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Abstract

We study cooperative games with a priority structure modeled by a poset on the agent set. We

introduce the Priority value, which splits the Harsanyi dividend of each coalition among the set

of its priority agents, i.e. the members of the coalition over which no other coalition member has

priority. This allocation shares many desirable properties with the classical Shapley value: it is

efficient, additive and satisfies the null agent axiom, which assigns a null payoff to any agent with

null contributions to coalitions. We provide two axiomatic characterizations of the Priority value

which invoke both classical axioms and new axioms describing various effects that the priority

structure can impose on the payoff allocation. Applications to queueing and bankruptcy problems

are discussed.

Keywords: Priority structure, Shapley value, Priority value, necessary agent, Harsanyi solution,

queueing problems, bankruptcy problems.
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1. Introduction

The theory of cooperative games is a remarkable set of tools to analyze many problems of re-

source allocation resulting from the cooperation of several agents. Among the numerous allocation

rules proposed in this literature, the Shapley value (Shapley, 1953) is by far the most studied and

applied(see Algaba et al., 2019, for instance). The Shapley value allocates to each agent an average

of its contributions to the coalitions of agents. Equivalently, the Shapley value can be described

as the allocation rule which splits equally the so-called Harsanyi dividend (Harsanyi, 1959) of each

coalition among its members.

In this classical model, it is assumed that the agents only differ with respect to their ability to

contribute to the worths of the coalitions. However, there are many situations in which the alloca-

tion of resources can also be influenced by economical, hierarchical or communicational structures

between the agents. Such structures can impose communicational constraints modeled by a graph
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in Myerson (1977), coalitional constraints modeled by a partition in Aumann and Dreze (1974) and

Owen (1977) or hierarchical constraints modeled by a permission structure in Gilles et al. (1992).

In all these approaches, the Shapley value is adapted to account for the position of the agents in

the associated structure.

In this article, we enrich the classical model of cooperative games by a priority structure. The

aim of this structure is to reflect the fact that some agents may have priority over other agents

in the allocation process. There are natural examples in which a priority structure is relevant.

For instance, in the context of bankruptcy problems, Thomson (2003) argues that “some claims

(for instance, secured claims) have higher priority than others (such as unsecured claims).”. He

insists that “the objective would be to give priority to agents who have risked relatively greater

amounts.” (see also Flores-Szwagrzak et al., 2019). When selling tickets to sporting events such

as Roland Garros, licensees often have priority over other buyers. Allocating the research budget

of a university also systematically gives priority to certain projects rather than others. In private

procurement auctions, a buyer may give priority to an incumbent supplier through the Right-

of-First-Refusal: the incumbent supplier can win the auction by simply matching the best offer

made by its rivals (Brisset et al., 2015). Mitchell (2001) explains that such a preemptive right can

also exist in real estate, corporate securities, franchise agreements, oil and gas leases, employment

contracts, among others. In the well-known “school choice” problem, each school has a priority

order over the students (Bu, 2014). Finally, the allocation of resources in cloud computing often

necessitates to determine priority among the user requests (Ghanbaria and Othman, 2012).

We model the priority structure by a partially ordered set (poset) ě on the set of participating

agents: an agent i has priority over an agent j if i ě j. The objective is then to design an allocation

rule which takes into account both the economic possibilities resulting from the cooperation of the

agents and modeled by a cooperative game with transferable utility and the priority structure

given by this poset. From a mathematical point of view, our model is identical to the acyclic

permission structures introduced in Gilles et al. (1992) and the structures modeling precedence

constraints introduced in Faigle and Kern (1992), even if these structures are sometimes defined

by means of digraphs. These two models have been extensively studied in the literature (van den

Brink, 2017; Algaba et al., 2017, survey some results) and have in common that the associated

structure imposes some restriction on the formation of coalitions or on the subset of coalitions to

which an allocation rule is sensitive. In van den Brink and Gilles (1996), van den Brink (1997)

and van den Brink and Dietz (2014), the so-called conjunctive, disjunctive and local permission

values are computed as the Shapley value of a restricted game in which only the “feasible” part of a

coalition is productive, where the “feasible” part is the largest subset of the coalition that contains

all the hierarchical superiors deemed necessary for the worth generation (these vary depending

on the model: conjunctive, disjunctive or local). In the Shapley value for games with precedence

constraints studied by Faigle and Kern (1992), the principle of the marginal vectors underlying the

classical Shapley value is restricted to those orderings in which each agent must appear after its

hierarchical superiors, preventing de facto the formation of some coalitions.

In this article, we adopt a completely new point of view which does not reduce our contribution

to a simple reinterpretation of the poset in terms of priority. More specifically, we consider that
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the priority structure has no impact on the formation of coalitions as in Faigle and Kern (1992) or

on the result that these coalitions can produce as in Gilles et al. (1992). This important feature

of our model is consistent with the aforementioned applications: in a bankruptcy problem, it

makes little sense to prevent a coalition from forming on the grounds that a creditor has priority

over its members or to prevent some of its members from being productive simply because other

agents have priority over them. Obviously, the priority structure should influence the allocation

of the results of cooperation between agents. In order to stay as close as possible to the spirit of

the Shapley value, we introduce the Priority value, which shares the Harsanyi dividend of each

coalition equally among the subset of its members over whom no other agent in the coalition has

priority. As the Shapley value, the Priority value can be written as an Harsanyi solution, unlike

the conjunctive, disjunctive and local permission values. As a consequence, a difference between

of the Priority value and these allocation rules is that it satisfies the Null agent axiom: an agent

with null contribution to coalitions receives a null payoff. This means that unproductive agents

should not be rewarded even if they have priority over the other agents or, equivalently, that the

productivities take over the priorities. The Shapley value for games with precedence constraints

satisfies the null agent axiom, but an advantage of the Priority value over this value is that it is

sensitive to the worth of all coalitions: if the result of the cooperation between any coalition of

agents increases, then some of its members should be better off while some of the members of the

complementary coalition should be worse off.

We conduct an axiomatic study on the class of cooperative games with a priority structure

whose purpose is to provide two characterizations of the Priority value. This analysis invokes

classical axioms as well as new axioms. Classical axioms are Efficiency (the sum of distributed

payoffs equals the worth of the grand coalition), the already mentioned Null agent axiom, the

Null game axiom (if all worths are null, then everyone gets a null payoff), Additivity (the sum of

payoffs in two games equals the payoffs in the sum of the two games) and the Null agent out axiom

(removing null agents does not alter the payoffs of the remaining agents) adapted from Derks and

Haller (1999) to our framework in the most natural way. The new axioms describe how the priority

structure can affect the agents’ payoffs. Two of them rely on necessary agents, a specific type of

agents often used in the design of axioms, particularly for games with a permission structure (see

Béal and Navarro, 2020, for a list of references). An agent is necessary if the worth of any coalition

without it is equal to zero. The first new axiom imposes that two necessary agents get the same

payoff if the set of agents with priority over each of them is the same (A1). The rationale is that

two necessary agents are also equals. Hence axiom (A1) deals with two agents that cannot be

distinguished by their contributions and which are also indistinguishable from the point of view of

the agents having priority over each of them. The second axiom involving necessary agents requires

that an agent receives a null payoff if a necessary agent has priority over it (A2). This agent receives

a null payoff since it is in a sense doubly blocked by the fact that there is another agent which both

has priority over it and is necessary to any worth creation. The third new axiom is an invariance

axiom which states that removing any agent does not alter the payoffs of the agents over which it

has priority (A3). The explanation of this axiom is that removing any agent j which has priority

over an agent i has a double effect: on the one hand, the situation of agent’s i improves since it
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has fewer agents having priority over it but, on the other hand, i’s situation is also deteriorating

because agent j takes with it some possibilities of cooperation. Axiom (A3) requires that these

effects neutralize each other. The fourth and final new axiom is another invariance axiom. If an

agent and all the agents who have priority over it are null and if a new priority is created for this

agent over another agent, then all payoffs are unchanged (A4). An interpretation of this axiom is

that an agent does not care that a group of unproductive agents take priority over it, and that this

local modification of the priority structure should not impact the other agents. In a sense here,

the absence of productivity takes precedence over priorities.

The results are as follows. The combination of Efficiency, Additivity A3 and A4 implies the Null

agent axiom (Proposition 1). The combination of the Null game axiom and A3 implies A2 and the

combination of the Null agent out axiom and Efficiency implies A4 (Proposition 3). We also show

that the Priority value is the unique allocation rule satisfying Efficiency, Additivity, A1, A3 and A4

(Proposition 2). Our second characterization of the Priority value invokes Efficiency, Additivity,

the Null agent out axiom, A1 and A2 (Proposition 4). The last part of the article is devoted

to a comparison between the Priority value and other allocation rules and to two applications

to queueing and bankruptcy problems. In a queueing problem where agents are also associated

with a priority structure, the Priority value applied to the queueing game suggested by Maniquet

(2003) is natural and can be interpreted, if the priority structure is linear, as a gradual regime

change from the optimal queue to the priority ordering. Moreover, the Priority value of a natural

bankruptcy game constructed from a linear priority structure belongs to the family of priority rules

characterized by Moulin (2000): the individual claims are satisfied sequentially according to the

priority ordering of the agents until the estate is exhausted; the remaining agents getting nothing.

The plan of the article is the following. Section 2 provides definitions. Section 3 introduces and

motivates the axioms. Section 4 presents and proves the main results. The comparison between

the Priority value and other allocation rules is provided in section 5. Section 6 discusses two

applications. Section 7 concludes.

2. Basic definitions and notation

2.1. Cooperative games with transferable utility and the Harsanyi solutions

A situation in which a finite set of agents can generate certain monetary payoffs by agreeing to

cooperate can be described by a cooperative game with transferable utility (or simply a TU-game).

A TU-game is a pair pN, vq where N Ď N is a finite set of n P N agents, and v : 2N ÝÑ R is a

coalition function on N such that vpHq “ 0. A subset S of N is a coalition and vpSq P R is the

worth that the members of S can obtain when they agree to cooperate. In the sequel, the singleton

tiu is denoted by i, and, for any non-empty coalition S, we will often use notation s to denote its

cardinality |S|.

The subgame pS, vSq of pN, vq induced by coalition S “ H is such that vS is the restriction

of v to 2S . When there is no risk of confusion, pS, vSq will be denoted by pS, vq.

An agent i P N is a null agent in pN, vq if, for each S Ď N such that S Q i, vpSq “ vpSziq.

Two distinct agents i and j in N are equal agents in pN, vq if, for each S Ď Nzti, ju, it holds

that vpSY iq “ vpSY jq. An agent i is a necessary agent (sometimes called veto agent) in pN, vq
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if, for each S Ď Nzi, vpSq “ 0. If two distinct agents i and j are necessary in pN, vq, then they are

indeed equal agents because vpS Y iq “ vpS Y jq “ 0 for each S Ď Nzti, ju.

For two TU-games pN, vq and pN,wq defined on the same agent set N and for each c P R, the

TU-games pN, v`wq and pN, cvq are defined as follows: for each S Ď N , pv`wqpSq “ vpSq`wpSq,

and pcvqpSq “ cvpSq. The null TU-game on N is the TU-game pN,0q such that 0pSq “ 0

whatever S Ď N . A TU-game is monotone if vpSq ě vpT q whenever S Ě T . For each nonempty

coalition S Ď N , the unanimity TU-game induced by S is the TU-game pN, uSq defined as:

uSpT q “ 1 if T Ě S, and uSpT q “ 0 otherwise. Each unanimity TU-game is monotone. It is

well-known that any TU-game pN, vq admits a unique linear decomposition in terms of unanimity

TU-games:

v “
ÿ

HĹSĎN

∆SpvquS , (1)

where each coordinate ∆Spvq P R is called the Harsanyi dividend (Harsanyi, 1959) of S in pN, vq,

and is computed from the following recursive formula:

∆Spvq “ vpSq ´
ÿ

TĹS

∆T pvq.

Therefore, the dividend of a singleton is the worth of that singleton, and the dividends of all other

coalitions represent the additional contribution that such a coalition earns more than the sum of

the dividends of all its subcoalitions. These dividends can thus be seen as the inner contribution

of cooperation.

Remark 1. From the above recursive formula, the following properties hold:

1. if i is a null agent in pN, vq, then ∆Spvq “ 0 whenever S Q i;

2. if i is a necessary agent in pN, vq, then ∆Spvq “ 0 whenever i P NzS;

3. given a TU-game pN, vq and its subgame pS, vSq, each Harsanyi dividend ∆T pv
Sq in pS, vSq

coincides with the Harsanyi dividend ∆T pvq in pN, vq for each T Ď S, T “ H.

Pick any finite and nonempty set of agents N 1 Ď N. Denote by GN 1 the set of all TU-games

pN, vq where N is a nonempty subset of N 1 and v is a coalition function v : 2N ÝÑ R. A payoff

vector for a TU-game pN, vq is a vector x “ pxiqiPN assigning a payoff xi P R to each agent

i. An allocation rule on GN 1 is a function f that assigns a payoff vector fpN, vq P RN to any

pN, vq P GN 1 .

The class of allocation rules proposed by Vasil’ev (1978), Hammer et al. (1977) and studied

by Derks et al. (2000), and more recently by Besner (2019), distributes the Harsanyi dividends

through a sharing system. A sharing system on the agent set N 1 is a system p “ ppSqSĎN 1,S “H,

where pS is a vector of real numbers ppSi qiPS assigning a nonnegative share pSi ě 0 to each i P S

and such that
ř

iPS p
S
i “ 1. Given a sharing system p, the Harsanyi solution hp on GN 1 is the

allocation rule that assigns to each agent in a TU-game pN, vq P GN 1 a payoff equal to the sum,

over all coalitions S containing i, of the share pSi ∆Spvq of agent i in the Harsanyi dividend of

coalition S. Formally,

@i P N, hpi pN, vq “
ÿ

SĎN :SQi

pSi ∆Spvq.
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One of the most famous Harsanyi solutions for TU-games is the Shapley value (Shapley, 1953)

defined as the average, over all orderings on the agent set, of the marginal contribution vectors.

More precisely, given an agent set N of size n, an ordering σ : N ÝÑ t1, . . . , nu is a bijective map

assigning to each agent i P N a rank σpiq P t1, . . . nu. Such an ordering represents the situation

where the agents enter in a room one by one according to σ. Let OpNq be the set of all orderings on

N . Given an ordering σ P OpNq of N and a TU-game pN, vq P GN 1 , one defines the corresponding

marginal vector mσpN, vq as

@i P N, mσ
i pN, vq “ v

`

tj P N : σpjq ď σpiqu
˘

´ v
`

tj P N : σpjq ă σpiqu
˘

.

Thus mσ, viewed as an allocation rule on GN 1 , distributes to each agent its contribution to the

coalition formed by its entrance according to the ordering σ P OpNq.

The Shapley value is the allocation rule Sh defined as the average of all these marginal

vectors:

@i P N, ShipN, vq “
1

n!

ÿ

σPOpNq

mσ
i pN, vq.

It is well-known that the Shapley value is the Harsanyi solution which distributes equally the

dividend of a coalition among its members, that is, the Shapley can also be written as:

@i P N, ShipN, vq “
ÿ

SĎN :SQi

∆Spvq

s
.

2.2. TU-games with a priority structure

A TU-game with a priority structure describes a situation where some agents in the TU-

game have priority over some other agents. Formally, a priority structure on N is a partially

ordered set, also called a poset, ě on the agent set N . Recall that a poset pN,ěq is a reflexive,

antisymmetric and transitive binary relation. The relation i ě j means that i has priority over

j. The poset pN,ě0q containing no priority relations among pair of distinct agents is called the

trivial poset. A poset pN,ěq is a linear order if, for any pair of agents ti, ju Ď N , either

i ě j or j ě i, that is, if pN,ěq is complete. The poset pN,ě1q contains the poset pN,ěq if

for each i, j P N , i ě j implies i ě1 j. In this case, we say that pN,ě1q is an extension of the

poset pN,ěq. Furthermore, it is the elementary extension of pN,ěq with respect to the pair

of distinct agents ti, ju Ď N if it is the smallest extension of pN,ěq such that i ě1 j. Faigle and

Kern (1992) and Gilles et al. (1992) also consider a poset to model precedence constraints and

hierarchical constraints. We will come back later on the differences between our model and their

model.

A poset pN,ěq gives rise to the asymmetric binary relation pN,ąq: i ą j if i ě j and i “ j.

For an agent i P N , define the priority group on i, denoted by Òě i, as the set of agents having

priority over i in pN,ěq:

Òě i “
 

j P N : j ą i
(

,

and the set of agents over whom i has priority in pN,ěq as

Óě i “
 

j P N : i ą j
(

.
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Two distinct agents i and j are incomparable in pN,ěq if neither i ě j nor j ě i. For each

nonempty coalition S, the subposet pS,ěSq of pN,ěq induced by S is defined as follows: for each

i P S and j P S, i ěS j if i ě j. We will also use the notation pS,ěq instead of pS,ěSq. An agent i

is a priority agent in pS,ěq if, for j P S, the relation j ě i implies i “ j. Denote by MpS,ěq the

nonempty subset of priority agents in pS,ěq. Denote by PN 1 the set of all posets pN,ěq, where N

is a nonempty subset of a finite set of agents N 1 Ď N and ě is a poset on N .

Example 1. Consider the Hasse diagram of the poset pN,ěq, where N “ t6, . . . , 10u, represented

in Figure 1. For instance, Òě 9 “ t6, 7, 8u and Óě 9 “ H, and agent 9 and agent 10 are incom-

parable with respect to pN,ěq. Consider the subposet pS,ěq induced by S “ t7, 8, 9u. Then,

MpS,ěq “ t7, 8u whereas MpN,ěq “ t6u. l

6

7 8

9 10

Figure 1: Hasse diagram of the priority structure pN,ěq.

Given a finite and nonempty set of agents N 1 Ď N and a nonempty coalition N Ď N 1, the triple

pN, v,ěq where pN, vq P GN 1 and pN,ěq P PN 1 is called a TU-game with a priority structure

on N . Denote by GPN 1 the class of TU-games with a priority structure that we can construct from

GN 1 and PN 1 . In this article, we consider Harsanyi solutions on GPN 1 . The main difference with

the Harsanyi solutions on GN 1 is that the sharing system depends on the priority structure. That

is, the priority structure may affect the distribution of the dividends among the agents. Given a

priority structure pN 1,ěq, the sharing system p “
`

ppS,ěq
˘

SĎN 1,S “H
is such that ppS,ěq is a vector

of real numbers
`

p
pS,ěq
i

˘

iPS
assigning a nonnegative share p

pS,ěq
i ě 0 to each i P S in the subposet

pS,ěq of pN 1,ěq and
ř

iPS p
pS,ěq
i “ 1. That is, the Harsanyi solution hp on GPN 1 with respect to

the sharing system p is given by:

@i P N, hpi pN, v,ěq “
ÿ

SĎN :SQi

p
pS,ěq
i ∆Spvq (2)

3. Axioms for allocation rules on games with a priority structure

First, we list a set of axioms for an allocation rule for TU-games on a priority structure, that are

straightforward generalizations of axioms for allocation rules on TU-games. Consider an allocation

rule f on GPN 1 .
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Efficiency (E). For each pN, v,ěq P GPN 1 , it holds that:

ÿ

iPN

fipN, v,ěq “ vpNq.

Null agent axiom (N). For each pN, v,ěq P GPN 1 , and each null agent i P N in pN, vq, it holds

that:

fipN, v,ěq “ 0.

Equal treatment of equals (ET). For each pN, v,ěq P GPN 1 , each pair ti, ju Ď N of distinct

equal agents in pN, vq, it holds that:

fipN, v,ěq “ fjpN, v,ěq.

Null game axiom (NG). For each pN,0,ěq P GPN 1 , it holds that:

fpN,0,ěq “ p0, . . . , 0q.

Additivity (A). For each pN, v,ěq and each pN,w,ěq P GPN 1 , it holds that:

fpN, v ` w,ěq “ fpN, v,ěq ` fpN,w,ěq.

Null agent out axiom (NAO). For each pN, v,ěq P GPN 1 , each null agent j P N in pN, vq, it

holds that:

@i P Nzj, fipN, v,ěq “ fipNzj, v,ěq.

It is well-known that Efficiency Additivity, the Null agent axiom and Equal treatment of equals

characterize the Shapley value (Shapley, 1953; Shubik, 1962). Additivity implies the Null game

axiom, and the combination of Efficiency and Null agent out axiom implies the Null agent axiom.

Each Harsanyi solution satisfies Additivity, Efficiency and the Null agent out axiom. Finally, note

that the above axioms are independent of the priority structure. Below, we introduce new axioms

which take into account the priority structure. The first axiom is a weak version of Equal treatment

of equals. It imposes that two necessary agents with the same priority group on them are treated

equally, no matter over which set of agents they have priority.

Equal treatment for necessary agents with equal priority group (A1). For each

pN, v,ěq P GPN 1 and each pair ti, ju Ď N of distinct necessary agents in pN, vq such that Òě i “Òě j,

it holds that:

fipN, v,ěq “ fjpN, v,ěq.

Because two necessary agents with the same priority group on them are equal agents, Equal

treatment of equals implies Equal treatment for necessary agents with equal priority, while the

converse does not hold. The second new axiom indicates that if a necessary agent has priority over

another agent, then the later obtains a null payoff.
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Necessary and priority agent axiom (A2). For each pN, v,ěq P GPN 1 and each necessary

agent j in pN, vq, it holds that:

@i PÓě j, fipN, v,ěq “ 0.

The rationale behind this axiom is that the payoff possibilities for an agent i PÓě j are doubly

blocked by the fact that agent j both has priority over it and is necessary to any worth creation.

In this case, nothing accrues to agent i. The third new axiom expresses in another way the fact

that one agent has priority over another agent. It states that removing an agent, necessary or not,

does not affect the payoffs of the agents over which it has priority.

Priority agent out (A3). For each pN, v,ěq P GPN 1 and each agent j P N , it holds that:

@i PÓě j fipN, v,ěq “ fipNzj, v,ěq.

For the last axiom, we need a definition. Given a poset pN,ěq and two distinct agents i, j P N

such that j P Nz Òě i, define the poset pN,ěiÑjq as follows:

@`,m P N, ` ěiÑj m :ðñ

#

paq ` P iY pÒě iq and m P j Y pÓě jq,

pbq ` ě m otherwise.
(3)

Note that the poset pN,ěiÑjq is the elementary extension of pN,ěq with respect to the pair of

agents ti, ju.

Remark 2. Note that pN,ěiÑjq “ pN,ěq whenever i ě j. Furthermore, for m P piY Òě iq and
` P pjY Óě jq, it cannot be the case that ` ě m, otherwise j ě i which contradicts the assumption
j P Nz Òě i.

Next, the binary relation pN,ěiÑjq is indeed a poset such that ěiÑj contains ě. First, by
construction pN,ěiÑjq inherits reflexivity from pN,ěq. Regarding antisymmetry, note that j P
Nz Òě i implies

`

iY pÒě iq
˘

X
`

j Y pÓě jq
˘

“ H.

Assume m ěiÑj ` and ` ěiÑj m. It cannot be the case that m ěiÑj ` from (a). Otherwise,
m P piY Òě iq, ` P pjY Óě jq, and m R pjY Óě jq, force ` ě m from (b), which is impossible as
noticed above. For a similar reason, it cannot be the case that ` ěiÑj m from (a). Thus, m ěiÑj `
and ` ěiÑj m occur from (b), that is, m ě ` and ` ě m, and so ` “ m by antisymmetry of pN,ěq.
Regarding transitivity, assume that k ěiÑj ` and ` ěiÑj m. We have three cases: if k ě ` and
` ě m from (b), then k ě m by transitivity of pN,ěq, and so k ěiÑj m as desired; if k P piY Òě iq
and ` P pjY Óě jq, then, by (b) ` ě m so that m P pjY Óě jq; and, by paq, k ěiÑj m as desired; if
k ě ` from (b), ` P piY Òě iq and m P pjY Óě jq, the same reasoning applies because k P piY Òě iq.

The last axiom indicates that adding a priority relation between two incomparable agents i and

j, in the sense that i has now priority over j, does not affect the agents’ payoffs, including j, if agent

i and the agents in the priority group on i are null agents. This means that an agent does not care

that a group of unproductive agents take priority over it, and that this local modification of the

priority structure should not impact the other agents. In a sense here, the absence of productivity
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takes precedence over priorities.

Invariance to unproductive priority extension (A4). For each pN, v,ěq P GPN 1 and each

pair of incomparable agents ti, ju Ď N such that i and each k PÒě i are null agents in pN, vq, it

holds that:

fpN, v,ěq “ fpN, v,ěiÑjq.

Remark 3. By Remark 2, if i ě j, then pN,ěiÑjq and pN,ěq coincide so that Invariance to
unproductive priority extension applies trivially.

4. Axiomatic study

Our first result states that the combination of Efficiency, Additivity, Invariance to deletion of

superiors and Structural invariance for null agents implies the Null agent axiom. This result is a

consequence of the following lemma.

Lemma 1. If an allocation rule f on GPN 1 satisfies Efficiency (E), Null game (NG), Pri-

ority agent out (A3) and Invariance to unproductive priority extension (A4), then, for each

pN, cuS ,ěq P GPN 1 , where c P R and S Ď N , it holds that:

@i P NzS, fipN, cuS ,ěq “ 0.

Proof. Pick any allocation rule f as hypothesized, and consider the unanimity TU-game with a

priority structure pN, uS ,ěq P GPN 1 . Note that each agent i P NzS are null agents in pN, cuSq,

and that, for each agent j P S, pNzj, cuSq “ pNzj,0q. We partition NzS in two subsets in

the following way: for i P NzS, either there exists j P S such that j ě i, and we write i PÓě

S, or, for each j P S, we have j P NzpÒě iq. We prove the statement of Lemma 1 in three

steps. In a first step, we extend the subposet pNzpSY Óě Sq,ěq of pN,ěq to a linear order

pNzpSY Óě Sq,ě
1

q containing pNzpSY Óě Sq,ěq. Then, we define pN,ěp1qq containing pN,ěq and

such that pNzpSY Óě Sq,ěp1qq “ pNzpSY Óě Sq,ě
1

q. In a second step, we construct a new poset

pN,ěp2qq containing pN,ěp1qq through elementary extensions which connects the lowest priority

agent in pNzpSY Óě Sq,ěp1qq to all priority agents of S. In this way, for each i P NzpSY Óě Sq

and each j P MpS,ěq, i ěp2q j. Recall that MpS,ěq stands for the set of priority agents in the

subposet pS,ěq of pN,ěq. The constructions involved in these two steps are illustrated below in

Example 2. In a third step, we conclude by using axioms (E), (NG), (A3) and (A4).

Step 1. Consider the subposet pNzpSY Óě Sq,ěq of pN,ěq. By the Szpilrajn extension

theorem (Szpilrajn, 1930), there is a linear order pNzpSY Óě Sq,ě1q containing pNzpSY Óě Sq,ěq.

This extension only involves elementary extensions as in (3). Finally, define the poset pN,ěp1qq as,

for each `,m P N :

` ěp1q m :ðñ

$

’

’

’

&

’

’

’

%

` ě1 m if `,m P NzpSY Óě Sq,

` ě m if `,m P SY Óě S,

D`1 P NzpSY Óě Sq such that
if ` P NzpSY Óě Sq and m P SY Óě S.

`1 ě m and ` ě1 `1

10



Note that there exists a lowest priority agent im in the linear order pNzpSY Óě Sq,ěp1qq and

that MpS,ěp1qq “MpS,ěq.

Step 2. We construct sequentially the poset pN,ěp2qq as follows: consider the lowest priority

agent im in pNzpSY Óě Sq,ěp1qq and any j P MpS,ěp1qq. Consider the elementary extension

pN,ě
p1q
imÑj

q as defined in (3). By Remark 2, the binary relation pN,ě
p1q
imÑj

q is a poset contain-

ing pN,ěp1qq. From im, pN,ě
p1q
imÑj

q and k P MpS,ěp1qqzj, construct the elementary extension

pN, pě
p1q
imÑj

qimÑkq. Then, continue in this fashion until all agents in MpS,ěp1qq have been ex-

hausted. When the procedure stops, we obtain the poset pN,ěp2qq. By construction, for each

i P NzpSY Óě Sq, each j P SY Óě S, we have i ěp2q j; and, for each i, j P N such that i ě j, we

have i ěp2q j. Furthermore, MpS,ěp2qq “MpS,ěq and all priority agents in MpS,ěp2qq have now

the same priority group on them NzpSY Óě Sq.

Step 3. First, consider a given agent i PÓě S. On the one hand, by definition of Óě S, there is

j P S such that j ě i. By (A3), fipN, cuS ,ěq “ fipNzj, cuS ,ěq. On the other hand, pNzj, cuS ,ěq

coincides with pNzj,0,ěq, and so, by (NG), fipNzj,0,ěq “ 0. Therefore, we conclude that:

@i PÓě S, fipN, cuS ,ěq “ 0.

Next, for i P NzpSY Óě Sq, consider the priority group Òěp2q i on i and the set Óěp2q i of agents

over whom i has priority. By construction, pSY Óě Sq Ď
`

Óěp2q i
˘

and Nzi “ pÒěp2q iq Y pÓěp2q iq.

Recall also that each agent in NzpSY Óě Sq is a null agent in pN, cuSq. We obtain:

fipN, cuS ,ěq
pEq
“ c´

ÿ

jPpÒ
ěp2q

iq

fjpN, cuS ,ěq ´
ÿ

jPpÓ
ěp2q

iq

fjpN, cuS ,ěq

pA4q
“ c´

ÿ

jPpÒ
ěp2q

iq

fjpN, cuS ,ěq ´
ÿ

jPpÓ
ěp2q

iq

fjpN, cuS ,ě
p2qq

pA3q
“ c´

ÿ

jPpÒ
ěp2q

iq

fjpN, cuS ,ěq ´
ÿ

jPpÓ
ěp2q

iq

fjppÓěp2q iq, cuS ,ě
p2qq

pEq
“ ´

ÿ

jPpÒ
ěp2q

iq

fjpN, cuS ,ěq (4)

By construction, there exists a unique priority agent in pN,ěp2qq, say i0. Therefore, Òěp2q i0 “ H.

Set i “ i0 in (4) and we immediately get

fi0pN, cuS ,ěq “ 0.

If Nz
`

pSY Óě Sq Y i0
˘

is empty, then we are done. Otherwise, consider the subposet pNzi0,ě
p2qq.

Once again, it contains a unique priority agent, say i1, and Òěp2q i1 “ ti0u in pN,ěp2qq. By (4)

and the previous step,

fi1pN, cuS ,ěq “ ´fi0pN, cuS ,ěq “ 0.

11



Continuing in this fashion by taking the remaining agents in Nz
`

pSY Óě Sq Y ti0, . . . , ik´1u
˘

in

order and starting with the priority agent ik of (Nz
`

pSY Óě Sq Y ti0, . . . , ik´1u
˘

,ěp2qq, we get the

desired result. �

Example 2. Consider the Hasse diagram of the poset pN,ěq, where N “ t1, . . . , 9u, represented

in the left part of Figure 2. Consider the coalition S “ t3, 4, 7u. Then, MpS,ěq “ t3, 4u and

Óě S “ t6, 8, 9u. In Step 1 of the proof of Lemma 1, the subposet pt1, 2, 5u,ěq is extended to a

linear order. Then, the poset pN,ěp1qq containing pN,ěq is constructed. In Step 2 of the proof

of Lemma 1, the lowest priority agent 5 of pNzpSY Óě Sq,ěp1qq is connected to the priority agents

3 and 4 of S “ t3, 4, 7u. These two steps are represented in the central and right part of Figure 2,

respectively. l

1 2 3

4 5

6 7

8 9

pN,ěq

1

2

34 5

6 7

8 9

pN,ěp1qq

1

2

34

5

6 7

8 9

pN,ěp2qq

Figure 2: Hasse diagrams of pN,ěq, pN,ě
p1q

q after Step 1 and pN,ě
p2q

q after Step 2.

We have the material to prove our first result.

Proposition 1. Efficiency (E), Additivity (A), Priority agent out (A3) and Invariance to un-

productive priority extension (A4) on GPN 1 implies the Null agent axiom (N).

Proof. First, (A) implies (NG). Next, assume that i P N is a null agent in pN, v,ěq P GPN 1 .

By point 1 of Remark 1, ∆Spvq “ 0 for each S Q i, so that v can be expressed as follows:

v “
ÿ

SĎN :iPNzS

∆SpvquS .

By (A) and Lemma 1, conclude that i obtains a null payoff. �

Adding Equal treatment for necessary agents with equal priority group in the statement of

Proposition 1 yields a characterization of the Harsanyi solution as in (2), which distributes the
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dividend of each coalition equally among its priority agents. For this reason, this Harsanyi solution

is named the Priority value. Formally, the Priority value P on GPN 1 is the Harsanyi solution

given by:

@i P N, PipN, v,ěq “
ÿ

SĎN :MpS,ěqQi

∆Spvq

|MpS,ěq|
. (5)

Proposition 2. The Priority value P is the unique allocation rule on GPN 1 satisfying Efficiency

(E), Additivity (A), Priority agent out (A3), Invariance to unproductive priority extension (A4)

and Equal treatment for necessary agents with equal priority group (A1).

Proof. We first show that P satisfies all the axioms of the statement of Proposition 2.

(E) and (A): follow from the fact that P is a Harsanyi solution.

(A3): pick any j in a TU-game with a priority structure pN, v,ěq P GPN 1 , and consider any

i PÓě j. For S Ď N , if i PMpS,ěq, then j P NzS, so that S Ď Nzj. Hence, we have:

PipN, v,ěq “
ÿ

SĎN :MpS,ěqQi

∆Spvq

|MpS,ěq|
“

ÿ

SĎNzj:MpS,ěqQi

∆Spvq

|MpS,ěq|
“ PipNzj, v,ěq,

which shows that P satisfies (A3).

(A4): consider any pN, v,ěq P GPN 1 and two incomparable agents i and j in pN,ěq such that

i and all the agents k PÒě i having priority over i are null agents in pN, vq. By definition of an

elementary extension, MpS,ěi´ąjq Ď MpS,ěq, and MpS,ěq ‰ MpS,ěiÑjq if and only if there

exist k, q P MpS,ěq where k P piY Òě iq and q P pjY Óě jq. In this case, MpS,ěiÑjq “ MpS,ě

qzpjY Óě jq, and because S contains a null agent k in iY Òě i, ∆Spvq “ 0. Hence, we can write:

@` P N, P`pN, v,ěq “
ÿ

SĎN :MpS,ěqQ`

∆Spvq

|MpS,ěq|

“
ÿ

SĎN :MpS,ěqQ`
MpS,ěq“MpS,ěiÑjq

∆Spvq

|MpS,ěq|
`

ÿ

SĎN :MpS,ěqQ`
MpS,ěq“MpS,ěiÑjq

∆Spvq

|MpS,ěq|

“
ÿ

SĎN :MpS,ěiÑjqQ`

∆Spvq

|MpS,ěiÑjq|

“ P`pN, v,ěiÑjq,

which shows that P satisfies (A4).

(A1): consider any pN, v,ěq P GPN 1 and any two necessary agents i and j in pN, vq such that

Òě i “Òě j. By Remark 1, ∆Spvq “ 0 for each S Ď ppNziq Y pNzjqq. In addition, for a coalition S

containing both i and j, Òě i “Òě j implies that i P MpS,ěq if and only if j P MpS,ěq. Hence,
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we have:

PipN, v,ěq “
ÿ

SĎN :MpS,ěqQi

∆Spvq

|MpS,ěq|

“
ÿ

SĎN :SĚti,ju
iPMpS,ěq

∆Spvq

|MpS,ěq|

“
ÿ

SĎN :SĚti,ju
jPMpS,ěq

∆Spvq

|MpS,ěq|

“
ÿ

SĎN :MpS,ěqQj

∆Spvq

|MpS,ěq|

“ PjpN, v,ěq,

as desired.

For the uniqueness part, consider any allocation rule f on GPN 1 satisfying (E), (A), (A3),

(A4) and (A1). To show: f “ P . Choose any pN, v,ěq P GPN 1 . We have:

fpN, v,ěq
pAq
“

ÿ

HĹSĎN

fpN,∆SpvquS ,ěq.

Thus, it is enough to show that, for each nonempty S Ď N , fpN,∆SpvquS ,ěq “ P pN,∆SpvquS ,ěq.

Consider any such coalition S. Each i P NzS is null in pN,∆SpvquSq, so that fipN,∆SpvquS ,ěq “ 0

by Proposition 1. Next, if i P SzMpS,ěq, then there exists j P S such that j ą i. We have:

fipN,∆SpvquS ,ěq
pA3q
“ fipNzj,∆SpvquS ,ěq “ fipNzj,0,ěq

pAq
“ 0,

where the last equality comes from the fact that (A) implies (NG).

It remains to prove that all agents in MpS,ěq receive the same payoff in pN,∆SpvquS ,ěq,

and we will conclude by (E). Notice that each member of MpS,ěq Ď S is a necessary agent in

pN,∆SpvquSq. As in Step 1 and Step 2 of the proof of Lemma 1, we construct an extension

pN,ěp2qq of pN,ěq, using only elementary extensions and such that MpS,ěq “MpS,ěp2qq and all

agents in MpS,ěq now have the same priority group on them in pN,ěp2qq. So, for any two agents

i and j in MpS,ěq, we get:

fipN,∆SpvquS ,ěq
pA4q
“ fi

`

N,∆SpvquS ,ě
p2q
˘ pA1q
“ fj

`

N,∆SpvquS ,ě
p2q
˘ pA4q
“ fjpN,∆SpvquS ,ěq,

as desired. Together with (E), conclude that:

fipN,∆SpvquS ,ěq “

$

&

%

∆Spvq

|MpS,ěq|
if i PMpS,ěq,

0 otherwise.

which is precisely PipN,∆SpvquS ,ěq and completes the proof. �
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The logical independence of the axioms can be demonstrated as follows:

• The null allocation rule satisfies all axioms except (E);

• The allocation rule f such that, for each pN, v,ěq and each i P N ,

fipN, v,ěq “
ÿ

SĎN :MpS,ěqQi

vpiq2 ` 1
ř

jPMpS,ěq

`

vpjq2 ` 1
˘∆Spvq

otherwise satisfies all axioms except (A);

• The allocation rule f such that, for each pN, v,ěq and each i P N , fipN, v,ěq “ vpNq{n

satisfies all axioms except (A3);

• The allocation rule f such that, for each pN, v,ěq and each i P N ,

fipN, v,ěq “
ÿ

SĎN :MpS,ěqQi

| Òě i| ` 1
ř

jPMpS,ěq

`

| Òě j| ` 1
˘∆Spvq

satisfies all axioms except (A4). To see this, consider the game with priority structure

pN, ut2,3,4u,ěq where N “ t1, 2, 3, 4u and where ě is described by 2 ě 4 and 3 ě 4. Hence,

the dividends of all coalitions are null except for coalition t2, 3, 4u for which it is 6. In this

initial situation, it is straightforward to compute that fpN, v,ěq “ p0, 3, 3, 0q. Now consider

the game with priority structure pN, ut2,3,4u,ě1Ñ2q. Since Òě 1 “ H and 1 is a null agent in

pN, ut2,3,4uq, the conditions required in (A4) are met. However, fpN, v,ě1Ñ2q “ p0, 4, 2, 0q ‰

fpN, v,ěq, as desired ;

• The allocation rule f such that, for each pN, v,ěq and each i P N ,

fipN, v,ěq “
ÿ

SĎN :MpS,ěqQi

ωi
ř

jPMpS,ěq ωj
∆Spvq

for some weight vector ω “ pωiqiPN P RN`` in which all coordinates are different satisfies all

axioms except (A1);

Another characterization of the Priority value can be obtained by substituting in the statement

of Proposition 2 the two axioms involving natural operations on the poset structure, namely Priority

agent out and Invariance to unproductive priority extension, by the Null agent out axiom and the

Necessary and priority agent axiom. The Null agent out axiom does not refer to the priority

structure whereas the Necessary and priority agent axiom indicates that a necessary agent imposes

a null payoff on the agents over which it has priority. Interestingly, the combination of Priority

agent out and Null Game implies the Necessary and priority agent axiom, whereas the combination

of Null agent out axiom and Efficiency implies Invariance to unproductive priority extension. These

results are collected in the following propositions.

Proposition 3. On the class of TU-games with a priority structure GPN 1 ,
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1. Priority agent out (A3) and Null game (NG) imply Necessary and priority agent axiom

(A2);

2. Null agent out axiom (NAO) and Efficiency (E) imply Invariance to unproductive priority

extension (A4).

Proof. Point 1. Consider any pN, v,ěq P GPN 1 and any necessary agent i in pN, vq and any

agent j PÓě i over which i has priority. Because i is a necessary agent in pN, vq, the subgame

pNzi, vq is the null game. We have

fjpN, v,ěq
pA3q
“ fjpNzi, v,ěq “ fjpNzi,0,ěq

pNGq
“ 0,

which shows that f satisfies the (A2).

Point 2. Consider any pN, v,ěq P GPN 1 and two incomparable agents i and j in pN,ěq such

that i and each agent k PÒě i in the priority group on i are null agents in pN, vq. Note that

pNz piY Òě iq ,ěq coincides with pNz piY Òě iq ,ěiÑjq. Therefore, for any ` P Nz piY Òě iq, it

holds that:

f`pN, v,ěq
pNAOq
“ f`ppNz piY Òě iq , v,ěqq “ f`ppNz piY Òě iq , v,ěiÑjqq

pNAOq
“ f`pN, v,ěiÑjq.

Furthermore, (NAO) and (E) imply (N), so that:

@k P piY Òě iq , fkpN, v,ěq “ 0 “ fkpN, v,ěiÑjq.

Conclude that fpN, v,ěq “ fpN, v,ěiÑjq, which shows that f satisfies (A4). �

Proposition 4. The Priority value P is the unique allocation rule on GPN 1 satisfying Efficiency

(E), Additivity (A), the Null agent out axiom (NAO), the Necessary and priority agent axiom

(A2), and Equal treatment for necessary agents with equal priority group (A1).

Proof. By Proposition 2, we already know that P satisfies (E), (A) and (A1). Because P is

a Harsanyi solution, it also satisfies (NAO). It remains to show that P satisfies (A2). To this

end, consider any pN, v ěq P GPN 1 and any two distinct agents i, j P N such that j PÒě i and j is

necessary in pN, vq. Thus, if a coalition S contains both i and j, agent i cannot belong to MpS,ěq

since j ą i. It follows that:

PipN, v,ěq “
ÿ

SĎN :MpS,ěqQi

∆Spvq

|MpS,ěq|
“

ÿ

SĎNzj:MpS,ěqQi

∆Spvq

|MpS,ěq|
.

Because j is a necessary agent in pN, vq, it also holds that ∆Spvq “ 0 whenever j P NzS (see

Remark 1). This implies that:

ÿ

SĎNzj:MpS,ěqQi

∆Spvq

|MpS,ěq|
“ 0,
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and so PipN, v,ěq “ 0, proving that P satisfies (A2).

For the uniqueness part, consider any allocation rule f on GPN 1 satisfying (E), (A), (NAO),

(A2) and (A1). To show: f “ P . Choose any pN, v,ěq P GPN 1 . As in the proof of Proposition

2, (A) implies that it is enough to prove that, for each nonempty coalition S, fpN,∆SpvquS ,ěq “

P pN,∆SpvquS ,ěq. Consider any such S. Each i P NzS is null in pN,∆SpvquSq. The combination

of (NAO) and (E) implies (N), which rewards 0 each null agent. Because each i P NzS is null in

pN,∆SpvquSq, we get fipN,∆SpvquS ,ěq “ 0 for each i P NzS. We also have:

@i P S, fipN,∆SpvquS ,ěq
pNAOq
“ fipS,∆SpvquS ,ěq.

In the TU-game pS,∆SpvquSq, all agents are necessary. In case MpS,ěq “ S, then for each

i P SzMpS,ěq, there is j PMpS,ěq such that j PÒě i. Therefore:

@i P SzMpS,ěq, fipS,∆SpvquS ,ěq
pA2q
“ 0.

Finally, consider the priority agents in MpS,ěq. In pS,∆SpvquS ,ěq, they obviously have the same

(empty) priority group on them. Thus, by (A1) and (E), we get:

@i PMpS,ěq, fipS,∆SpvquS ,ěq “
∆Spvq

|MpS,ěq|
.

All in all, we have reached the desired result f “ P , which completes the proof. �

The logical independence of the axioms can be demonstrated as follows:

• The null allocation rule satisfies all axioms except (E);

• The allocation rule f such that fpN, v,ěq “ P pN, v,ěq if pN, vq contains at least one neces-

sary agent and fpN, v, Sq “ ShpN, vq otherwise satisfies all axioms except (A);

• The allocation rule f such that, for each pN, v,ěq, fipN, v,ěq “ vpNq{|MpN,ěq| if i P

MpN,ěq and 0 otherwise satisfies all axioms except (NAO);

• The allocation rule f such that fpN, v,ěq “ ShpN, vq satisfies all axioms except (A2);

• The allocation rule f such that, for each pN, v,ěq and each i P N ,

fipN, v,ěq “
ÿ

SĎN :
minjPMpS,ěq j“i

∆vpSq.

satisfies all axioms except (A1).

We now detail the application of the Priority value to three particular structures.
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The trivial poset

In case the priority structure is the trivial poset pN,ě0q P PN , then, for each nonempty S Ď N ,

MpS,ě0q “ S. It follows that the Priority value coincides with the Shapley value: for each i P N ,

we have

PipN, v,ě
0q “

ÿ

SĎN :MpS,ě0qQi

∆Spvq

|MpS,ě0q|
“

ÿ

SĎN :SQi

∆Spvq

s
“ ShipN, vq.

The Priority value can thus be viewed as a generalization of the Shapley value.

The outward pointing partial order

Consider now the case where the Hasse diagram of the priority structure pN,ě˚q P PN , n ě 2,

is shaped as a star. Precisely, there is an agent r P N such that i ą˚ j if and only if i “ r. For

each S Q r, MpS,ě˚q “ tru. Note that the subposet pNzr ě˚q is the trivial order so that for each

S Ď Nzr, MpS,ě˚q “ S. Therefore, by definition of the Priority value,

@i P Nzr, PipN, v,ě
˚q “

ÿ

SĎN :MpS,ě˚qQi

∆Spvq

|MpS,ě˚q|

“
ÿ

SĎNzr:MpS,ě˚qQi

∆Spvq

|MpS,ě˚q|

“
ÿ

SĎNzr:SQi

∆Spvq

s

“ ShipNzr, vq.

By Efficiency of the Shapley value, we have:

ÿ

iPNzr

ShipNzr, vq “ vpNzrq,

so that, by Efficiency of the Priority value, the unique top agent r gets its contribution to the

grand coalition N , that is,

PrpN, v,ě
˚q “ vpNq ´ vpNzrq.

The linear order

Consider the situation where the priority structure pN,ěq P PN is a linear order. Without loss

of generality, set N “ t1, . . . , nu, n ě 2, and for each i P t1, . . . , n ´ 1u, i ą i ` 1. The Hasse

diagram of pN,ěq is shaped like a line where agent 1 is the unique priority agent. Consider first

the lowest priority agent n. By using repeatedly Priority agent out, we get:

PnpN, v,ěq “ PnpNz1, v,ěq “ PnpNzt1, 2u, v,ěq “ ¨ ¨ ¨ “ Pnptn, n´ 1u, v,ěq “ Pnptnu, v,ěq,

By Efficiency applied to ptnu, v,ěq, we deduce that PnpN, v,ěq “ vpnq. Next, consider agent n´1.

Proceeding in a similar way, we have:

Pn´1pN, v,ěq “ Pn´1pNz1, v,ěq “ PnpNzt1, 2u, v,ěq “ ¨ ¨ ¨ “ Pn´1ptn, n´ 1u, v,ěq.
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By Efficiency of the Priority value, we also have:

Pn´1ptn, n´ 1u, v,ěq ` Pnptn, n´ 1u, v,ěq “ vptn, n´ 1uq,

and, by the previous step,

Pnptn, n´ 1u, v,ěq “ Pnptnu, v,ěq “ vpnq.

Therefore, we get:

Pn´1pN, v,ěq “ vptn, n´ 1uq ´ vpnq.

Proceeding inductively from n to 1, we conclude that the Priority value applied to a linear order

coincides withe the so-called downward marginal vector mσd
where σdpiq “ n ´ i ` 1 for

i P t1, . . . , n ´ 1u. Furthermore, given the above reasoning, we obtain that the Priority value is

characterized by Efficiency and Priority agent out on the subdomain where the priority structures

are linear orders. This result is summarized below.

Proposition 5. On the subdomain of GPN 1 where the priority structures pN,ěq are linear orders,

the Priority value P is the unique allocation rule satisfying Efficiency (E) and Priority agent out

(A3), and it coincides with the downward marginal vector mσd
:

P pN, v,ěq “ mσd
pN, vq.

The downward marginal vector as been successfully applied to river games and sequencing

games by van den Brink et al. (2007). Nevertheless, it should be stressed that van den Brink et al.

(2007) apply the downward marginal vector to the Myerson restricted-game (Myerson, 1977) on

situations where the Hasse diagram of the priority structure is partitioned into several components

tCp : p “ 1, . . . , cu, where each subposet pCp,ěq of pN,ěq is a linear order.1 Thus, in case the

priority structure has several components, that is c ą 1, their allocation rule is different from

ours because it computes the downward marginal vector on each (sub)linear order pCp,ěq of the

priority structure, meaning that their allocation rule is Component efficient whereas the Priority

value is Efficient. They characterize their allocation rule by using Component efficiency and Lower

equivalence. The latter axiom indicates that deleting the priority relation between agent i and

agent i ` 1 does not affect the payoff of i ` 1 and all the agents over which it has priority in the

component. Lower equivalence and Priority agent out have the same flavor. The difference between

both axioms is that Lower equivalence means that the payoff of an agent does not depend on the

presence of “upward” priority relations while Priority agent out indicates that the payoff of an agent

does not depend on the presence of “upward” agents. However, the combination of Component

efficiency and Priority agent out yields a characterization of the allocation rule proposed by van

den Brink et al. (2007) on the corresponding domain with a variable agent set.

1van den Brink et al. (2007) use a different formalism: the structure is represented by a collection of directed

graphs, where each of these graphs is shaped as a directed line.
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5. Comparison with other models and allocation rules

Two other prominent models use a poset to model the relations among the agents: cooperative

games with a permission structure introduced by Gilles et al. (1992) and cooperative games under

precedence constraints introduced by Faigle and Kern (1992). In this section, we compare the

Priority value with the Permission value for cooperative games with a permission structure and

with the Precedence Shapley value for cooperative games under precedence constraints.

5.1. Cooperative games with a permission structure

Gilles et al. (1992) consider situations where cooperation between agents in a cooperative TU-

game pN, vq P GN is influenced by a hierarchical structure represented by a directed graph on N .

In case the directed graph is acyclic these situations can be represented by a poset pN,ěq P PN ,

called a permission structure, and the triple pN, v,ěq is a TU-game with a permission structure.

In this model, the permission structure affects the possibilities of cooperation between the agents

in the sense that each agent needs permission from all its superiors to cooperate, where the set of

superiors of agent i corresponds to the priority group on i in our model. The relation ě determines

how coalitions are evaluated: a coalition is called feasible if for each member of this coalition all

its superiors are also in the coalition. Therefore, a coalition S is feasible if it satisfies the following

permission constraints: for each agent i P S, j ě i implies j P S. For each coalition S, the interior

σěpSq of S, also called the sovereign part of S, is the greatest – with respect to set inclusion –

feasible subcoalition of S:

σěpSq “ Sz

ˆ

ď

jPNzS

Óě j

˙

.

The closure αěpSq of a coalition S, also called the authorizing part of S – is the smallest feasible

coalition containing S:

αěpSq “ S Y

ˆ

ď

iPS

Òě i

˙

.

Thus, a coalition S is feasible if and only if coincides with its interior σěpSq and its closure αěpSq.

Gilles et al. (1992) introduce a restricted game pN, věq P GN which assigns to each coalition

the worth of its interior:

@S Ď N, věpSq “ vpσěpSqq.

van den Brink and Gilles (1996) define the Permission value ρ as the allocation rule that assigns

to each TU-game with a permission structure pN, v,ěq the Shapley value of its restricted game

pN, věq:

ρpN, v,ěq “ ShpN, věq.

By definition of the closure and the interior of a coalition S, we have:

@S, T Ď N,
“

S Ď σěpT q
‰

ðñ
“

αěpSq Ď T
‰

, and so uSpσěpT qq “ uαěpSqpT q.

From this and the definition of the Shapley value, the Permission value can be rewritten as:

@i P N, ρipN, v,ěq “
ÿ

SP2N :αěpSqQi

∆Spvq

|αěpSq|
.
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There are two major differences with our model. First, in our model all coalitions are feasible,

the priority structure only comes into play in the process of allocating the Harsanyi dividend of

each coalition and not in the evaluation of a coalition. Second, the Priority value is a Harsanyi

solution, as defined in (2), while the Permission value is not. The Permission value distributes the

Harsanyi dividend of each coalition equally within its authorizing set and so possibly outside the

coalition itself.

van den Brink and Gilles (1996, Theorem 4.4) provide an axiomatic characterization of the

permission value in terms of Efficiency, Additivity, the Strongly Inessential agent axiom, Strongly

inessential relational axiom, Structural monotonicity, and the Necessary agent axiom. Strongly

Inessential agent axiom indicates if a null agent has no subordinates (the agents over whom it has

priority in our model), then it obtains a null payoff. Strongly inessential relational axiom indicates

that the deletion of a null agent with no subordinates does not affect the payoff of the remaining

agents. Structural monotonicity states that in a monotone TU-game, an agent earns a least as

much as their successors.2 Finally, the Necessary agent axiom indicates that any necessary agent

earns as least as much as any other agents in a monotone TU-game.

The Priority value satisfies the Strongly Inessential agent axiom because it satisfies the stronger

Null agent axiom by Proposition 1 and Proposition 2. The Priority value also satisfies the Strongly

inessential relational axiom because, by Proposition 4, it satisfies the stronger Null agent out axiom.

On the other hand, the Priority value satisfies neither the Necessary agent axiom nor Structural

monotonicity. It does not satisfy the Necessary agent axiom because the later implies that two

necessary agents obtain the same payoff in a monotone TU-game. Under the Priority value, two

necessary agents do not necessary earn the same payoff in a monotone TU-game, unless they share

the same priority group on them by the Necessary and priority agent axiom and Proposition 4. To

see that the Priority value violates Structural monotonicity, consider the following example.

Example 3. Assume that the members of N “ t1, 2, 3u are linearly ordered as follows: 1 ą 2 ą 3;

and that the monotone TU-game pN, vq is given by vpNq “ 3, vpSq = 2 if |S| “ 2, and vpSq “ 0 if

|S| “ 1. Because pN,ěq is a linear order, by Proposition 5, the Priority value coincides with the

downward marginal vector mσd
. Even if 1 ą 2, we have mσd

1 pN, v,ěq “ vpNq´vpt2, 3uq “ 1 which

is strictly less that mσd

2 pN, v,ěq “ vpt1, 2uq ´ vpt1uq “ 2. l

For a detailed survey on the Permission value and its applications, we refer the reader to van

den Brink (2017) who presents the alternative disjunctive and local restricted games.

5.2. Cooperative games under precedence constraints

Faigle and Kern (1992) introduce TU-games under precedence constraints represented by a

triple pN, v,ěq where pN,ěq is a poset. They consider that the relation i ě j means that the

presence of i enforces the presence of j in a coalition, and that the poset determines how coalitions

form. Thus, and unlike in TU-games with permission structures, certain coalitions are not allowed

to form in TU-games under precedence constraints. In this model, the coalition function v is defined

2An agent j is a successor of i in pN,ěq if i ą j and there is not other ` P Nzti, ju such that i ą ` ą j.
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on the restricted domain Dě Ď 2N which is the set of coalitions such that for any agent in the

coalition all its successors with respect to pN,ěq also belong to this coalition. That is, S P Dě if

for each i P S, i ě j implies j P S. In a more formal way, Dě is the collection of downsets of

pN,ěq defined as

Dě “
 

S Ď N : @i P S, Óě i Ď S
(

,

and forms a lattice of sets endowed with set inclusion, meaning that Dě is closed under union and

intersection.3

Example 4. Consider the poset pN ěq given in Example 1. The collection of downsets is

Dě “
 

t9u, t10u, t8, 9, 10u, t7, 9u, t6, 7, 8, 9, 10u
(

and the corresponding Hasse diagram of pDě,Ďq

is represented by the Figure 3. l

N

t7, 9u t8, 9, 10u

t9u t10u

H

Figure 3: The lattice pDě,Ďq.

In short a TU-game under precedence constraints is a triple pN, v,ěq where pN,ěq is a

poset and pN, vq a TU-game such that v : Dě ÝÑ R. Faigle and Kern (1992) introduce a Shapley-

like value for TU-game under precedence constraints by restricting the set of orderings OpNq to

the subset of orderings OěpNq compatible with pN,ěq:

OěpNq “
 

σ P OpNq : σpiq ą σpjq if i ą j
(

.

Given a TU-game under precedence constraints pN, v,ěq, the precedence Shapley value φ is

defined as:

@i P N, φipN, v ěq “
1

|OěpNq|

ÿ

σPOěpNq

mσ
i pN, vq “

ÿ

SPDě:SQi

hS,ipN,ěq
ř

jPS hS,jpN ěq
∆Spvq,

where hS,ipN,ěq is called the hierarchical strength of i in S an is given by the number of

orderings in OěpNq where agent i P S enters after the agents in Szi.

Once again, there are two major differences with our model. The first one is that here certain

coalitions are not allowed to form. Second, if we concentrate the analysis on a downset S, the

3In a dual way, this is also true for the set of feasible coalitions in the model of Gilles et al. (1992).
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allocation rule φ distributes the Harsanyi dividend ∆Spvq among the priority agents in MpS,ěq but

proportionally to their hierarchical strength. Indeed, if there j such that j ą i, then hS,jpN,ěq “ 0.

In contrast, the Priority value P distributes ∆Spvq equally among the members of MpS,ěq. Of

course, in case pN,ěq is a linear order, the only one ordering compatible with pN,ěq is σd so that

φipN, v ěq “ mσd
pN, vq “ P pN,w,ěq

for any pN,wq P GN such that the subgame wDě induced by Dě coincides with v.

Faigle and Kern (1992) provide an axiomatization of the precedence Shapley value, using Ef-

ficiency, Linearity (Additivity plus Homogeneity of degree 1), the Null agent axiom and the Hier-

archical strength axiom. The latter stipulates that, in a unanimity game on a downset S, agents

in S are rewarded according to their relative hierarchical strengths. As noted above, the Priority

value does not satisfies this principle, but satisfies Linearity and the Null agent axiom. For more

information on cooperative games under precedence constraints and their solutions, see Algaba

et al. (2017).

Below is a numerical example that captures the differences between the three allocation rules

discussed in this section.

Example 5. For the poset given in Example 1, the set of feasible orderings is

OěpNq “
 

p10, 9, 8, 7, 6q, p9, 10, 8, 7, 6q, p10, 9, 7, 8, 6q, p9, 10, 7, 8, 6q, p9, 7, 10, 8, 6q
(

where, for the sake of simplicity, p10, 9, 8, 7, 6q means that agent 10 is ranked first, and so on.

Consider the unanimity TU-game on the downset S “ t7, 8, 9, 10u P Dě, the hierarchical strengths

are hS,9pN,ěq “ hS,10pN,ěq “ 0 and hS,7pN,ěq “ 2 and hS,8pN,ěq “ 3. We also have σěpSq “ H

and αěpSq “ N so that puSqě “ uN . Finally, MpS,ěq “ t7, 8u. Therefore, with a slight abuse of

notation,

P pN, uS ,ěq “

ˆ

0,
1

2
,
1

2
, 0, 0

˙

, φpN, uS ,ěq “

ˆ

0,
2

5
,
3

5
, 0, 0

˙

, and ρpN, uS ,ěq “

ˆ

1

5
,
1

5
,
1

5
,
1

5
,
1

5

˙

.

l

Remark 4. If pN,ěq is the trivial poset, then Dě “ 2N , σpSq “ S and MpS,ěq “ S for any
coalition S, so that:

P pN, v,ěq “ ρpN, v,ěq “ φpN, v,ěq “ ShpN, vq.

This means that the Priority value P , the Permission value ρ and the Precedence Shapley value φ
are generalizations of the Shapley value.

6. Applications

6.1. Queueing problems

A finite set of agents N Ď N of size n stands to receive a service from a facility that can handle

only one agent at time. Each agent i P N is characterized by its unitary waiting cost θi ě 0.
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Each agent is assigned a position σpiq P t1, . . . , nu in a queue and receives a transfer (positive or

negative) ti P R. If agent i is served in the σpiqth position, then its waiting cost is ´pσpiq ´ 1qθi.

Utility is linear in position and transfer, that is:

uipσi, ti | θiq “ ´pσpiq ´ 1qθi ` ti,

where ti ą 0 means that i receives a compensation from the other agents, and ti ă 0 means that i

has to pay that amount as compensation to other agents.

A queueing problem Q is a pair pN, θq, where N is a finite set of agents and θ “ pθiqiPN is

a list of waiting costs. Given Q “ pN, θq, a feasible allocation is a pair pσ, tq where σ P OpNq is

an ordering, representing a queue, on N and t “ ptiqiPN is a list of transfers such that
ř

iPN ti ď 0.

An allocation is optimal if σ minimizes the total waiting costs and t is budget balanced, that is:

σ P arg min
σ1POpNq

ÿ

iPN

pσ1piq ´ 1qθi, and
ÿ

iPN

ti “ 0.

It is known that an optimal queue σ serves agents in the non-increasing order of waiting costs and

that any queue with this property is optimal. In particular, if all unitary waiting costs are different,

there is a unique optimal queue. If two agents have identical unitary waiting costs, these agents are

served consecutively but in any order. An allocation rule f associates to each queueing problem

Q “ pN, θq a non-empty subset fpQq of optimal allocations.

Maniquet (2003) solves queueing problems by treating them as TU-games. Given a queueing

problem Q “ pN, θq, he introduces the corresponding TU-game pN, vQq where the worth of each

coalition S is given by its optimal total waiting costs under the optimistic assumption that they

are served before agents in NzS:

@S Ď N, vQpSq “ ´
ÿ

iPS

pσSpiq ´ 1qθi,

where σS P OpSq is an optimal queue for the subproblem pS, pθiqiPSq.

Maniquet (2003, Lemma 1) provides an expression of the Shapley value applied to pN, vQq. To

compute the Shapley value of the optimistic queueing TU-game pN, vQq, it should be noted that

the Harsanyi dividend of any coalition S of size s “ 2 is equal to zero and the Harsanyi dividend of

a coalition S of size 2 is equal to the minimum between the unitary waiting costs of its members.

Formally,

∆Spvq “

#

´mintθi : i P Su if |S| “ 2,

0 otherwise.
(6)

From this, it easy to compute the Shapley value viewed as the Harsanyi solution which dis-

tributes equally the dividend of each coalition to its members:

@i P N, ShipN, vQq “ ´pσpiq ´ 1q
θi
2

´
ÿ

jPN :σpjqąσpiq

θj
2
.

Therefore, each agent pays half of its waiting cost in an optimal queue plus half of the unit waiting

cost of each agent placed behind it in that queue. Now, assume that the allocation pσ, tq for the
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queueing problem Q “ pN, θq is such that each agent’s utility is equal to its Shapley value in

pN, vQq. Then, the transfers are given by:

@i P N, ti “ upσi, ti | θiq ` pσpiq ´ 1qθi

“ ShipN, vQq ` pσpiq ´ 1qθi

“ pσpiq ´ 1q
θi
2

´
ÿ

jPN :σpjqąσpiq

θj
2
. (7)

Moreover, the allocation pσ, tq is an optimal allocation. In particular, the fact that t is budged

balanced comes from the Efficiency of the Shapley value. One can remark that each agent’s transfer

does not depend on the unitary waiting costs of agents preceding it in an optimal queue. Therefore,

an increase in agent’s unitary waiting cost should not affect the agents following it in an optimal

queue. Maniquet (2003, Theorem 1, see also Chun, 2016) uses this property together with a prin-

ciple of efficiency, a principle of equal treatment of equals and a principle of Pareto indifference to

characterize the allocation rule f which selects all the allocations assigning to the agents utilities

the Shapley value of the corresponding TU-game.

Now, we consider queueing problems with priority structure as a triplet pN, θ,ěq, where

pN, θq is a queueing problem and pN,ěq is a poset. The relation i ě j still means that agent i

has priority over agent j. However, in the context of a cost sharing problem, this priority should

translate into a larger share of the total cost to i than to j, all other things being equal. In other

words, the total waiting costs must be allocated as a priority to i rather than j.

For a given i P N , denote by Iěpiq the set of incomparable agents with i in pN,ěq. Consider the

optimistic queueing TU-game endowed with the corresponding priority structure pN, vQ,ěq. The

following proposition shows that the Priority value is a very natural solution which can be easily

compared to the Shapley value. For each pair of agents, the Shapley value distributes equally the

minimal unit waiting cost among them whereas the Priority value takes into account their relative

priority, i.e. which has priority in assuming this minimal unit waiting cost. Precisely, if one agent

has priority over another agent, then it fully pays the minimal unit waiting cost. Otherwise, the

distribution is not impacted. Furthermore, each agent’s transfer computed with respect to the

Priority value does not depend on the unitary waiting costs of agents preceding it in an optimal

queue nor of agents having priority on it (whether they are preceding it in an optimal queue or

not).

Proposition 6. Consider the queueing problem with a priority structure pN, θ,ěq and the cor-

responding optimistic queueing TU-game with priority structure pN, vQ,ěq. Then, the Priority

value is given by: for each i P N ,

PipN, vQ,ěq “ ´ θi

˜

ˇ

ˇtj P N : σpjq ă σpiq& i ě j
(

| `

ˇ

ˇtj P N : σpjq ă σpiq& j P Iěpiqu
ˇ

ˇ

2

¸

´
ÿ

jPN :σpjqąσpiq
iěj

θj ´
ÿ

jPN :σpjqąσpiq
jPIěpiq

θj
2

(8)
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Consequently, the associated transfer is equal to

ti “ θi

˜

ˇ

ˇtj P N : σpjq ă σpiq& j ě i
(

| `

ˇ

ˇtj P N : σpjq ă σpiq& j P Iěpiqu
ˇ

ˇ

2

¸

´
ÿ

jPN :σpjqąσpiq
iěj

θj ´
ÿ

jPN :σpjqąσpiq
jPIěpiq

θj
2

(9)

Proof. Pick an agent i P N . The Harsanyi dividends shown in (6) only involve coalitions of size

2. Thus, to compute the Priority value for each agent i P N , we only have to consider coalitions

S “ ti, ju for j P Nzi in (5). Now, we have four cases: either Mpti, ju,ěq “ tiu, that is i ě j,

or Mpti, ju,ěq “ ti, ju, that is j P Iěpiq; and either mintθi, θju “ θi, that is σpjq ă σpiq, or

mintθi, θju “ θj , that is σpjq ą σpiq. Each case gives rise to the four parts of the right hand side

of (8). �

Example 6. Consider the queueing problem with priority structure pN, θ,ěq such that ě is a

linear order. Without loss of generality, suppose 1 ě 2 ě . . . ě n, and take an optimal queue σ.

Because there is no pair of incomparable agents, the transfers corresponding to the Priority value

(8) simplify to:

ti “ θi
ˇ

ˇ

 

j P N : σpjq ă σpiq& j ě i
(ˇ

ˇ ´
ÿ

jPN :σpjqąσpiq
iěj

θj . (10)

This formula can be implemented through the following transfer mechanism. From the optimal

queue pσp1q, . . . , σpnqq, we sort the agents according to the bubble sort algorithm that runs as

follows. Starting from the first pair of consecutive agents in the queue, it compares and swaps

them if they are in the wrong order with respect to the linear priority structure pN,ěq. The swap

gives rise to a transfer between them: the agent which moves to the front position obtains the other

agent’s unit waiting cost. This operation is repeatedly applied to the newly obtained queue up to

the last pair of consecutive agents. Then, the procedure restarts from the first pair of consecutive

agents along the newly created queue and goes on until it coincides with the priority structure

pN,ěq. The overall transfers paid or received by an agent are equal to the transfer given by (10).

For instance, set n “ 4, so that 1 ě 2 ě 3 ě 4, and σ “ p3, 1, 4, 2q. The resulting optimal queue

and the bubble sort mechanism are represented below in Figure 4. In a situation where the optimal

queue and the priority ordering are very different and necessitate important transfers between the

agents, the bubble sort algorithm can be considered as a gradual regime change. In the first step,

agent 3 and 1 swap positions since agent 1 has priority over 3 in assuming a larger share of the total

waiting costs. A first transfer from 1 to 3 corrects the gap between the position of 1 in the queue

and the position it occupies in the order of payment priorities. The new ordering that is obtained

is one step closer to the priority ordering. Two additional swaps with similar interpretations are

further needed to match the priority ordering. l

6.2. Bankruptcy problems

A bankruptcy problem B “ pN,E, cq is described by a set of creditors N , an estate E ą 0

and a vector of nonnegative claims c “ pciqiPN such that E ă
ř

iPN ci. Bankruptcy problems can
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4

`θ3

´θ3

`θ4

´θ4

`θ3

´θ3

t1 “ ´θ3

t2 “ ´θ3 ´ θ4

t3 “ 2θ3

t4 “ θ4

Figure 4: Computation of transfers using the bubble sort mechanism

be apprehended by cooperative games. O’Neill (1982) introduces the classical bankruptcy game

pN, vBq associated with B such that, for each S Ď N ,

vBpSq “ max

"

0;E ´
ÿ

iPNzS

ci

*

,

in which each coalition S gets either zero or what remains of the estate once the other creditors have

obtained their claims. Alternatively, a bankruptcy problem can be studied without introducing

cooperative games. As an example, Moulin (2000) characterizes the so-called priority rules, in which

the individual claims are satisfied according to an exogenous ordering of the agents until the estate

is exhausted; the remaining agents getting nothing. Formally, for an ordering pσp1q, . . . , σpnqq,

the interpretation is that agent i has priority over agent j if σpiq ă σpjq. The priority rule

associated with σ is the payoff vector yσpBq defined as follows. Beforehand, compute the unique

rank r˚ P t1, . . . , nu such that

r˚´1
ÿ

k“1

cσ´1pkq ď E ă
r˚
ÿ

k“1

cσ´1pkq.

Then,

yσi pBq “

$

’

&

’

%

ci if σpiq P t1, . . . , r˚ ´ 1u,

E ´
řr˚

k“1 cσ´1pkq if σpiq “ r˚,

0 if σpiq P tr˚ ` 1, . . . , nu.

Each agent with a rank lower than r˚ gets its full claim, the agent at rank r˚ gets what remains

of E and the other agents get nothing.

Now, we consider bankruptcy problems with priority structure as a pair pB,ěq, where

ě is a priority structure on N . In this framework, we would like to construct a cooperative game

which takes the priority structure into account in the most natural way. In order to do so, for each

coalition S Ď N , define the priority group on S as

PěpSq “

ˆ

ď

iPS

Òě i

˙

z

ˆ

S Y

ˆ

ď

iPS

Óě i

˙˙

.
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These are the agents outside S which have priority over a member of S but on which no-one in S

has priority. The bankruptcy game with priority structure pN, vě
Bq associated with pB,ěq is

such that, for each S Ď N ,

vě
BpSq “ max

"

0;E ´
ÿ

iPPěpSq

ci

*

.

In words, vě
BpSq is either zero or what remains of the estate once the agents having priority over

S have obtained their claims. Since PěpSq Ď NzS, note that vě
BpSq ě vBpSq, and of course

vě
BpNq “ vBpNq “ E. We show that if the Priority value is applied to the game pN, vě

Bq associated

with a linear order ě, then it coincides with a certain priority rule characterized in Moulin (2000):

claims are distributed in accordance with the linear priority order ě until the estate is exhausted.

Proposition 7. Consider the bankruptcy problems with priority claims pB,ěq such that ě is a

linear order. Then P pN, vě
Bq “ yσ

ě

pBq where σěpiq “ n´ | Óě i| for each i P N .

Before proving this result, note that an equivalent definition of σě is that σěpiq ă σěpjq if and

only if i ě j. In words, the rank of agent i is lower than the rank of agent j in the order σě if and

only if i has priority over j according to ě.

Proof. Assume that ě is a linear order. From Proposition 4, for each i P N , we already know

that PipN, v
ě
Bq can be written as vě

BppÓě iq Y iq ´ vě
BpÓě iq, so that it is enough to prove that

vě
BppÓě iq Y iq ´ vě

BpÓě iq “ yσ
ě

i pBq.

Since ě is a linear order, remark that PěppÓě iqY iq “ pÒě iq for each i P N . Hence, the definition

of vě
B yields that vě

BppÓě iqYiq “ maxt0;E´
ř

jPÒě i cju and vě
BpÓě iq “ maxt0;E´

ř

jPÒě i cj´ciu.

Now, we distinguish three cases depending on the position of i with respect to the rank r˚ used to

define yσ
ě

pBq.

Firstly, suppose that σěpiq P t1, . . . , r˚ ´ 1u. Then vě
BppÓě iq Y iq “ E ´

ř

jPÒě i cj and

vě
BpÓě iq “ E ´

ř

jPÒě i cj ´ ci, and so vě
BppÓě iq Y iq ´ vě

BpÓě iq “ ci “ yσ
ě

i pBq.

Secondly, suppose that σěpiq “ r˚. Then vě
BppÓě iq Y iq “ E ´

ř

jPÒě i cj and vě
BpÓě iq “ 0,

and so vě
BppÓě iq Y iq ´ vě

BpÓě iq “ E ´
ř

jPÒě i cj “ yσ
ě

i pBq. In this case, by definition of r˚, note

that 0 ď yσi pBq ă ci.

Thirdly, suppose that σěpiq P tr˚ ` 1, . . . , nu. Then vě
BppÓě iq Y iq “ vě

BpÓě iq “ 0, and so

vě
BppÓě iq Y iq ´ vě

BpÓě iq “ 0 “ yσ
ě

i pBq. This completes the proof. �

7. Conclusion

The approach developed in this article can be extended potentially in two directions.

Firstly, other sharing systems that the one used in the Priority value can be design from

the priority structure for distributing the Harsanyi dividends. As an example, the dividend of a
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coalition S can be shared in proportion to the number of agents over which each member of S has

priority in S, including it. That is, for each pN, v,ěq and each i P N ,

fipN, v,ěq “
ÿ

SĎN :SQi

|pÓěS iq Y i|
ř

jPS |pÓěS jq Y j|
∆vpSq.

Secondly, the absence of constraint imposed on both the formation and the evaluation of coali-

tion can be replicated to the class of TU-games enriched by a graph as proposed by Myerson (1977).

In that context, the Harsanyi dividend of each coalition S would be distributed to its members by

using a sharing system determined from the subgraph induced by S. Such a system can rely on

the number of neighbors in the subgraph induced by S or any popular centrality measure applied

to this subgraph (see Bloch et al., 2017, for instance).

These lines of research are left for future works.
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