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Abstract

In a weighted voting game, each voter has a given weight and a coalition of voters
is successful if the sum of its weights exceeds a given quota. Such voting systems
translate the idea that voters are not all equal by assigning them different weights.
In such a situation, two voters are symmetric in a game if interchanging the two
voters leaves the outcome of the game unchanged. Two voters with the same weight
are naturally symmetric in every weighted voting game, but the converse statement
is not necessarily true. We call this latter type of scenario inconsistent weighting.
We investigate the conditions that give rise to such a phenomenon within the class
of weighted voting games. We also study how the choice of the quota and the total
weight can affect the probability of observing inconsistent weighting. Finally, we
investigate various applications where inconsistent weighting is observed.

JEL classification: C7, D7
Keywords: Weighted voting games, symmetric voters, inconsistent weighting,
probability.

1 Introduction

The class of weighted voting games is an important class of cooperative games, widely
used for many important real-world social choice problems in political and economic life.
They are particularly relevant for representing and studying electoral bodies in which the
voters have different weights. A typical example is parliamentary voting, where voters are
parties, and the weight of each voter is the number of votes it controls. More precisely, in
weighted voting games, each voter is assigned a non-negative weight and makes a binary
yes/no decision on some particular issue; a voting procedure among the members of the
electoral body is then used to either accept or reject the resolution: the decision is carried
if the sum of weights of voters in favor of it meets or exceeds some specific given threshold,
called the quota.

∗Mostapha Diss would like to acknowledge financial support from Université de Lyon (project INDEPTH
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In weighted voting games, the use of weights is intended to capture the relative im-
portance of each voter in the electoral body under consideration. In other words, it is
often recognized that if voters are given different amounts of weights, then a greater vot-
ing weight should translate into greater influence in the voting process. For instance,
the distribution of seats of each member state within the European Parliament has been
established and modified according to the various European Union treaties following the
adherence of new members (or withdrawal of a member such as the UK’s recent with-
drawal) and demographic changes. The distribution of seats is not proportional to each
state’s population; however, it is stated that it should take into account the population of
member states and follows the principle of decreasing proportionality, which means that
states that are bigger in terms of population should have more seats than smaller states,
with a minimum level of representation for those states. This principle can be compared
to the composition of the Electoral College that is formed for the purpose of electing the
President of the United States of America.

It is well known that two voters with the same weight are symmetric in the resulting
game in the sense that interchanging the two voters in any coalition of voters does not
alter the ability of the coalition to pass a decision. However, the weights of the voters do
not always indicate the influence the voter has in affecting decisions. In other words, the
importance of voters is not necessarily proportional to their weights, and this may lead
to a situation in which two voters with different weights are symmetric. As an example,
consider an electoral body with three voters, 1, 2, and 3 having respectively 50, 30, and
20 seats and suppose that a decision is carried if a coalition of voters in favor of it controls
a simple majority of the votes, i.e., it should have at least 51 votes. Such a coalition is
called a winning coalition. Voters 2 and 3 are clearly symmetric despite the fact that they
have different weights: each of these voters does not form a winning coalition alone and
forms a winning coalition together with voter 1. Based on this observation, we investigate
this kind of scenario that we refer to as inconsistent weighting in the class of weighted
voting games.

We obtain analytical, numerical, and empirical results. Proposition 1 characterizes
symmetric voters with unequal weights while Proposition 3 shows that a weighted voting
game is not altered by swapping the possibly unequal weights of two symmetric voters.
Proposition 6 reveals that the presence of symmetric voters in a weighted voting game
is always compatible with both consistent and inconsistent weighting. In Propositions 7
and 9, we provide sufficient conditions for consistent weighting and inconsistent weighting,
respectively. In particular, weighted voting games with three or four voters are always
inconsistent if weights are all different, a frequent situation in some applications, as we
underline with the case of French public inter-municipality cooperation establishments.
Our numerical results calculate the probability of inconsistent weighting as a function of
the choice of the quota and the total weight of voters. These results highlight the following
phenomena: the probability of inconsistent weighting is increasing in the total weight and
tends towards 1 very quickly, it is symmetric around a quota corresponding to simple
majority, and it seems to increase when the number of voters increases. Propositions
11 and 12 deal with games with two and three voters when the total weight is finite,
while Propositions 14 to 16 analyze games with 2 to 5 voters when the total weight tends
to infinity. On top of the French public inter-municipality cooperation establishments,
we emphasize inconsistent weighting in other applications such as the French association
“Union Technique de l’Electricité” and the Ankara international agreement signed in 1963
between the European Community and Turkey.

Numerous research articles analyze weighted voting games in various theoretical set-

2



tings (e.g., de Keijzer et al., 2010, Freixas and Molinero, 2010, 2009, Freixas and Zwicker,
2003, Kurz, 2012, Taylor and Zwicker, 1992). Weighted voting games have also been con-
sidered in many empirical applications, including for instance the Council of the European
Union (e.g., Algaba et al., 2007, Bilbao et al., 2002, Felsenthal and Machover, 2004, Lane
and Maeland, 2000, Laruelle and Widgren, 1998, Leech, 2002a), the Electoral College of the
United States of America (e.g., Leech, 1992, Mann and Shapley, 1960), the International
Monetary Fund (e.g., Alonso-Meijide, 2005, Leech, 2002b), the U.N. Security Council (e.g.,
O’Neill, 1996, Strand and Rapkin, 2010), joint stock companies where each shareholder
gets votes in proportion to the ownership (e.g., Arcaini and Gambarelli, 1986, Gambarelli,
1994), community of municipalities in France (e.g., Barthélemy and Martin, 2007, Bison et
al., 2004, Bonnet and Lepelley, 2001, Dia and Kamwa, 2019), as well as different national
parliaments (e.g., Diss and Steffen, 2018, Diss and Zouache, 2015, Koki and Leonardos,
2019, Van Deemen and Rusinowska, 2003). The above list of references is incomplete, but
demonstrates the relevance of weighted voting games and its applications. However, it is
worth noting that our approach is close in spirit to the one of Barthélemy et al. (2020,
2013), and Barthélemy and Martin (2020). In their framework, the authors consider the
class of weighted voting games and investigate the conditions as well as the probability of
having at least one dummy voter in a game, that is a voter with no effect on the outcome
of the game in spite of its non-zero individual weight.

The rest of the article is organized as follows. After presenting the necessary definitions
in Section 2, we present some applications from several real institutional contexts in Section
3. In Section 4 we establish some analytical results regarding symmetric voters as well
as inconsistent weighting. Section 5 describes our numerical results for the probability
of observing inconsistent weighting for various values of the number of voters, the total
weight, and the established quota. Section 6 concludes.

2 Preliminary definitions

Let N = {1, 2, . . . , n} be a finite non-empty set of voters. A coalition of voters is any
non-empty subset of N . A voting game is a pair G = (N,W ) where W is a set of
coalitions such that W 6= ∅; and for all T ⊆ N , T ∈W whenever T ⊇ S for some S ∈W .
Each coalition in W is called a winning coalition in the game G = (N,W ). The dual

game of the game G = (N,W ) is the game Ĝ =
(
N, Ŵ

)
such that Ŵ = {N\S | S /∈W}.

A voting game G is weighted if there are non-negative integers w1, w2, . . . , wn and q ≥
1 such that

∑
i∈N wi ≥ q, and for all S ⊆ N , S ∈W if and only if wS :=

∑
i∈S wi ≥ q. For

simplicity, we write w instead of wN . In this case, the game is denoted by [q;w1, w2, . . . , wn]
and the total weight wN . For all i ∈ N , wi is the weight or the number of votes of voter
i, q is the quota needed to form a winning coalition and [q;w1, w2, . . . , wn] is called a
weighted form of G. A weighted form of the dual game Ĝ of G is [q̂;w1, w2, . . . , wn]
where q̂ = w− q+ 1. A particular class of weighted voting games is the class of weighted
majority games [q;w1, w2, . . . , wn] with q =

⌈
w+1
2

⌉
. When q = w, we get the unanimity

rule where the unique winning coalition is N . We denote by WGn the set of all weighted
voting games with n voters. We assume that w1 ≥ w2 ≥ · · · ≥ wn up to a relabeling of
voters; otherwise, we write [q;w1, w2, . . . , wn]∗. Given a permutation σ of N , define the
game [q;σw1, σw2, . . . , σwn]∗ by σwi = wσ(i) for all i ∈ N (voter i is now endowed with
the weight of voter σ (i)).

Two voters i and j are symmetric in a voting game G = (N,W ) if for all
T ⊆ N\ {i, j}, S ∪ {i} ∈ W ⇐⇒ S ∪ {j} ∈ W . As noted in the introduction, two
voters with the same weight are symmetric in every weighted voting game, but the con-
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verse statement is not necessarily true. Inconsistent weighting arises when two symmetric
voters have distinct weights. It is obvious that the set of voters can be partitioned into
equivalent classes containing voters that are symmetrical to each other. If, furthermore,
the voters are listed in descending order of weight, then one obtains an ordered parti-
tion denoted by SYM (G) = (N1, N2, . . . , Ns) for a voting game G. Hence, the voters
in each Nt, t ∈ {1, . . . , s}, are symmetric and for all i ∈ Nt and j ∈ Nt+1, wi > wj .

1

The sequence SYM (G) will be called the symmetry class of the game G. We denote
by WG∗n the set of all weighted voting games G with n voters that admit no pair of
symmetric voters. In other words, WG∗n contains all weighted voting games such that
SYM (G) = ({1} , {2} , . . . , {n}).

The binary relation �G over subsets of N is defined for all S, T ⊆ N , by T �G S if
wT ≥ wS , where w∅ = 0. We label all subsets of T in such a way that

T = Tp �G Tp−1 �G · · · �G T2 �G T1 = ∅

with p = 2|T |. The sequence (Tp, Tp−1, . . . , T2, T1) will be called a weight ranking over
subsets of T induced by the game [q;w1, w2, . . . , wn]. In the example of three voters 1,
2, and 3, presented in the introduction, it is clear that for T = N\{1} the sequence
(Tp, Tp−1, . . . , T2, T1) is such that Tp = T4 = {2, 3}, T3 = {2}, T2 = {3}, and T1 = ∅.

3 Motivation and applications

In this section, we show that inconsistent weighting is not just a theoretical phenomenon
but occurs in several real institutional contexts. To illustrate, without claiming to be
exhaustive, we propose three distinct real cases concerning, (i) the voting rules employed
in French associations, (ii) the voting rules related to French public inter-municipality
cooperation establishments, and (iii) the 1963 Ankara international agreement between
the European Community and Turkey. Those examples are illustrations of cases where
two or several voters are symmetric despite the fact they have distinct weights. Beyond the
quota used in reality, we can also provide a complete map of consistent and inconsistent
weighted forms when the quota varies.

Example 1: Voting rules within French associations

Among French non-profit organizations, associations occupy a singular place: first, because
this is the most common legal form, there being currently nearly 1.5 million of them,2 and,
second, because this is one of the most malleable legal forms. Indeed, civil law, commercial
law, the association law of 1901 as well as jurisprudence authorize the creation of a huge
diversity of forms of associations, e.g., charitable associations, sports associations, cultural
associations, professional associations.

Regarding voting rules, French law allows associations to: (i) choose their quorum, (ii)
distinguish between different categories of members, and most importantly (iii) allocate
different weights to them. In this respect, since freedom is the rule, it seems to us quite
possible that some associations are indeed confronted with the problem of inconsistent
weighting.

1All the infinitely many distinct weighted forms [q;w1, . . . , wn] for a weighted voting game G = (N,W )
yield the same ordered partition SYM (G). If a weighted form [q;w1, . . . , wn] is consistent, then for all
t ∈ {1, . . . , s} and all i, j ∈ Nt, wi = wj , while the latter equality does not necessarily hold if [q;w1, . . . , wn]
is inconsistent. This is the reason why we can write SYM (G) instead of SYM (q;w1, . . . , wn).

2See, for instance, INJEP, 2019, p. 4: https://injep.fr/wp-content/uploads/2019/07/

Chiffres-cles-Vie-associative-2019.pdf.
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As an example, we take l’Union Technique de l’Electricité (UTE), an associa-
tion created as a professional union in 1907 under the name Union des Syndicats de
l’Electricité which became UTE in 2006. This association brings together stakeholders
who represent French interests in the field of electrotechnical standardization.3 A review of
their statutes adopted on January 21, 2014 is particularly instructive. Indeed, Article 2.2
describes the college of contributing members and their respective voting weights, which
can be summarized as follows:

Table 1: Contributing members of UTE and their weights

College Relative weightings in %

Manufacturers in the electrotechnical field 35

Users/integrators of infrastructures, equipment, products,
services, technologies in the electrotechnical field

27

Producers and operators of electrical networks 22

Installers and service providers in the electro-technical field 8

Technical bodies in the electrotechnical field 8

Total 100

Article 2.1 of the UTE’s statutes indicates that the vote is carried out by an absolute
majority of the members. Therefore, it is easy to see here that a college with 22% of the
votes and one with 27% of the votes are symmetric in the voting game even though they
do not have the same weight.

This example can be written as the weighted form [q;w1, w2, w3, w4, w5] =
[51; 35, 27, 22, 8, 8]. Now, if we assume that the quota can be any integer between 1 and
100, then we can summarize the different possibilities in Table 2, in which the bold line
highlights the quota interval corresponding to the real case where q = 51 under absolute
majority.

Table 2: The map of consistent and inconsistent weighted forms

Quota q Weighted form

{1, . . . , 38} Inconsistent

{39, . . . , 43} Consistent

{44, . . . ,57} Inconsistent

{58, . . . , 62} Consistent

{63, . . . , 100} Inconsistent

Table 2 points out that there can be multiple changes in the status of a given weighted
form when the quota increases. It should be noted that within a given quota interval in
which the weighted form is inconsistent, the symmetric voters with different weights may
not always be the same. As an example, consider the interval where q ∈ [63, 100]. If
q = 70, voters with weights 27 and 22 are symmetric but not with the voter with weight
35. If q = 75, voters with weights 35 and 27 are symmetric but not with the voter with
weight 22. If q = 80, these three voters are symmetric.

3For more information on their duties, we refer the reader to http://ute-asso.fr/index-2.html.
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Example 2: EPCI

In order to better manage some facilities or spaces (e.g., university, port, airport), pub-
lic services (e.g., school transport, sanitation, garbage collection) or to jointly develop
projects, French municipalities can create public inter-municipality cooperation establish-
ments known under the name of EPCI (Établissements Public de Coopération In-
tercommunale).4 As public institutions, these EPCIs are governed by the general code
of local authorities5 and, in particular, by the principle of specialization. More precisely,
they are competent only in the fields and matters that the law assigns to them, or for
those delegated by the member municipalities.

Each EPCI is administered by a deliberative council whose members are drawn from
each of the member municipalities with the condition that each municipality has to be rep-
resented by at least one member. Concomitantly or following municipal elections (which
take place every six years), the members of the deliberative council for each EPCI are
elected depending on the type of EPCI. The electoral code and the general code of local
government detail the modalities of elections and the governance by the deliberative coun-
cil. The law requires EPCIs to have the following properties: (i) the number of councilors
elected to represent a municipality depends on its population, (ii) decisions are taken ac-
cording to the majority quota, that is, the smallest integer strictly greater than half of the
total weight, and (iii) no municipality may have more than 50% of the total number of
seats of the EPCI.

Despite their precision, these rules do not guarantee that the weightings correspond to
the symmetrical character of the municipalities in the voting game. By way of illustration,
it is possible to show this inconsistency using the distribution of seats in the EPCI of
Grand Pontarlier,6 thanks to the following table:

Table 3: The number of seats in the EPCI of Grand Pontarlier (2020)

Municipalities Number of seats (%)

Pontarlier 16 (47.06)

Doubs 3 (8.82)

Chaffois, Cluse et Mijoux, Dommartin, Les Grandes Narboz,
Houtaud, Sainte Colombe, Les Verrières De Joux

2 each (5.88)

Vuillecin 1 (2.94)

Total 34 (100)

This table shows that, although the Doubs municipality and all the other munici-
palities with two seats each have a different number of seats, they are symmetric in the
corresponding weighted voting game.

Let us consider the following former EPCI called Communauté des bords de Vire in
the French Basse-Normandie region, which existed between 1992 and 2005 (Bonnet and
Lepelley, 2001).

4For more details on cooperative administrative structures in France, especially EPCI, we refer the
reader to https://www.collectivites-locales.gouv.fr/intercommunalite-1.

5Code général des collectivités territoriales.
6See, for instance, https://sig.ville.gouv.fr/Territoire/242500338. Notice that based on the data

and analysis of Blancard et al. (2020), it is also possible to show this type of inconsistency in some EPCIs
of French Reunion Island.
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Table 4: The number of seats in the EPCI Communauté des bords de Vire

Municipalities Number of seats (%)

La Meauffe 5 (33.33)

Pont-Hébert 7 (46.67)

Rampan 3 (20.00)

Total 15 (100)

This new example is interesting in that the corresponding weighted form is always
inconsistent, whatever the chosen quota. The table below specifies which pairs of munici-
palities are symmetric as a function of the quota.

Table 5: The map of symmetric municipalities

Quota q Symmetric municipalities

{1, 2, 3} La Meauffe, Pont-Hébert, Rampan

{4, 5} La Meauffe, Pont-Hébert

{6, 7} La Meauffe, Rampan

{8} La Meauffe, Pont-Hébert, Rampan

{9, 10} La Meauffe, Rampan

{11, 12} La Meauffe, Pont-Hébert

{13, 14, 15} La Meauffe, Pont-Hébert, Rampan

Example 3 : Ankara international agreement

On September 12, 1963, Agreement 64/733/EEC was signed between the European Com-
munity (EC) and Turkey creating an association with the aim “to promote the continuous
and balanced strengthening of trade and economic relations between the parties, while tak-
ing full account of the need to ensure an accelerated development of the Turkish economy
and to improve the level of employment and the living conditions of the Turkish people”
(Art. 2, 1). The essential purpose of this agreement is to both gradually establish a cus-
toms union and to approximate economic policies. It provided for the future possibility
of Turkey’s accession to the EC (Article 28). The implementation of this association was
planned to take place in three phases: (i) a preparatory phase, (ii) a transitional phase,
and (iii) a final phase. In order to define the modalities of the first phase, which lasted for
five years, in particular Community aid, the agreement includes an appendix providing a
provisional protocol and a financial protocol.

The Financial Protocol provides for “the financing of investment projects which will
serve to increase the productivity of the Turkish economy and further the objectives of the
Agreement of Association, and which are part of the Turkish development plan” (Art. 1),
via the possibility of loans from the European Investment Bank for a total amount of 175
million US $ over five years (Art. 2). The report of French Senator Roger Carcassonne
on December 6, 1963 informs us that this sum is distributed among the member states of
the EC as follows:7

7See, for instance, https://www.senat.fr/rap/1963-1964/i1963_1964_0063.pdf.
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Table 6: Contributions following Ankara international agreement

Countries Amount in millions of US $ (%)

France 58.5 (33.42)

Germany (FRG) 58.5 (33.42)

Italy 32 (18.28)

Belgium 13 (7.42)

The Netherlands 12.7 (7.25)

Luxembourg 0.3 (0.17)

Total 175 (100)

Loan applications must be approved by the Turkish government. The application is
then forwarded by the European Investment Bank to the member States and the Euro-
pean Commission. Without objection, the loan is granted. However, if a member state
so requires, a committee consisting of a representative of each member state and a repre-
sentative of the Commission examines the admissibility of the application and votes, by
a qualified majority, according to a system of proportional voting in proportion to the
financial participation of each state. According to the Internal Agreement (Art. 10),8 the
qualified majority is 67 votes according to the following distribution.

Table 7: Distribution of votes following Ankara international agreement

Countries Votes in %

France 33

Germany (FRG) 33

Italy 17

Belgium 8

The Netherlands 8

Luxembourg 1

Total 100

Except France and Germany, we can easily show that the other four countries are
symmetric in the voting game even though they do not have the same weight at all. Denote
by [q; 33, 33, 17, 8, 8, 1] the weighted form in which the quota q is an integer between 1 and
100. The table below shows that there are eight successive switches in the status of the
weighted form when the quota increases.

8The Internal Agreement can be found, for instance, in https://eur-lex.europa.eu/legal-content/

EN/TXT/PDF/?uri=CELEX:01964A1229(01)-20040501&from=EN.
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Table 8: The map of consistent and inconsistent weighted forms

Quota q Weighted form

{1, . . . , 18} Inconsistent

{19, . . . , 25} Consistent

{26, . . . , 42} Inconsistent

{43, . . . , 49} Consistent

{50, . . . , 51} Inconsistent

{52, . . . , 58} Consistent

{59, . . . ,75} Inconsistent

{76, . . . , 82} Consistent

{83, . . . , 100} Inconsistent

The examples presented in this section naturally raise the following question. Can
we characterize inconsistent weighted forms? Can the choice of suitable weights rule out
inconsistent forms? If a weighted voting game is obtained from an inconsistent weighted
form, is there always a consistent weighted form inducing the same weighted voting game?
What is the likelihood of an inconsistent weighted form? What are the most frequent
regime changes?

4 Some analytical results

4.1 About symmetric voters

The first result of our article gives the three conditions under which two voters i and j are
symmetric in a game. More exactly, two voters i and j, with i < j, are symmetric if (a)
the smallest voter j alone constitutes a winning coalition, or (b) the coalition containing
all but the smallest voter j is not a winning coalition, or (c) the coalition containing the
smallest voter j together with a given subset Sk of other voters is a winning coalition
whereas the coalition containing the largest voter i together with any subset not having a
total weight greater than Sk is a losing coalition.

Proposition 1 Let i and j be two voters (with i < j) in a weighted voting game
[q;w1, w2, . . . , wn] and let (Sp, Sp−1, . . . , S2, S1) be a weight ranking over all subsets of
S = N\ {i, j} induced by the game. The following assertions are equivalent:

(i) i and j are symmetric voters.

(ii) (a) : wj ≥ q; or
(b) : wi + wSp < q; or
(c) : wj + wSk

≥ q and wi + wSk−1
< q for some k ∈ {1, . . . , p}.

Proof. Assume that i and j are symmetric voters in [q;w1, w2, . . . , wn]. Assume that (a)
and (b) do not hold. Let I = {t ∈ {1, 2, . . . , p} : wj + wSt ≥ q}. By assumption, wj < q
and wi + wSp ≥ q. That is {j} /∈ W and Sp ∪ {i} ∈ W . Since i and j are symmetric
voters, we also have {i} /∈ W and Sp ∪ {j} ∈ W . This implies that wj = wj + wS1 < q
and wj +wSp ≥ q. It follows that p ∈ I 6= ∅ and 1 /∈ I. This proves that I has a minimum
denoted by k such that k ≥ 2. By definition of k, wj +wSk−1

< q. By recalling that i and
j are symmetric voters, it follows that wi + wSk−1

< q. Therefore (c) holds.
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Conversely, assume that (a), (b), or (c) hold and let S be a subset of N\ {i, j}. By
assumption, S = St for some t ∈ {1, 2, . . . , p}. First, suppose that (a) holds. That is
wj ≥ q. Consider t ∈ {1, 2, . . . , p}. It follows that wi + wSt ≥ wj + wSt ≥ wj ≥ q.
Therefore St ∪ {j} ∈ W and St ∪ {i} ∈ W . Hence i and j are symmetric voters.
Now suppose that (b) holds. That is wi + wSp < q. Consider t ∈ {1, 2, . . . , p}.
It follows that wj + wSt ≤ wi + wSt ≤ wi + wSp < q. Therefore St ∪ {j} /∈ W
and St ∪ {i} /∈ W . Hence i and j are symmetric voters. Finally, suppose that (c)
holds. That is wj + wSk

≥ q and wi + wSk−1
< q for some k ∈ {1, . . . , p}. Consider

t ∈ {1, 2, . . . , p}. Two possible cases arise. Suppose that t ≤ k − 1. Then by the
definition of (Sp, Sp−1, . . . , S2, S1), wj + wSt ≤ wi + wSt ≤ wi + wSk−1

< q. Therefore
St ∪ {j} /∈ W and St ∪ {i} /∈ W . Now suppose that t ≥ k. Then by the definition of
(Sp, Sp−1, . . . , S2, S1), wi + wSt ≥ wj + wSt ≥ wj + wSk

≥ q. Therefore St ∪ {j} ∈ W and
St ∪ {i} ∈W . In both cases, S ∪ {i} ∈W ⇐⇒ S ∪ {j} ∈W , meaning that the two voters
i and j are symmetric in the game [q;w1, w2, . . . , wn].

Proposition 1 can be illustrated with example 1. In the weighted voting game
[q;w1, . . . , w5] = [51; 35, 27, 22, 8, 8], voters 2 and 3 are symmetric even if w2 = 27 >
w3 = 22. Point (a) does not hold since w3 = 22 < 51 = q. Point (b) does not hold since
wN\{3} = 78 > 51. Hence, it must be that point (c) holds. As a start, we construct the
weight ranking (S1, . . . , S8) over all subsets of S = {1, 4, 5} :

(
S8, S7, S6, S5, S4, S3, S2, S1

)
=
(
{1, 4, 5}, {1, 4}, {1, 5}, {1}, {4, 5}, {4}, {5}, ∅

)
,

which corresponds to the sequence of weights (51, 43, 43, 35, 16, 8, 8, 0). Point (c) holds by
considering S5 = {1} and S4 = {4, 5} since w{1,3} = 57 > 51 and w{2,4,5} = 43 < 51.

The following proposition tells us that all voters whose weights are between the weights
of two symmetric voters in a game are also symmetric.

Proposition 2 Let i and j be two symmetric voters (with i < j) in a weighted voting
game [q;w1, w2, . . . , wn]. Then all voters i′ and j′ such that j ≥ j′ > i′ ≥ i are symmetric
voters.

Proof. Consider two voters i′ and j′ such that j ≥ j′ > i′ ≥ i. Since i and j are symmetric
voters, (a), (b), or (c) hold. First suppose that (a) holds. It follows that wj′ ≥ wj ≥ q.
Therefore i′ and j′ are symmetric voters by Proposition 1. Now suppose that (b) holds.
It follows that wi′ +wSp ≤ wi +wSp < q which means that i′ and j′ are symmetric voters
by Proposition 1. Finally, suppose that (c) holds for some k ∈ {1, . . . , p}. Note that
wj′ + wSk

≥ wj + wSk
≥ q and wi′ + wSk−1

≤ wi + wSk−1
< q. Therefore i′ and j′ are

symmetric voters by Proposition 1.

4.2 About inconsistent weighting of a game

Note that each weighted voting game G with no pair of symmetric voters only admits
consistent weighted forms. Indeed, since an inconsistent weighting is observed when two
symmetric voters have distinct weights, G admits no inconsistent weighted form. In the
next result, it is shown that the set of winning coalitions in a weighted voting game does
not change by permuting the weights of two symmetric voters.

Proposition 3 Let G be a weighted voting game and [q;w1, w2, . . . , wn] a representation
of G. Suppose that (w′1, w

′
2, . . . , w

′
n) is obtained from (w1, w2, . . . , wn) by permuting the
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weights of two symmetric voters. Then [q;w′1, w
′
2, . . . , w

′
n]∗ is also a representation of G;

that is, both [q;w1, w2, . . . , wn] and [q;w′1, w
′
2, . . . , w

′
n]∗ lead to the same set of winning

coalitions.

Proof. Suppose that (w′1, w
′
2, . . . , w

′
n) is obtained from (w1, w2, . . . , wn) by permuting

the weights of two symmetric voters, say i and j. Let G′ = (N,W ′) be the weighted
voting game a representation of which is [q;w′1, w

′
2, . . . , w

′
n]∗. Consider S ∈ 2N . There are

two possible cases. Case (a) : S ∩ {i, j} = ∅ or S ∩ {i, j} = {i, j}. Then w′S = wS . This
implies that w′S ≥ q ⇐⇒ wS ≥ q; that is S ∈ W ′ ⇐⇒ S ∈ W . Case (b) : S ∩ {i, j} = {i}.
Then S = T ∪ {j} and w′S = wT + wi = wT∪{i} where T = S\ {i} ⊆ N\ {i, j}. Since i
and j are symmetric, then T ∪ {j} ∈ W ⇐⇒ T ∪ {i} ∈ W . That is w′S ≥ q ⇐⇒ wS ≥ q.
Equivalently, S ∈ W ′ ⇐⇒ S ∈ W . In both cases, S ∈ W ′ ⇐⇒ S ∈ W . We deduce that
W ′ = W . Hence G = G′.

The previous proposition still holds for all other permutations that preserve all sym-
metry classes in the game. This is the objective of the following result.

Corollary 4 Let [q;w1, w2, . . . , wn] and SYM (G) = (N1, N2, . . . , Ns) be a representation
of a weighted voting game G. Then for all permutations σ of N such that σ (Nj) = Nj for
all j ∈ {1, 2, . . . , s}, [q;σw1, σw2, . . . , σwn]∗ is also a representation of G.

Proof. Noting that all permutations σ of N such that σ (Nj) = Nj for all j ∈ {1, 2, . . . , s}
can be obtained from a finite number of steps, each consisting in a transposition of the
weights of two symmetric voters, the result holds from Proposition 3.

Now, let us denote by G0 the unanimity game such that W = {N}.
Note that SYM (G0) = ({1, 2, . . . , n}), and that both [n; 1, 1, . . . , 1] and
[n (n+ 1) ; 2n, 2n− 2, . . . , 2] are distinct representations of G0. Therefore, the representa-
tion [n (n+ 1) ; 2n, 2n− 2, . . . , 2] is an inconsistent weighted form of G0 while the repre-
sentation [n; 1, 1, . . . , 1] is not. This observation can be generalized to all weighted voting
games that admit a pair of symmetric voters. But first we provide a way of modifying
the quota and the weights in a weighted voting game without changing the set of winning
coalitions. This helps us in proving the generalization just announced.

Proposition 5 Let G be a weighted voting game. If [q;w1, w2, . . . , wn]∗ and
[q;w′1, w

′
2, . . . , w

′
n]∗ are two weighted forms of G, then so is [2q;w1 + w′1, . . . , wn + w′n]∗.

Proof. Consider [q;w1, w2, . . . , wn]∗ and [q;w′1, w
′
2, . . . , w

′
n]∗ two weighted forms of a

given weighted voting game G. Denote by G′ = (N,W ′) the weighted voting game
represented by [2q;w1 + w′1, . . . , wn + w′n]∗. Let S ∈ 2N . Suppose that S ∈ W . Then
wS +w′S ≥ 2q. Thus S ∈W ′ and W ⊆W ′. Now suppose that S /∈W . Then wS +w′S < q.
This necessary implies that wS < q or w′S < q. Therefore, S /∈ W ′ and W ′ ⊆ W . It
follows that W = W ′ and then G = G′.

Now, the question raised below is: for a weighted voting game that admits at least one
pair of symmetric voters, is it possible to find both consistent and inconsistent weighted
forms? The next result answers yes.

Proposition 6 Each weighted voting game that admits a pair of symmetric voters has
some consistent weighted forms as well as some inconsistent weighted forms.
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Proof. Let G = (N,W ) be a weighted voting game with n voters. Then G admits a
weighted form [q;w1, w2, . . . , wn]. Assume that G admits some pairs of symmetric voters.
Then SYM (G) = (N1, N2, . . . , Ns) with |Nk| ≥ 2 for some k ∈ {1, 2, . . . , s}.
First suppose that [q;w1, w2, . . . , wn] is a consistent form of G. There are two possible
cases. Case (a) : W = 2N . In this case, all non-empty subsets of N are winning coalitions.
Thus [1;n, n− 1, . . . , 2, 1] is an inconsistent form of G. Case (b) : W 6= 2N . Then for all
S ∈ 2N\W , wS < q. Let α = 1

n(n+1) minS∈2N\W (q − wS) > 0, w′i = wi + iα for all i ∈ N
and denote by G′ the weighted voting game represented by [dq; dw′1, dw

′
2, . . . , dw

′
n] with

d = n (n+ 1). We prove that G = G′. For this purpose, let W ′ be the set of all winning
coalitions in G′. Suppose that T ∈ W . Then dw′T = dwT +

∑
i∈T idα > dwT ≥ dq. Thus

T ∈W ′. Therefore W ⊆W ′. Suppose that T /∈W . Then

dw′T = dwT +
∑

i∈T
idα ≤ dwT +

∑

i∈N
idα since T ⊆ N

≤ dwT +
n (n+ 1)

2
dα since

∑

i∈N
i =

n∑

i=1

i =
n (n+ 1)

2

= dwT +
d

2
min

S∈2N\W
(q − wS) by the definition of α

≤ d

(
wT +

1

2
(q − wT )

)
< dq since T /∈W

Hence T /∈ W ′. Therefore W ′ ⊆ W . We conclude that W = W ′. Moreover wi ≥ wi+1 for
1 ≤ i < n. This implies that dw′i = dwi + (n− i+ 1) dα > dwi+1 + (n− i) dα = dw′i+1 for
1 ≤ i < n. Therefore, [dq; dw′1, dw

′
2, . . . , dw

′
n] is an inconsistent weighted form of G since

G admits a pair of symmetric voters.
Now suppose that [q;w1, w2, . . . , wn] is an inconsistent form of G. There are two possible
cases. Let SYM (G) = (N1, N2, . . . , Ns) and denote by E the set of all permutations σ of
N such that σ (Nj) = Nj for all j ∈ {1, 2, . . . , s}. Pose w′i =

∑
σ∈E σwi. By Proposition 5,

[|E| q;w′1, w′2, . . . , w′n]∗ is also a weighted form of G. Consider two voters i and j. Assume
that i and j are symmetric. Then i, j ∈ Nk for some k ∈ {1, 2, . . . , s}. When σ describes

E, σ (i) and σ (j) take each value in Nk exactly |E|
|Nk|! = |N1|!∗|N2|!∗···∗|Ns|!

|Nk|! times. Therefore

w′i =
1

|E|
∑

σ∈E
σwi =

1

|Nk|!
∑

v∈Nk

wv = w′j .

Therefore two symmetric voters necessary have the same weight with respect to
[q;w′1, w

′
2, . . . , w

′
n]∗. Thus [q;w′1, w

′
2, . . . , w

′
n]∗ is a consistent weighted form of G.

Let us now take into consideration a particular case among weighted voting games. A
voting game G = (N,W ) is called proper if S ∈W implies N\S 6∈W . A weighted voting
game is called proper if its induced voting game is proper. A representation [q;w1, . . . , wn]
of a weighted voting game has a large minority if |{i ∈ N : wi = 1}| ≥ q. Below, we
provide a sufficient condition for consistent weighting.

Proposition 7 If a weighted voting game G admits a representation [q;w1, . . . , wn] having
a large minority and such that w1 < q, then this representation is a consistent weighted
form of G.

Proof. Consider any weighted voting game G that admits a representation [q;w1, . . . , wn]
having a large minority and such that w1 < q. Denote by M its large minority, i.e.,

M = {i ∈ N : wi = 1}.
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It holds that n ≥ q since there are at least q voters i satisfying wi = 1.
Next, we have to prove that [q;w1, . . . , wn] only admits consistent weighted forms. In
other words, we have to show that whenever two voters i and j are symmetric, it holds
that wi = wj . We proceed by contradiction. So assume that i and j are symmetric but
that wi > wj . By assumption w1 < q, we have wi < q. As a consequence and since
[q;w1, . . . , wn] has a large minority, we can choose S ⊆M such that |S| = q − wi. Then

wS∪{i} = (q − wi) + wi = q > (q − wi) + wj = wS∪{j},

which implies that (S ∪ {i}) ∈W but (S ∪ {j}) 6∈W . This contradicts the fact that i and
j are symmetric and completes the proof.

It should be noted that none of the voters (even those in the large minority) is null in
the weighted voting games considered in Proposition 7. This result also naturally raises
the question of whether there are relevant classes of weighting voting games satisfying the
two conditions in the statement of Proposition 7. The corollary below provides an answer.

Corollary 8 Any weighted form of a proper weighted voting game having a large minority
is always consistent.

Proof. It is enough to show that w1 < q for any representation [q;w1, . . . , wn] of a proper
weighted voting game having a large minority. By contradiction, assume [q;w1, . . . , wn] is
such that w1 ≥ q, which implies {1} ∈W . For the coalition M , we also have wM ≥ q and
so M ∈ W . Hence M ⊆ N\{1} entails N\{1} ∈ W . The fact that both {1} ∈ W and
N\{1} ∈W contradicts the fact that the weighting game [q;w1, . . . , wn] is proper.

As an example, consider the weighted voting game [7;w1, w2, 1, 1, 1, 1, 1, 1, 1]. Such a
game belongs to the class of games in Proposition 7 if w1 ≤ 7 but is not necessarily proper
(as in Corollary 8). For instance, if w1 = 6 and w2 = 5, then both {1, 3} and {2, 4, . . . , 9}
are winning coalitions. In all cases, voters 1 and 2 are symmetric in this game if and only
if w1 = w2.

We end this section with a negative or disappointing result. Any weighted voting
games with three our four voters having all distinct weights must be inconsistent, that is,
there is no value for the quota such that no pair of voters is symmetric.

Proposition 9 If a weighted voting game G = (N,W ) with n ∈ {3, 4} admits a represen-
tation [q;w1, . . . , wn] such that w1 > · · · > wn, then this representation is an inconsistent
weighted form of G whatever the choice of the quota.

Proof. We start by considering the 4-voter situation. The assumption that w1 > w2 >
w3 > w4 implies that for each i, j ∈ {1, 2, 3, 4}, i < j, and each S ⊆ N\{i, j},

[
(S ∪ {j}) ∈W

]
=⇒

[
(S ∪ {i}) ∈W

]
.

Hence, the consistency of [q;w1, w2, w3, w4] results in

(i) the existence of at least one (possibly empty) coalition S ⊆ {3, 4} such that S∪{1} ∈
W but S ∪ {2} 6∈W ;

(ii) the existence of at least one (possibly empty) coalition S ⊆ {1, 4} such that S∪{2} ∈
W but S ∪ {3} 6∈W ;

13



(iii) the existence of at least one (possibly empty) coalition S ⊆ {1, 2} such that S∪{3} ∈
W but S ∪ {4} 6∈W .

Case (i) means that {1} ∈ W but {2} 6∈ W , or {1, 3} ∈ W but {2, 3} 6∈ W , or {1, 4} ∈ W
but {2, 4} 6∈ W or {1, 3, 4} ∈ W but {2, 3, 4} 6∈ W . These possibilities give rise to the
following four inequalities:

w1 ≥ q > w2, (1)

w1 + w3 ≥ q > w2 + w3, (2)

w1 + w4 ≥ q > w2 + w4, (3)

w1 + w3 + w4 ≥ q > w2 + w3 + w4. (4)

Similarly, case (ii) means that {2} ∈ W but {3} 6∈ W , or {1, 2} ∈ W but {1, 3} 6∈ W , or
{2, 4} ∈ W but {3, 4} 6∈ W or {1, 2, 4} ∈ W but {1, 3, 4} 6∈ W . These possibilities also
give rise to four new inequalities:

w2 ≥ q > w3, (5)

w1 + w2 ≥ q > w1 + w3, (6)

w2 + w4 ≥ q > w3 + w4, (7)

w1 + w2 + w4 ≥ q > w1 + w3 + w4. (8)

Finally, case (ii) means that {3} ∈ W but {4} 6∈ W , or {1, 3} ∈ W but {1, 4} 6∈ W , or
{2, 3} ∈ W but {2, 4} 6∈ W or {1, 2, 3} ∈ W but {1, 2, 4} 6∈ W . These possibilities also
give rise to four more inequalities:

w3 ≥ q > w4, (9)

w1 + w3 ≥ q > w1 + w4, (10)

w2 + w3 ≥ q > w2 + w4, (11)

w1 + w2 + w3 ≥ q > w1 + w2 + w4. (12)

Let us prove that there is no compatible triple of inequalities, one belonging to the system
(1)–(4) to ensure case (i), one belonging to the system (5)–(8) to ensure case (ii) and one
belonging to the system (9)–(12) to ensure case (iii).

Firstly, note that (1) is incompatible with (5), (6), (8), (9), (10) and (12). Hence,
if (1) holds, then (7) and (11) must hold as well. However, these last two equalities are
incompatible with each other, proving that (1) is not possible under a consistent weighted
form.

Secondly, remark that (2) is incompatible with (5), (6), (8), (9), (11) and (12). Hence,
if (2) holds, then (7) and (11) must hold as well. But these last two inequalities lead to
the impossibility:

q
(10)
> w1 + w4 > w2 + w4

(7)

≥ q.

This implies that (2) is not possible either under a consistent weighted form.
Thirdly, note that (3) is incompatible with (5), (6), (7) and (8), which directly makes

case (ii) impossible and proves that (3) cannot hold under a consistent weighted form.
Fourthly, exactly as for (1), remark that (4) is incompatible with (5), (6), (8), (9), (10)

and (12), which yields the same conclusion as for (1). Since the quota q was arbitrarily
chosen, this completes the proof that a representation [q;w1, w2, w3, w4] such that w1 >
w2 > w3 > w4 is always inconsistent.
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Now, let us deal with the 3-voter situation. Instead of replicating the same reasoning
as that developed above, we can consider again the 4-voter situation and assume that
w4 = 0. This assumption implies that (3) reduces to (1) and that (4) reduces to (2), which
means that the system (1)–(4) describing case (i) reduces to the system of two inequalities
needed for case (i) in the absence of voter 4. Similarly, the assumption w4 = 0 also implies
that (7) reduces to (5) and that (8) reduces to (6), which means that the system (5)–(8)
describing case (ii) reduces to the system of two inequalities needed for case (ii) in the
absence of voter 4. As a consequence, the demonstration for the 4-voter situation suffices
to show that a representation [q;w1, w2, w3] such that w1 > w2 > w3 is always inconsistent
whatever the choice of the quota.

The EPCI Communaué des bords de Vire introduced in section 3 (see tables 4 and 5)
is a particular instance of Proposition 9. The impossibility pointed out in Proposition 9
disappears in the 2-voter and 5-voter cases: for [q;w1, w2] with w1 ≥ q > w2, voters 1 and
2 are not symmetric, and for [9; 5, 4, 3, 2, 1], there is no pair of symmetric voters.

Finally, it is useful to note that Proposition 9 can be seen as a consequence of data
from Kurz (2012), which emphasizes that no weighted voting game with three or four
voters admits a minimum sum representation in which weights are all different.

5 Probabilities of inconsistent weighting

5.1 Overview

Let us denote by Gn,w,q the set of all representations [q;w1, w2, . . . , wn] of weighted voting
games G with n voters having a total weight w and a quota q. Recall that every possible
representation [q;w1, w2, . . . , wn] in Gn,w,q can be described by the following system of
(in)equalities:

(Gn,w,q) :





w − q ≥ 0
q ≥ 1
wi ≥ wi+1 i = 1, 2, . . . , n− 1
w −∑i∈N wi = 0

(13)

where q, w1, w2, . . . , wn are non-negative integers. We assume that all representations of
games in Gn,w,q are equally likely. This assumption is called IAC (Impartial Anonymous
Culture) and it is widely employed in voting theory when computing the theoretical like-
lihood of electoral events. For more details on this and other probabilistic assumptions
and their use in social choice theory, the reader may refer to Gehrlein and Lepelley (2011,
2017). Furthermore, we denote by Cn,w,q the set of all representations in Gn,w,q with consis-
tent weights and by In,w,q the set of all representations in Gn,w,q with inconsistent weights.
The frequency to be evaluated is that of inconsistent weighting of all games in Gn,w,q given
n, w, and q. This amounts to evaluating the following frequencies as functions of both q
and w for some values of n.

I (n,w, q) =
|In,w,q|
|Gn,w,q|

= 1− |Cn,w,q||Gn,w,q|
. (14)

As shown in (13), each representation [q;w1, w2, . . . , wn] of games in Gn,w,q is given
by a set of linear constraints on q, w1, w2, . . . , wn and w and, in order to calculate our
probabilities, we need the list of constraints corresponding to Cn,w,q or In,w,q. For this, let
us first mention that it is possible to describe the structure of the game G = (N,W ) by
enumerating all its winning coalitions or all its losing coalitions. However, this generally
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includes redundant constraints. Instead, Freixas and Molinero (2009) introduce the notion
of a winning coalition that is shift-minimal and a losing coalition that is shift-maximal.
A winning coalition S is shift-minimal if by replacing any voter i in S with a voter j
out of S, one obtains a coalition T which is losing whenever wi > wj . The set of all
winning coalitions in G = (N,W ) that are shift-minimal is denoted by W ∗. A losing
coalition S is shift-maximal if by replacing any voter j in S with a voter i out of S, one
obtains a coalition T which is winning whenever wi > wj . The set of all losing coalitions
in G = (N,W ) that are shift-maximal is denoted by L∗. More formally, for all coalitions S,

S ∈W ∗ ⇐⇒ S ∈W and for all i ∈ S, j ∈ N\S : wj < wi =⇒ (S\ {i}) ∪ {j} /∈W (15)

and

S ∈ L∗ ⇐⇒ S /∈W and for all j ∈ S, i ∈ N\S : wj < wi =⇒ (S\ {j}) ∪ {i} ∈W (16)

Freixas and Molinero (2009) prove that [q;w1, w2, . . . , wn] is a weighted form of the game
G = (N,W ) if {

wS ≥ q for all S ∈W ∗
q − wS ≥ 1 for all S ∈ L∗ (17)

Now, recall that SYM (G) = (N1, N2, . . . , Ns) is the ordered partition of symmet-
ric voters in the game G; that is voters in each Nt are symmetric and for all i ∈ Nt

and j ∈ Nt+1, wi > wj . It follows that Cn,w,q(G), the set of consistent weighted forms
[q;w1, w2, . . . , wn] of the weighted game G = (N,W ), can be described by the following
system of (in)equalities:

(Cn,w,q(G)) :





wS − q ≥ 0 for all S ∈W ∗
q − wS ≥ 1 for all S ∈ L∗
wi − wj ≥ 1 for all i ∈ Nt, j ∈ Nt+1, t = 1, 2, . . . , s− 1
wi − wj = 0 for all i, j ∈ Nt, t = 1, 2, . . . , s
w − q ≥ 0
q ≥ 1
w −∑i∈N wi = 0

(18)

The two first inequalities of (18) come from (17); the next inequality comes from the
definition of SYM (G); the next equality is due to the fact that Cn,w,q represents consistent
weighted forms, that is voters belonging to the same Nt, for all t = 1, 2, . . . , s, have the
same weight; finally, the last three (in)equalities come from (13) when the inequality
wi ≥ wi+1, for all i = 1, 2, . . . , n− 1, is redundant.

In order to establish (18), we need the complete list WGn of all weighted voting games
with n voters. Data come from Kurz (2012, 2018) who provides all minimum sum repre-
sentations of weighted voting games for up to 9 voters, where the weights and the quota
are restricted to integers. In the case of two voters, all of the k different weighted vot-
ing games Gk in WG2 are listed in Table 9 together with the set SYM (Gk) of distinct
classes of symmetric voters, W ∗ (Gk) of shift-minimal winning coalitions and L∗ (Gk) of
shift-maximal losing coalitions. Recall that, in this table, each weighted voting game is
given by a unique weighted representation with a minimal sum of positive integer weights.
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Table 9: List of all two-voter weighted voting games G

k Gk L∗ (Gk) W ∗ (Gk) SYM (Gk)

1 [2; 1, 1] [{1}] [{1, 2}] {1, 2}
2 [1; 1, 0] [{2}] [{1}] {1} , {2}
3 [1; 1, 1] [] [{2}] {1, 2}

In the case of three voters, the data are listed in Table 10 and all four-voter possible
weighted voting games are listed in Table 14 in the appendix.

Table 10: List of all three-voter weighted voting games G

k Gk L∗ (Gk) W ∗ (Gk) SYM (Gk)

1 [3; 1, 1, 1] [{1, 2}] [{1, 2, 3}] {1, 2, 3}
2 [2; 1, 1, 0] [{1, 3}] [{1, 2}] {1, 2} , {3}
3 [3; 2, 1, 1] [{1} , {2, 3}] [{1, 3}] {1} , {2, 3}
4 [1; 1, 0, 0] [{2, 3}] [{1}] {1} , {2, 3}
5 [2; 2, 1, 1] [{2}] [{1} , {2, 3}] {1} , {2, 3}
6 [2; 1, 1, 1] [{1}] [{2, 3}] {1, 2, 3}
7 [1; 1, 1, 0] [{3}] [{2}] {1, 2} , {3}
8 [1; 1, 1, 1] [] [{3}] {1, 2, 3}

The system (18) will consist of k different systems (Cn,w,q(Gk)), one for every possible
representation Gk of the game G. The notation Cn,w,q(Gk) corresponds to the set of all
consistent weighted voting games having Gk as a representation with minimum sum, and
let us denote by |Cn,w,q (Gk)| the cardinality of this set. Since each of the k weighted
representations describes a unique weighted voting game, it follows that

|Cn,w,q| =
∑

Gk∈WGn
|Cn,w,q (Gk)| and I (n,w, q) = 1−

∑

Gk∈WGn

|Cn,w,q (Gk)|
|Gn,w,q|

(19)

To illustrate our approach, let us take the case of n = 2 (see Table 9). The systems
that we have to deal with are as follows:

(G2,w,q) :





w − q ≥ 0
q ≥ 1
w1 − w2 ≥ 0
w − w1 − w2 = 0

(C2,w,q(G1)) :





w1 + w2 − q ≥ 0
q − w1 ≥ 1
w1 − w2 = 0
w − q ≥ 0
q ≥ 1
w − w1 − w2 = 0

(C2,w,q(G2)) :





w1 − q ≥ 0
q − w2 ≥ 1
w1 − w2 ≥ 1
w − q ≥ 0
q ≥ 1
w − w1 − w2 = 0

(C2,w,q(G3)) :





w2 − q ≥ 0
w1 − w2 = 0
w − q ≥ 0
q ≥ 1
w − w1 − w2 = 0
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In order to use (19), the numbers |Gn,w,q| and |Cn,w,q(Gk)|, for any given form Gk,
of integer solutions of the systems (Gn,w,q) and (Cn,w,q(Gk)) are calculated by means of
Ehrhart polynomials, a method introduced in the social choice literature by Lepelley
et al. (2008) and Wilson and Pritchard (2007) in order to estimate the probabilities of
some voting events in social choice theory. This theory teaches us that the two num-
bers |Gn,w,q| and |Cn,w,q(Gk)| are pseudo-polynomials with two parameters w and q. We
use the parametrized Barvinok’s algorithm (Barvinok, 1994, Barvinok and Pommersheim,
1999, Verdoolaege et al., 2004) in order to solve those systems9 and we refer the reader
to Gehrlein and Lepelley (2011, 2017) for more details on the use of these tools in social
choice theory.

Note that Table 11 (see Kurz, 2012, 2018) enumerates the number of weighted voting
games with minimum integer representations up to 9 voters.10 This means that the number
of distinct weighted voting games that we need to consider is equal to 117 if the number
of voters is 5 and makes our computations very tedious. For this reason, we only consider
a number of voters up to 4 in the case of finite total weight w. For an infinite total weight,
a simplification will allow us to consider all cases up to 5 voters. Despite this fact, we
believe, however, that the considered values of n, w, and q give us enough information
regarding the probability of inconsistent weighting scenarios in the class of weighted voting
games.

Table 11: Number of weighted voting games with minimum integer representations

n 2 3 4 5 6 7 8 9

Number of games 3 8 25 117 1 111 29 373 20 730 164 993 061 482

Finally, let us recall that a weighted form of the dual game Ĝ of G is [q̂;w1, w2, . . . , wn]
where w = wN is the total weight and q̂ = w − q + 1. The next remark tells us that the
two frequencies I(n,w, q) and I(n,w, q̂) are the same for all w ≥ 2 and for all q ≤ w.

Remark 10 For the dual game Ĝ = (N, Ŵ ) of the weighted game G = (N,W ), it can be

easily checked that the set Ŵ ∗ of all shift-minimal winning coalitions and the set L̂∗ of all
shift-maximal losing coalitions in Ŵ ∗ are such that

Ŵ ∗ = {N\S | S ∈ L∗} and L̂∗ = {N\S | S ∈W ∗} . (20)

Moreover,

(wS − q ≥ 0, for all S ∈W ∗)⇐⇒ (q̂ − wT ≥ 1, for all T ∈ L̂∗) (21)

and
(q − wS ≥ 1, for all S ∈ L∗)⇐⇒ (wT − q̂ ≥ 0, for all T ∈ Ŵ ∗). (22)

If follows that [q;w1, w2, . . . , wn] ∈ Gn,w,q ⇐⇒ [q̂;w1, w2, . . . , wn] ∈ Gn,w,q̂ and similarly,
[q;w1, w2, . . . , wn] ∈ Cn,w,q ⇐⇒ [q̂;w1, w2, . . . , wn] ∈ Cn,w,q̂. This proves that |Gn,w,q| =
|Gn,w,q̂| and for all games [q;w1, w2, . . . , wn] , |Cn,w,q| = |Cn,w,q̂|. Therefore,

I(n,w, q) = I(n,w, q̂) for all w ≥ 2 and for all q ≤ w. (23)
9The free software to calculate the integer points under the Parameterized Barvinok’s algorithm can be

found at http://freecode.com/projects/barvinok. The algorithm allows one to quantify the number of
integer solutions for systems of (in)equalities with parameters.

10We would like to gratefully acknowledge Sascha Kurz for having provided us with the lists of weighted
voting games up to 7 voters. Those lists are available upon request.
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5.2 Finite total weights

The equation (19) makes it possible to derive the representations of I (n,w, q) for the
considered values of n. Let us start with the case of n = 2.

Proposition 11 For n = 2, the probability of inconsistent weighting is given as:

• For w even

I (2, w, q) =





w−2q
w+2 if q ∈ [1, w2 ]

2q−w−2
w+2 if q ∈ [w2 + 1, w]

• For w odd

I (2, w, q) =





w−2q+1
w+1 if q ∈ [1, w+1

2 ]

2q−w−1
w+1 if q ∈ [w+1

2 + 1, w]

Proof. To obtain these representations, we compute first the total number |G2,w,q| of
solutions of the system (G2,w,q). As noted before, we use the parametrized Barvinok’s
algorithm in order to solve this system. The program indicates that the corresponding
quasi-polynomial is as follows: |G2,w,q| = w

2 + [1, 12 ]w for 1 ≤ q ≤ w. The number [1, 12 ]w
is a 2-periodic coefficient, meaning that such a coefficient depends on the parity of the
parameter w: the coefficient is equal to 1 for even w and to 1

2 for odd w. Consider
now the number |C2,w,q|. This is equal to the number of solutions for three systems
(C2,w,q (Gk)) as indicated before. The polynomial giving the number of solutions for
each case differs depending on whether w is odd or even, but also on the value of q.
For k = 1, the program indicates that the number of solutions |C2,w,q(G1)| is equal
to 1 if w is even and w+2

2 ≤ q ≤ w and it is equal to 0 otherwise. For k = 2, the
number of solutions |C2,w,q(G2)| is equal to w − q + 1 if w+2

2 ≤ q ≤ w and it is equal
to q if 1 ≤ q ≤ w+1

2 . For k = 3, the number of solutions |C2,w,q(G3)| is equal to 1 if
w is even and 1 ≤ q ≤ w

2 and it is equal to 0 otherwise. The number |C2,w,q| is then
obtained by summing the number of solutions of the three cases above. The desired
representation is obtained by dividing |C2,w,q| by the total number |G2,w,q| and using (19).

The next proposition deals with the probability representations for the 3-voter case.

Proposition 12 For n = 3, the probability of inconsistent weighting I (3, w, q) is given
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as:



[a, b] 0 < q ≤ w
3

w
3 < q ≤ w

2
w
2 < q ≤ 2w

3
2w
3 < q ≤ w]

[0, 0] w2+6w−18 q
w2+6w+12

w2−6w−24+18 q
w2+6w+12

w2+12w−18 q
w2+6w+12

w2−12w−24+18 q
w2+6w+12

[1, 0] w2+6w−6−18 q
w2+6w+12

w2−6w−18+18 q
w2+6w+12

w2+12w−6−18 q
w2+6w+12

w2−12w−18+18 q
w2+6w+12

[0, 1] w2+6w+5−18 q
w2+6w+5

w2−6w−7+18 q
w2+6w+5

w2+12w+11−18 q
w2+6w+5

w2−12w−13+18 q
w2+6w+5

[1, 1] w2+6w+11−18 q
w2+6w+5

w2−6w−13+18 q
w2+6w+5

w2+12w+5−18 q
w2+6w+5

w2−12w−7+18 q
w2+6w+5

[0, 2] w2+6w+8−18 q
w2+6w+8

w2−6w−16+18 q
w2+6w+8

w2+12w+8−18 q
w2+6w+8

w2−12w−16+18 q
w2+6w+8

[1, 2] w2+6w+2−18 q
w2+6w+8

w2−6w−10+18 q
w2+6w+8

w2+12w+2−18 q
w2+6w+8

w2−12w−10+18 q
w2+6w+8

[0, 3] w2+6w−3−18 q
w2+6w+9

w2−6w−15+18 q
w2+6w+9

w2+12w+3−18 q
w2+6w+9

w2−12w−21+18 q
w2+6w+9

[1, 3] w2+6w+3−18 q
w2+6w+9

w2−6w−21+18 q
w2+6w+9

w2+12w−3−18 q
w2+6w+9

w2−12w−15+18 q
w2+6w+9

[0, 4] w2+6w+8−18 q
w2+6w+8

w2−6w−16+18 q
w2+6w+8

w2+12w+8−18 q
w2+6w+8

w2−12w−16+18 q
w2+6w+8

[1, 4] w2+6w+2−18 q
w2+6w+8

w2−6w−10+18 q
w2+6w+8

w2+12w+2−18 q
w2+6w+8

w2−12w−10+18 q
w2+6w+8

[0, 5] w2+6w+5−18 q
w2+6w+5

w2−6w−7+18 q
w2+6w+5

w2+12w+11−18 q
w2+6w+5

w2−12w−13+18 q
w2+6w+5

[1, 5] w2+6w+11−18 q
w2+6w+5

w2−6w−13+18 q
w2+6w+5

w2+12w+5−18 q
w2+6w+5

w2−12w−7+18 q
w2+6w+5




In the first column, a list [a, b] of two integers is reported. The results should be read as
follows: if q mod 2 is a while w mod 6 is b, then the required frequency of inconsistent
weighting is provided in the row [a, b] and the appropriate column.

Proof. We first compute the total number |G3,w,q|. We again use the parametrized
Barvinok’s algorithm in order to solve the system (G3,w,q). The program indicates that

the corresponding quasi-polynomial is as follows: |G3,w,q| = w2

12 + w
2 + [1, 5

12 ,
2
3 ,

3
4 ,

2
3 ,

5
12 ]w

for 1 ≤ q ≤ w. Regarding the number |C2,w,q|, Table 10 indicates that eight cases have to
be considered. For k = 1, the program indicates that the number of solutions |C3,w,q(G1)|
is equal to 1 if w is a multiple of 3 and 2w+3

3 ≤ q ≤ w and it is equal to 0 otherwise. For
k = 2, the number |C3,w,q(G2)| is equal to q − w

2 + [0,−1
2 ]w if w+2

2 ≤ q ≤ 2w+2
3 , it is equal

to − q
2 + w

2 + [[1, 12 ]w, [
1
2 , 0]w]q if 2w+3

3 ≤ q ≤ w, and it is equal to 0 otherwise. For k = 3,
the number |C3,w,q(G3)| is equal to q − w

2 + [[−1,−1
2 ]w, [0,−1

2 ]w]q if w+2
2 ≤ q ≤ 2w+1

3 , it is
equal to − q

2 + w
2 + [[0, 12 ]w, [

1
2 , 0]w]q if 2w+2

3 ≤ q ≤ w − 1, and it is equal to 0 otherwise.
For k = 4, the number |C3,w,q(G4)| is equal to q

2 + [0, 12 ]q if 1 ≤ q ≤ w+1
2 and it is equal to

− q
2 + w

2 + [[1, 12 ]w, [
1
2 , 1]w]q if w+2

2 ≤ q ≤ w. For k = 5, the number |C3,w,q(G5)| is equal to
q
2 + [0,−1

2 ]q if 2 ≤ q ≤ w+1
3 , it is equal to −q+ w

2 + [[1, 12 ]w, [0,
1
2 ]w]q if w+2

3 ≤ q ≤ w
2 , and it

is equal to 0 otherwise. For k = 6, the number |C3,w,q(G6)| is equal to 1 if w is a multiple
of 3 and w+3

3 ≤ q ≤ 2w
3 and it is equal to 0 otherwise. For k = 7, the number |C3,w,q(G7)| is

equal to q
2 +[[0, 0]w, [

1
2 ,−1

2 ]w]q if 1 ≤ q ≤ w
3 , it is equal to −q+ w

2 +[1, 12 ]w if w+1
3 ≤ q ≤ w

2 ,
and it is equal to 0 otherwise. Finally, for k = 8, the number |C3,w,q(G8)| is equal to 1 if
w is a multiple of 3 and 1 ≤ q ≤ w

3 and it is equal to 0 otherwise. The number |C3,w,q|
is obtained by summing the number of solutions of the eight cases above. The desired
representation is obtained by dividing |C3,w,q| by the total number |G3,w,q| and using (19).

We deduce from the above two theorems the computed values of I(2, w, q) and I(3, w, q)
that are displayed in Tables 16 and 17 (see Appendix) for various values of w and some

20



values of q varying from 1 to w. The four-voter case is more complex and we cannot find
exact formulas for I (4, w, q) since the periods of the 25 quasi-polynomials that we have
to deal with are very large. However, we report the computed values of I(4, w, q) in Table
18 (see Appendix) for the same values of w and q.11 Figures 1-3 illustrate our results for
some values of w. We also report in Tables 16-18 the optimal probabilities denoted Imin
(q) and Imax (q) corresponding respectively to the minimal and the maximal probabilities
as well as the corresponding quotas q running from 1 to w for every value of w. For n = 2,
for instance, the minimum of I(n,w, q) is 0 and corresponds to q = w

2 and q = w
2 + 1 for

even w and q = w+1
2 for odd w. The maximum of I(n,w, q) corresponds to the probability

obtained for q = 1 and q = w.
A couple of points should be stressed when studying those results closely. First, we note

that, for a given value of w, the probability of inconsistent weighting tends to decrease
when q is small while it increases when q goes to w. Recall that our probabilities are
symmetric around a quota corresponding to simple majority (see Remark 10). Second, it
is worth noticing that for the three-voter and four-voter cases, our probabilities tend to
slightly increase when q is around simple majority. Third, from Tables 16 to 18, we also
find that, for given quota q and total weight w, the probability of inconsistent weighting
increases with the number of voters. Fourth, recall that Proposition 6 tells us that each
weighted voting game that admits a pair of symmetric voters has some consistent weighted
forms as well as some inconsistent weighted forms. However, it should be noted that our
probabilistic results show that an increase in w will clearly lead to a very high probability
of inconsistent weighting even for a small number of voters.

11The representations of the 25 cases are available upon request from the authors.
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Figure 1: Probability of having inconsistent weighted forms with 2 voters for some fixed
values of w and q.
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Figure 2: Probability of having inconsistent weighted forms with 3 voters for some fixed
values of w and q.
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Figure 3: Probability of having inconsistent weighted forms with 4 voters for some fixed
values of w and q.

5.3 Infinite total weights

This section deals with the case of a total weight w tending to infinity. Let us consider
the ratio q

w which tends to r such that 0 < r ≤ 1 as w tends to infinity. We focus on the
limit I (n,∞, r) of I (n,w, q) as w tends to infinity and w

q tends to r. As mentioned before,
given G ∈ WGn, the total numbers |Gn,w,q| and |Cn,w,q(G)| of solution of the sets (Gn,w,q)
and (Cn,w,q(G)) of constraints are pseudo-polynomials. It is well known that the leading
terms of |Gn,w,q| and |Cn,w,q(G)| are the n-dimensional volumes vol (Gn) and vol (Cn(G)) of
the supporting polytope (Gn) and (Cn(G)) associated with (Gn,w,q) and (Cn,w,q(G)) such
that:

(Cn(G)) :





xS − y ≥ 0 for all S ∈W ∗
y − xS ≥ 0 for all S ∈ L∗
xi − xj = 0 for all i, j ∈ Nt, t = 1, 2, . . . , s
xi − xj ≥ 0 for all i ∈ Nt, j ∈ Nt+1, t = 1, 2, . . . , s− 1
1− y ≥ 0
y ≥ 0
1−∑i∈N xi = 0

and

(Gn) :





1− y ≥ 0
y ≥ 0
xi ≥ xi+1 i = 1, 2, . . . , n− 1
1−∑i∈N xi = 0

where y = q
w , xS = wS

w for every S ∈ N , and xi = wi
w for i = 1, 2, . . . , n. Note that from

(Gn,w,q) and (Cn,w,q(G)) to (Gn) and (Cn(G)), each c
w is set to 0 for each second term c as

w tends to infinity. It follows from equation (19) that

I (n,∞, r) = 1−
∑

Gk∈WGn

vol (Cn (Gk))

vol (Gn)
(24)
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Several methods and algorithms can be found in the literature for the computation
of polytopes’ volumes. As noted before, the volume of every rational polytope can be
calculated by considering the leading coefficient of the Ehrhart quasi-polynomial associated
with it. We will consider this method throughout the article. However, it is worth noting
that the volume of a rational polytope can also be obtained by a direct use of various
volume computation algorithms that we can find in the literature. For more details on
these algorithms and their use in social choice theory, the reader may refer to Cervone
et al. (2005) and Moyouwou and Tchantcho (2017). These techniques have recently been
used under different forms by Bubboloni et al. (2020), Diss and Doghmi (2016), El Ouafdi
et al. (2020), Kamwa (2019), Kamwa and Moyouwou (2020), Lepelley et al. (2018), and
Lepelley and Smaoui (2019), among others.

Recall now that WG∗n is the set of all weighted voting games G with n voters that
admit no pair of symmetric voters; that is, all representation forms with SYM (G) =
({1} , {2} , . . . , {n}). To compute I (n,∞, r), we need again the complete list WGn of all
weighted voting games with n voters that was obtained from Kurz (2012). However, the
next proposition teaches us that a simplification can be made in the infinite case, and this
plays an important role in obtaining our probabilities of inconsistent weighting.

Proposition 13 Given any number n ≥ 2 of voters,

I (n,∞, r) = 1−
∑

Gk∈WG∗n

vol (Cn (Gk))

vol (Gn)
. (25)

Proof. Note first that the dimension of the supporting polytope (Gn) is n. In addition,
for each game Gk ∈ WGn\WG∗n, SYM (Gk) 6= ({1} , {2} , . . . , {n}) and for each game
Gk ∈ WG∗n, SYM (Gk) = ({1} , {2} , . . . , {n}). Therefore, for all games Gk ∈ WGn\WG∗n,
the constraints in (Cn,w,q (Gk)) include at least one equality between the weights of
symmetric voters since at least two symmetric voters exist. Each possible such equality
is reported in the constraints of the supporting polytope Cn (Gk) of (Cn,w,q (Gk)). As a
result, Cn (Gk) will have dimension less than n. Hence its n-dimensional volume is 0; that
is vol (Cn (Gk)) = 0. This completes the proof.

Intuitively, Proposition 13 tells us that the probability of an inconsistent weighting
in G as w tends to infinity is equal to one minus the probability of the cases where Gk
leads to SYM (Gk) = ({1} , {2} , . . . , {n}). This result allows us to find the probability
representations as a function of the ratio r for the considered values of n.

Proposition 14 For n = 2, w → +∞, and q
w → r with 0 < r ≤ 1, the probability of

inconsistent weighting is given as:

I (2,∞, r) =





1− 2r if r ∈]0, 12 ]

2r − 1 if r ∈ [12 , 1]

Proof. Recall that, in Table 9, each weighted voting game is given by a unique weighted
representation with a minimal sum of positive integer weights. It follows that WG∗2 is a
singleton and consists in the game G2 in which voter 1 is the dictator. Recall now from
the proof of Proposition 11 that |G2,w,q| = w

2 + [1, 12 ]w and, for k = 2, the number of
solutions of the system (C2,w,q (G2)) is equal to w − q + 1 if w+2

2 ≤ q ≤ w and it is equal
to q if 1 ≤ q ≤ w+1

2 . If we assume large weights, replace q by rw in the results, and only
consider the term of higher degree in w, we have vol (Gn) = 1

2 , vol (Cn (G2)) = 1 − r if
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1
2 ≤ r ≤ 1, and vol (Cn (G2)) = r if 0 < r ≤ 1

2 . Then vol(Cn(G2))
vol(Gn) is equal to (2 − 2r) if

1
2 ≤ r ≤ 1 and it is equal to 2r if 0 < r ≤ 1

2 . We complete the proof using Proposition 13.

The next proposition deals with the cases of n = 3 and n = 4.

Proposition 15 For w → +∞, and q
w → r with (0 < r ≤ 1), the probability of inconsis-

tent weighting is given as:

I (n,∞, r) = 1, for n = 3, 4.

Proof. Let us start with the case of n = 3. In Table 10, each weighted voting
game admits at least a pair of symmetric voters. It follows that WG∗3 is empty. In
other words, the set of constraints associated with consistent representations of any
weighted voting game with three voters admits an equality between the weights of two
symmetric voters. Therefore, Cn (Gk) for every k of Table 10 will have dimension less
than 3. Hence, its 3-dimensional volume is 0. Therefore, using Proposition 13, we get
I (3,∞, r) = 1. The same proof is used for n = 4 sinceWG∗4 is also empty (see Table 14).

Remark that WG∗3 = WG∗4 = ∅ also comes from Proposition 9. The next proposition
is related to the case of n = 5.

Proposition 16 For n = 5, w → +∞, and q
w → r with 0 < r ≤ 1, the probability of

inconsistent weighting is given as:

I (5,∞, r) =





1 if r ∈]0, 13 ]

−810 r4 + 1080 r3 − 540 r2 + 120 r − 9 if r ∈ [13 ,
2
5 ]

17940 r4 − 28920 r3 + 17460 r2 − 4680 r + 471 if r ∈ [25 ,
3
7 ]

−54090 r4 + 94560 r3 − 61920 r2 + 18000 r − 1959 if r ∈ [37 ,
4
9 ]

11520 r4 − 22080 r3 + 15840 r2 − 5040 r + 601 if r ∈ [49 ,
1
2 ]

11520 r4 − 24000 r3 + 18720 r2 − 6480 r + 841 if r ∈ [12 ,
5
9 ]

−54090 r4 + 121800 r3 − 102780 r2 + 38520 r − 5409 if r ∈ [59 ,
4
7 ]

17940 r4 − 42840 r3 + 38340 r2 − 15240 r + 2271 if r ∈ [47 ,
3
5 ]

−810 r4 + 2160 r3 − 2160 r2 + 960 r − 159 if r ∈ [35 ,
2
3 ]

1 if r ∈]23 , 1]

Proof. For n = 5, there are only two possible weighted voting games such that
SYM (G) = ({1} , {2} , . . . , {n}): [9; 5, 4, 3, 2, 1] and [7; 5, 4, 3, 2, 1]. The two games as
well as their shift-minimal winning coalitions and shift-maximal losing coalitions are de-
scribed in Table 15 (see the appendix). As we assume large weights, we can again replace
q by rw and then consider the term of higher degree in w. Using the parametrized Barvi-
nok’s algorithm, the term of higher degree in w of |G5,w,q| is 1

2880 for 1 ≤ q ≤ w. Then, this
value defines our first volume vol (Gn). In addition, for k = 1, the term of higher degree
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in w of |Cn,w,q(G1)| defines the second volume

vol (Cn (G1)) =





−4r4 + 25
3 r

3 − 13
2 r

2 + 9
4r − 7

24 for 1
2 ≤ r ≤ 5

9

601
32 r

4 − 1015
24 r

3 + 571
16 r

2 − 107
8 r + 541

288 for 5
9 ≤ r ≤ 4

7

−299
48 r

4 + 119
8 r

3 − 213
16 r

2 + 127
24 r − 227

288 for 4
7 ≤ r ≤ 3

5

9
32r

4 − 3
4r

3 + 3
4r

2 − 1
3r + 1

18 for 3
5 ≤ r ≤ 2

3

0 otherwise

Finally, for k = 2, the term of higher degree in w of |Cn,w,q(G2)| defines the last volume

vol (Cn (G2)) =





9
32r

4 − 3
8r

3 + 3
16r

2 − 1
24r + 1

288 for 1
3 ≤ r ≤ 2

5

−299
48 r

4 + 241
24 r

3 − 97
16r

2 + 13
8 r − 47

288 for 2
5 ≤ r ≤ 3

7

601
32 r

4 − 197
6 r

3 + 43
2 r

2 − 25
4 r + 49

72 for 3
7 ≤ r ≤ 4

9

−4r4 + 23
3 r

3 − 11
2 r

2 + 7
4r − 5

24 for 4
9 ≤ r ≤ 1

2

0 otherwise

Using Proposition 13, the desired probabilities are obtained as a function of r by summing
the outputs of k = 1 and k = 2 and dividing by vol (Gn) = 1

2880 .

The computed values of I(n,∞, r) are displayed in Table 12 for different values of the
ratio r. For the five-voter case, Table 13 provides the limiting probability I(5,∞, r) for
other interesting values of r. A couple of points should be stressed when looking closely
at those results. First, it turns out that when a weighted representation is chosen from
Gn,w,q with n = 2, the limiting probability of inconsistent weighting tends to 0 as soon as
r tends to 1

2 . Put another way, inconsistent weightings with two voters are rare as soon
as the quota represents half of the total sum of weights. This result is consistent with
our previous results obtained for a finite total weight w. Second, it also appears that,
when a weighted representation is chosen from Gn,w,q with n = 3 and n = 4, the limiting
probability of observing an inconsistent weighting is equal to 1. In other words, one is quite
sure to obtain an inconsistent weighting by choosing a random weighted representation
with three and four voters. Third, it seems that similarly strange behavior is observed for
the five-voter case with infinite total weight w when it is compared to the one that we
already observed for the three-voter and four-voter cases with finite total weight w. More
exactly, our results show that I(5,∞, r) tends to decrease when the value of r exceeds 1

3
while it increases when r goes to 2

3 . However, I(5,∞, r) also increases when r goes to
1
3 and it slightly decreases when r exceeds 1

2 . Note finally that the number of distinct
weighted voting games with SYM (Gk) = ({1} , {2} , . . . , {n}) that we have to deal with
is equal to 76 and 5601 for n = 6 and n = 7, respectively. The cases that we deal with
in our article illustrate how very tedious it will be to perform all the calculations. This
again makes the computations very complicated. However, we believe that they lead to
identical results or small differences in the probability for having inconsistent weighting
for both finite and infinite total weight w.
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Table 12: The limiting probability I(n,∞, r) of having inconsistent weighted forms with
2, 3, 4, and 5 voters (in %)

Number of voters n

r 2 3 4 5

0+ 100 100 100 100

0.1 80 100 100 100

0.2 60 100 100 100

0.3 40 100 100 100

0.4 20 100 100 98.40

0.5 0 100 100 100

0.6 20 100 100 98.40

0.7 40 100 100 100

0.8 60 100 100 100

0.9 80 100 100 100

1 100 100 100 100

Table 13: The limiting probability I(5,∞, r) of having inconsistent weighted forms with
r ∈ [13 ,

2
3 ] (in %)

r 1
3 0.35 0.40 0.45 0.46 0.47 0.48 0.49 0.50

I(n,∞, r) 100 99.99 98.40 95.20 96.81 98.34 99.42 99.92 100

r 0.51 0.52 0.53 0.54 0.55 0.60 0.65 2
3

I(n,∞, r) 99.92 99.42 98.34 96.81 95.20 98.40 99.99 100

6 Concluding remarks

Our study raises the following additional questions.
Firstly, regarding the probabilistic approach, our probabilities have been obtained by

assuming that all representations of games in Gn,w,q are equally likely to be observed. If
the weights are chosen to reflect the size differences between voters, then it is not very
realistic that all representations are equally likely. It is obviously natural to ask whether
our probabilities behave similarly when considering other distributions of the weighted
voting games. The extension of our results to other distributions remains open.

Secondly, it is also worth mentioning that our probabilities are computed for a given
quota and for a known total sum of weights. An inconsistent weighting arises from an
inappropriate distribution of weights. An alternative problem we did not consider here
would have consisted in assuming that only the total sum of weights is known. In this
latter case, an inconsistent weighting results both from the choice of a quota and the
distribution of weights. The corresponding probabilities of inconsistent weighting in this
second setting can be obtained by summing the ones reported here, provided that each
of our probabilities for a given quota is multiplied by the proportion of weighted voting
games with that quota among all weighted voting games having the same sum of weights.

Thirdly, we did not consider power indices in our framework although they can be used
to test or characterize inconsistent weighted forms. Two prominent such power indices are
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the Shapley-Shubik power index (Shapley and Shubik, 1954) and the Banzhaf power index
(Banzhaf, 1965). It is well known that these power indices assign the same power to two
voters in a weighted voting game if and only if they are symmetric. As a consequence, a
weighted form is inconsistent for a weighted voting game if and only if there are two voters
with distinct weights but the same Shapley-Shubik or Banzhaf index. In future works, it
would make sense to develop the connections between inconsistent weighting and power
indices.

Appendix

Table 14: List of all four-voter weighted voting games G

k Gk L∗ (Gk) W ∗ (Gk) SYM (Gk)

1 [4; 1, 1, 1, 1] [{1, 2, 3}] [{1, 2, 3, 4}] {1, 2, 3, 4}
2 [3; 1, 1, 1, 0] [{1, 2, 4}] [{1, 2, 3}] {1, 2, 3} , {4}
3 [5; 2, 2, 1, 1] [{1, 2} , {1, 3, 4}] [{1, 2, 4}] {1, 2} , {3, 4}
4 [2; 1, 1, 0, 0] [{1, 3, 4}] [{1, 2}] {1, 2} , {3, 4}
5 [5; 3, 2, 1, 1] [{1, 3} , {2, 3, 4}] [{1, 2} , {1, 3, 4}] {1} , {2} , {3, 4}
6 [4; 2, 2, 1, 1] [{1, 3}] [{1, 2} , {2, 3, 4}] {1, 2} , {3, 4}
7 [4; 2, 1, 1, 1] [{1, 2} , {2, 3, 4}] [{1, 3, 4}] {1} , {2, 3, 4}
8 [3; 2, 1, 1, 0] [{1, 4} , {2, 3, 4}] [{1, 3}] {1} , {2, 3} , {4}
9 [5; 3, 2, 2, 1] [{1, 4} , {2, 3}] [{1, 3} , {2, 3, 4}] {1} , {2, 3} , {4}
10 [4; 3, 1, 1, 1] [{1} , {2, 3, 4}] [{1, 4}] {1} , {2, 3, 4}
11 [3; 2, 1, 1, 1] [{1} , {2, 3}] [{1, 4} , {2, 3, 4}] {1} , {2, 3, 4}
12 [4; 3, 2, 2, 1] [{1} , {2, 4}] [{1, 4} , {2, 3}] {1} , {2, 3} , {4}
13 [1; 1, 0, 0, 0] [{2, 3, 4}] [{1}] {1} , {2, 3, 4}
14 [3; 3, 1, 1, 1] [{2, 3}] [{1} , {2, 3, 4}] {1} , {2, 3, 4}
15 [2; 2, 1, 1, 0] [{2, 4}] [{1} , {2, 3}] {1} , {2, 3} , {4}
16 [3; 3, 2, 1, 1] [{2} , {3, 4}] [{1} , {2, 4}] {1} , {2} , {3, 4}
17 [2; 2, 1, 1, 1] [{2}] [{1} , {3, 4}] {1} , {2, 3, 4}
18 [3; 1, 1, 1, 1] [{1, 2}] [{2, 3, 4}] {1, 2, 3, 4}
19 [2; 1, 1, 1, 0] [{1, 4}] [{2, 3}] {1, 2, 3} , {4}
20 [3; 2, 2, 1, 1] [{1} , {3, 4}] [{2, 4}] {1, 2} , {3, 4}
21 [1; 1, 1, 0, 0] [{3, 4}] [{2}] {1, 2} , {3, 4}
22 [2; 2, 2, 1, 1] [{3}] [{2} , {3, 4}] {1, 2} , {3, 4}
23 [2; 1, 1, 1, 1] [{1}] [{3, 4}] {1, 2, 3, 4}
24 [1; 1, 1, 1, 0] [{4}] [{3}] {1, 2, 3} , {4}
25 [1; 1, 1, 1, 1] [] [{4}] {1, 2, 3, 4}

Table 15: List of all five-voter weighted voting games G with no pair of symmetric voters

k Gk L∗ (Gk) W ∗ (Gk) SYM (Gk)

1 [9; 5, 4, 3, 2, 1] [{1, 3} , {1, 4, 5} , {2, 3, 5}] [{1, 2} , {1, 3, 5} , {2, 3, 4}] {1} , . . . , {5}
2 [7; 5, 4, 3, 2, 1] [{1, 5} , {2, 4} , {3, 4, 5}] [{1, 4} , {2, 3} , {2, 4, 5}] {1} , . . . , {5}
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Table 16: Probability of having inconsistent weighted forms with 2 voters (in %)

w ↓ q → 1
⌈
w
4

⌉ ⌈
w
3

⌉ ⌈
w+1
2

⌉ ⌈
2w
3

⌉ ⌈
3w
4

⌉
w Imin (q) Imax (q)

5 66.67 33.33 33.33 0 33.33 33.33 66.67 0 (3) 66.67 (1 & 5)

10 66.67 33.33 16.67 0 16.67 33.33 66.67 0 (5 & 6) 66.67 (1 & 10)

15 87.50 50.00 37.50 0 25.00 50.00 87.50 0 (8) 87.50 (1 & 15)

20 81.82 45.45 27.27 0 27.27 36.36 81.82 0 (10 & 11) 81.82 (1 & 20)

25 92.31 46.15 30.77 0 30.77 46.15 92.31 0 (13) 92.31 (1 & 25)

30 87.50 43.75 31.25 0 25.00 43.75 87.50 0 (15 & 16) 87.50 (1 & 30)

35 94.44 50.00 33.33 0 33.33 50.00 94.44 0 (18) 94.44 (1 & 35)

40 90.48 47.62 28.57 0 28.57 42.86 90.48 0 (20 & 21) 90.48 (1 & 40)

45 95.65 47.83 34.78 0 30.43 47.83 95.65 0 (23) 95.65 (1 & 45)

50 92.31 46.15 30.77 0 30.77 46.15 92.31 0 (25 &26) 92.31 (1 & 50)

55 96.43 50.00 32.14 0 32.14 50.00 96.43 0 (28) 96.43 (1 & 55)

60 93.55 48.39 32.26 0 29.03 45.16 93.55 0 (30 & 31) 93.55 (1 & 60)

65 96.97 48.48 33.33 0 33.33 48.48 96.97 0 (33) 96.97 (1 & 65)

70 94.44 47.22 30.56 0 30.56 47.22 94.44 0 (35 & 36) 94.44 (1 & 70)

75 97.37 50.00 34.21 0 31.58 50.00 97.37 0 (38) 97.37 (1 & 75)

80 95.12 48.78 31.71 0 31.71 46.34 95.12 0 (40 & 41) 95.12 (1 & 80)

85 97.67 48.84 32.56 0 32.56 48.84 97.67 0 (43) 97.67 (1 & 85)

90 95.65 47.83 32.61 0 30.43 47.83 95.65 0 (45 & 46) 95.65 (1 & 90)

95 97.92 50.00 33.33 0 33.33 50.00 97.92 0 (48) 97.92 (1 & 95)

100 96.08 49.02 31.37 0 31.37 47.06 96.08 0 (50 & 51) 96.08 (1 & 100)

105 98.11 49.06 33.96 0 32.08 49.06 98.11 0 (53) 98.11 (1 & 105)

1000 99.60 49.90 33.13 0 33.13 49.70 99.60 0 (500 & 501) 99.60 (1 & 1000)

1005 99.80 49.90 33.40 0 33.20 49.90 99.80 0 (503) 99.80 (1 & 1005)

Table 17: Probability of having inconsistent weighted forms with 3 voters (in %)

w ↓ q → 1
⌈
w
4

⌉ ⌈
w
3

⌉ ⌈
w+1
2

⌉ ⌈
2w
3

⌉ ⌈
3w
4

⌉
w Imin (q) Imax (q)

5 80.00 40.00 40.00 60.00 40.00 40.00 80.00 40.00 (2 & 3) 80.00 (1 & 5)

10 85.71 64.29 57.14 71.43 57.14 64.29 85.71 57.14 (4 & 7) 85,71 (1 & 10)

15 92.59 74.07 70.37 81.48 70.37 74.07 92.59 70.37 (5, 6, 10 & 11) 92,59 (1 & 15)

20 95.45 81.82 75.00 84.09 75.00 79.55 95.45 75.00 (7 & 14) 95.45 (1 & 20)

25 98.46 84.62 80.00 89.23 80.00 84.62 98.46 80.00 (9 & 17) 98.46 (1 & 25)

30 96.70 85.71 82.42 89.01 82.42 85.71 96.70 82.42 (10, 11, 20 & 21) 96.70 (1 & 30)

35 99.17 89.17 85.00 92.50 85.00 89.17 99.17 85.00 (12 & 24) 99.17 (1 & 35)

40 98.70 90.26 86.36 92.21 86.36 88.96 98.70 86.36 (14 & 27) 98.70 (1 & 40)

45 98.96 90.10 88.02 93.23 88.02 90.10 98.96 88.02 (15, 16, 30 & 31) 98.96 (1 & 45)

50 99.15 91.45 88.89 94.02 88.89 91.45 99.15 88.89 (17 & 34 ) 99.15 (1 & 50)

55 99.64 92.50 90.00 95.00 90.00 92.50 99.64 90.00 (19 & 37) 99.64 (1 & 55)

60 99.09 92.75 90.63 94.56 90.63 92.45 99.09 90,63 (20, 21, 40 & 41) 99.09 (1 & 60)

65 99.74 93.51 91.43 95.58 91.43 93.51 99.74 91.43 (22 & 44) 99.74 (1 & 65)

70 99.55 93.92 91.89 95.72 91.89 93.92 99.55 91.89 (24 & 47) 99.55 (1 & 70)

75 99.61 94.28 92.50 96.06 92.50 94.28 99.61 92.50 (25, 26, 50 & 51) 99.61 (1 & 75)

80 99.65 94.77 92.86 96.17 92.86 94.43 99.65 92.86 (27 & 54) 99.65 (1 & 80)

85 99.84 94.88 93.33 96.59 93.33 94.88 99.84 93.33 (29 & 57) 99.84 (1 & 85)

90 99.58 95.01 93.62 96.53 93.62 95.01 99.58 93.62 (30, 31, 60 & 61) 99.58 (1 & 90)

95 99.88 95.50 94.00 97.00 94.00 95.50 99.88 94.00 (32 & 64) 99.88 (1 & 95)

100 99.77 95.70 94.23 96.95 94.23 95.59 99.77 94.23 (34 & 67) 99.77 (1 & 100)

105 99.79 95.78 94.55 97.12 94.55 95.78 99.79 94.55 (35, 36, 70 & 71) 99.79 (1 & 105)

1000 100.00 99.55 99.40 99.70 99.40 99.55 100.00 99.40 (334 & 667) 100.00 (1 & 1000)

1005 100.00 99.55 99.41 99.70 99.41 99.55 100.00 99.41 (335, 336, 670 & 671) 100.00 (1 & 1005)
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Table 18: Probability of having inconsistent weighted forms with 4 voters (in %)

w ↓ q → 1
⌈
w
4

⌉ ⌈
w
3

⌉ ⌈
w+1
2

⌉ ⌈
2w
3

⌉ ⌈
3w
4

⌉
w Imin (q) Imax (q)

5 83.33 50.00 50.00 66.67 50.00 50.00 83.33 50.00 (2 & 4) 83.33 (1 & 5)

10 91.30 60.87 60.87 69.57 60.87 60.87 91.30 60.87 (3, 4, 7 & 8) 91.30 (1 & 10)

15 96.30 81.48 79.63 88.89 75.93 81.48 96.30 75.93 (6 & 10) 96.30 (1 & 15)

20 97.22 83.33 79.63 84.26 79.63 80.56 97.22 77.78 (8 & 13) 97.22 (1 & 20)

25 99.46 88.65 85.95 95.14 85.95 88.65 99.46 85.41 (10 & 16) 99.46 (1 & 25)

30 98.99 88.22 86.87 93.60 85.86 88.22 98.99 85.52 (12 & 19) 98.99 (1 & 30)

35 99.77 92.74 90.02 97.28 90.02 92.74 99.77 89.34 (13 & 23) 99.77 (1 & 35)

40 99.53 92.25 89.56 94.62 89.56 91.46 99.53 89.24 (15, 16, 25 & 26) 99.53 (1 & 40)

45 99.77 93.98 92.13 98.15 91.44 93.98 99.77 91.44 (16, 17, 29 & 30) 99.77 (1 & 45)

50 99.83 93.76 91.94 97.40 91.94 93.76 99.83 91.42 (18 & 33) 99.83 (1 & 50)

55 99.93 95.45 93.11 98.73 93.11 95.45 99.93 92.78 (20 & 36) 99.93 (1 & 55)

60 99.79 95.17 93.34 97.32 92.92 94.75 99.79 92.65 (22 & 39) 99.79 (1 & 60)

65 99.96 96.04 94.28 99.07 94.28 96.04 99.96 93.81 (24 & 42) 99.96 (1 & 65)

70 99.93 95.80 94.13 98.57 94.13 95.80 99.93 93.75 (26 & 45) 99.93 (1 & 70)

75 99.94 96.73 95.10 99.27 94.76 96.73 99.94 94.59 (28 & 48) 99.94 (1 & 75)

80 99.93 96.55 94.96 98.43 94.96 96.32 99.93 94.53 (30 & 51) 99.93 (1 & 80)

85 99.98 97.03 95.47 99.43 95.47 97.03 99.98 95.21 (31 & 55) 99.98 (1 & 85)

90 99.95 96.88 95.58 99.09 95.38 96.88 99.95 95,19 (32 & 59) 99.95 (1 & 90)

95 99.99 97.46 95.99 99.54 95.99 97.46 99.99 95.69 (34 & 62) 99.99 (1 & 95)

100 99.96 97.32 95.89 98.95 95.89 97.16 99.96 95.63 (36 & 65) 99.96 (1 & 100)

105 99.98 97.64 96.42 99.61 96.23 97.64 99.98 96.06 (38 & 68) 99.98 (1 & 105)

1000 100.00 99.77 99.60 99.99 99.60 99.77 100.00 99.57 (356 & 645) 100.00 (1 & 1000)

1005 100.00 99.77 99.60 100.00 99.60 99.77 100.00 99,57 (360 & 646) 100.00 (1 & 1005)
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