Φ(N, v − vF + vF ,F) = Φ(N, v − vF ,F) + Φ(N, vF ,F). (14)

For each S ∈ F , (v − vF )(S) = 0, which implies that the coalition function v − vF belongs to GNF .
On the one hand, by equality, we have

Φi(N, v − vF ,F) = Φj(N, v − vF ,F), ∀i, j ∈ N.

On the other hand, by restricted efficiency, we have∑
i∈N

Φi(N, v − vF ,F) = (v − vF )F (N) = vF (N)− vF (N) = 0.

Thus,
Φi(N, v − vF ,F) = 0, ∀i ∈ N.

From (14) and Φ(N, v − vF ,F) = (0, . . . , 0), we get

Φ(N, v − vW + vW ,W) = Φ(N, v,W) = Φ(N, vW ,W),

showing point 1.
Point 2. The proof is similar to the one of Proposition 2, and so it is omitted. In particular, it is
important to note that Remark 4 still holds on GUS. �

Remark 5 Point 2. of Proposition 4 indicates that agents who do not belong to any support
receive a null payoff. Thus, the combination of restricted efficiency, additivity, equality and weak
null agent out imply component dummy. �

Proof. (of Theorem 3) (Existence). Let Φσ be a Harsanyi power solution on GUS. Algaba et al.
(2015) have already shown that Φσ satisfies additivity. It is easy to verify Φσ continues to satisfy
equality and σ-unanimity on GUS. It remains to verify that Φσ satisfies restricted efficiency and
weak null agent out on GUS.
Restricted efficiency. If (N, v,F) ∈ GUS. Then,
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∑
i∈N

Φσ
i (N, v,F) =

∑
i∈N

∑
S∈F :S3i

σi(S,FS)∑
j∈S

σj(S,FS)
∆vF (S)

=
∑
S∈F

∑
i∈S

σi(S,FS)∑
j∈S

σj(S,FS)
∆vF (S)

=
∑
S∈F

∆vF (S)

= vF (N),

showing that Φσ satisfied restricted efficiency.
Weak null agent out. Consider (N, v,F) ∈ GUS such that v ∈ GNF and assume that i ∈ N is
null in (N, v). By definition of Φσ, we have

∀j ∈ N \ i, Φσ
j (N, v,F) =

∑
S∈F :S3j

σj(S,FS)∑
k∈S σk(S,FS)

∆vF (S).

Since v ∈ GNF , v = vF . Therefore, for each nonempty S ⊆ N , ∆v(S) = ∆vF (S). In particular, by
point 1 of Remark 1, for each S 3 i, ∆v(S) = 0. By point 2 of Remark 1, we also have, for each
S ⊆ N \ i, ∆v(S) = ∆vN\i(S). Note also that for such a coalition S, we have

∀k ∈ S, σk(S,FS) = σk(S, (FN\i)S).

It follows that

∀j ∈ N \ i, Φσ
j (N, v,F) =

∑
S∈FN\i:S3j

σj(S, (FN\i)S)∑
k∈S

σk(S, (FN\i)S)
∆vN\i(S)

= Φσ
j (N \ i, vN\i,FN\i).

showing that Φσ satisfies weak null agent out.
(Uniqueness). Let Φ be an allocation rule satisfying restricted efficiency, additivity, weak null agent
out, equality and σ-unanimity. By point 2 of Proposition 3, we have

∀i ∈ N, Φi(N, v,F) = Φi(N, v
F ,F) =

∑
S∈F :S3i

Φi(S,∆vF (S)uS ,FS).

Then, it suffices to apply σ-unanimity on (S,∆vF (S)uS ,FS), S ∈ F in a similar way as in the
proof of Theorem 1. Notice that, for each S ∈ F , we have S ∈ FS , which ensures that restricted
σ-unanimity is sufficient to conclude.

This completes the proof of Theorem 3. �

It is also possible to extend the characterization of the Myerson value in Theorem 2 to the
domain GUS. This can be done by keeping restricted efficiency, additivity, weak null agent out,
equality and strong equal treatment of equal agents, and by the following minor adaptation of
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invariance to the voting structure for unanimity situations: the same principle is applied but only
when N is feasible.

Invariance to the voting structure for unanimity situations (for GUS) For every (N, auN ,W)
and (N, auN ,W ′) in GUS, such that N ∈ W ∩W ′, it holds that

Φ(N, auN ,W) = Φ(N, auN ,W ′).

Theorem 4 The Myerson value ΦED on GUS is the unique allocation rule that satisfies restricted
efficiency, additivity, weak null agent out, equality and invariance to the voting structure for
unanimity situations.

On the contrary, we cannot extend the characterization of the Harsanyi-Shapley-Shubik solution
and the Harsanyi-Banzhaf solution for GUS in a simple way. The reason is that the principle of
modularity is not well-defined on GUS. Indeed, if (N,F) and (N,F ′) are in US, the set system
(N,F ∪ F ′) does not necessarily belong to GUS.

6. Concluding remarks

The union stable system model assumes that if two feasible coalitions have common elements,
they will act as intermediaries between the two coalitions in order to establish meaningful cooper-
ation in the union of these coalitions. In this article, the system of winning coalitions of a voting
game is introduced as a specific subclass of union stable systems. For this special subclass of union
stable systems the characteristic of power is contained in the implicit interpretation of the winning
coalitions in a voting game. Moreover, the interpretation of power in these systems is quite dif-
ferent from the one given by accessible union stable systems (Algaba et al., 2018) which combines
communication and hierarchical properties. Namely, these set systems could be also studied taking
into account only the feature of power which is in contrast with the system of feasible coalitions
derived from an acyclic directed graph by the conjunctive approach (Gilles et al., 1992) or under
precedence constraints (Faigle and Kern, 1992). Under this setting, Harsanyi power solutions when
restrictions to cooperation coming from this special subclass of union stable systems are introduced.
This class of solutions constitutes a very interesting subclass of the Harsanyi power solutions on
union stable systems (Algaba et al., 2015) since it is possible to take into consideration not only
the economic influence of each coalition but also its political power established in the voting game.
These solutions allocate the Harsanyi dividends of the restricted game proportional to the power
values of the agents according to any positive power measure for the given winning coalition sys-
tem. Such a power measure assigns a non-negative real number to every agent, which measures
the power or strength of this agent in the winning coalition system. It is obtained through power
indices, and leads to an axiomatic characterization of the class of Harsanyi power solutions when
the union stable system is the system of winning coalitions of a voting game by efficiency, addi-
tivity, equality, weak null agent out and σ-unanimity. In the property of equality is revealed the
strong connection between economic influence and political power. It is also worth mentioning that
the weak null agent out evokes the irrelevant agent independence which is introduced for games
under precedence constraints to characterize the hierarchical solution (Algaba et al., 2017). The
main distinction between the latter two axioms can be found in the structural differences of the
system of feasible coalitions of each approach. The axiom of σ–unanimity has also been used to
characterize the hierarchical solution. In fact, considering only the unanimity game of the grand
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coalition, all agents are identical in the game, and therefore, the only difference, in the setting of
precedence constraints, is with respect to their position in the digraph, whereas in the case of the
set of feasible coalitions arising from the winning coalitions in a voting game, the payoff allocation
in the unanimity game is fully determined by the chosen power index. Additionally, special solu-
tions called the Harsanyi Shapley-Shubik solution, the Harsanyi Banzhaf solution and the Myerson
value which are obtained when the influence of agents is defined by the Shapley-Shubik index,
the Banzhaf index and the Equal division power index, respectively. Comparable axiomatizations
highlight the essential differences among these specific Harsanyi power solutions. Finally, it is
important to emphasize that the axiomatization given for the class of Harsanyi power solutions on
the subclass of winning coalitions can be extended to the whole class of union stable systems with
a light modification of the efficiency axiom. As a result, a new characterization of the Myerson
value on the whole class of union stable systems is provided when considering the Equal division
power measure.

Further research will include more studies on the structure given by the feasible coalitions
systems coming from the winning coalitions of a voting game as well as axiomatizations of solutions
introduced for union stable systems in this framework. The analysis of how the additional feature
of power in the structure influences the properties of the solutions is of interest in the literature.
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Algaba, E., Bilbao, J. M., Borm, P., López, J. J., 2001. The Myerson value for union stable structures. Mathematical
Methods of Operations Research 54, 359–371.
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