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Abstract

A TU game is totally positive if it is a linear combination of unanimity games with nonneg-

ative coefficients. We show that the core on each cone of convex games that contains the

set of totally positive games is characterized by the traditional properties Pareto efficiency,

additivity (ADD), individual rationality, and the null-player property together with one new

property, called unanimity requiring that the solution, when applied to a unanimity game

on an arbitrary coalition, allows to distribute the entire available amount of money to each

player of this coalition. We also show that the foregoing characterization can be general-

ized to the domain of balanced games by replacing ADD by “ADD on the set of totally

positive games plus super-additivity (SUPA) in general”. Adding converse SUPA allows to

characterize the core on arbitrary domains of TU games that contain the set of all totally

positive games. Converse SUPA requires a vector to be a member of the solution to a game

whenever, when adding a totally positive game such that the sum becomes totally additive,

the sum of the vector and each solution element of the totally positive game belongs to

the solution of the aggregate game. Unlike in traditional characterizations of the core, our

results do not use consistency properties.
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1. Introduction

The core is one of the most prominent solution concepts in cooperative game theory. It

assigns to a transferable utility game (for short, a TU game, or a game) all Pareto-efficient

payoff vectors such that each coalition of players obtains at least the amount that is avail-

able in the coalition. We offer an axiomatic characterization of the core on domains of

games with a fixed player set. Axiomatic characterizations of the core on several classes

of TU and nontransferable utility games, typically with varying sets of players, have been

provided by Peleg (1986), Tadenuma (1992), Winter and Wooders (1994), Voorneveld and

van den Nouweland (1998), Hwang and Sudhölter (2001), and Llerena and Rafels (2007).

We should like to mention in particular the characterizations on totally balanced games by

Peleg (1989) and Sudhölter and Peleg (2002) and on convex games by Hokari et al. (2020)

and Dietzenbacher and Sudhölter (2021), among others. All these characterizations invoke

a consistency axiom.2 A solution is consistent if the restriction to the remaining players

of each vector selected by this solution is also selected in each reduced game on the set of

remaining players, in which only the subset of remaining players considers its reduced game.

We refer to Funaki and Yamato (2001) for some forms of reduced games used in some of the

characterizations of the core.

We provide characterizations of the core on several classes of TU games with a fixed player

set which do not invoke any consistency axiom. One of the crucial properties in these

characterizations is the additivity axiom requiring that the solution of the sum of two games

is the sum of the solutions in these two games. Bloch and de Clippel (2010) show that the

set of all balanced games, i.e., the set of games with a nonempty core, can be partitioned into

subsets in which the core is an additive solution. One of these subsets is the set of convex

games as proved already by Tijs and Branzei (2002), which contains the set of totally positive

games. These two subsets of games are of particular interest in view of the rapidly increasing

number of applications of the theory of cooperative games in recent years in various fields

like, e.g., economics, operations research, voting theory, scientometrics, medicine, and law.

In these applications the arising cooperative game is often convex and/or totally positive.

For replacing consistency, we introduce two new axioms. A solution satisfies unanimity

(UNA) if, when applied to the unanimity game on a coalition, it contains, for each player

of this coalition, the vectors that assigns the whole amount (i.e., one utility unit) to this

player. UNA, hence, requires that the solution to a unanimity game contains the vertices of

the imputation set of this game. This property is similar to Peleg’s condition of “unanimity

2An exception is the axiomatic characterization of the restricted core for the specific set of totally positive

games (i.e., games that are nonnegative linear combinations of unanimity games) with ordered players by

van den Brink et al. (2009).
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for 2-person games” (UTPG) in a characterization of the core on totally balanced games

(Peleg, 1989; Sudhölter and Peleg, 2002). On the one hand side, UTPG is stronger than

UNA as it requires coincidence with the imputation set for all unanimity games (even for

all games that are strategically equivalent to unanimity games). On the other hand, UNA

is a generalization of UTPG because it is a condition for games that may have more than

two players.

The other new property employed in some of our characterizations is called converse super-

additivity (CSUPA). The traditional axiom super-additivity (SUPA) requires that the sum

of solution elements of two games is a vector of the solution of the sum of these two games.

CSUPA may be regarded as a converse super-additivity property because it requires that

a payoff vector belongs to the solution of a game v if, for each totally positive game w ≠ 0

such that v + w is also totally positive, the sum of this vector and an arbitrary element of

the solution of w belongs to the solution of v +w.

In addition to the aforementioned new properties, we invoke classical axioms such as Pareto

efficiency, the null-player property, individual rationality, and non-emptiness. We also in-

troduce variants of the well-known reasonableness properties. A solution is coalition-wise

reasonable from above (REAB) or below (REBE), respectively, if each coalition receives at

most its maximal or at least its minimal, respectively, contribution.

Our axiomatic characterizations of the core are valid for various domains. The first and

main result is that, on each cone of convex games which contains the set of totally positive

games, the core is the unique solution which satisfies UNA, additivity, Pareto efficiency, the

null-player property, and individual rationality (Theorem 3.2). This result can be extended

to the larger set of balanced games (Corollary 4.1). To do so, as in the previous result,

we employ UNA, Pareto efficiency, the null-player property, and individual rationality on

balanced games. Furthermore, we require non-emptiness and super-additivity on the set of

balanced games, and additivity on the set of totally positive games. Replacing non-emptiness

by CSUPA yields a characterization of the core on each set of games which contains the set

of totally positive games (Corollary 4.4). Moreover, we show that REBE (alternatively,

Pareto efficiency and REAB) may be used to replace “additivity on totally positive games”.

The article is organized as follows. Section 2 provides definitions and notation. Section 3

introduces and motivates UNA and states the first main result, the characterization of the

core on several domains of convex games. Section 4 states the characterization results of

the core on the domain of balanced games and on more general domains. It also introduces

converse super-additivity and the new reasonableness properties and presents the second

main result, the characterization of the core on arbitrary sets of games with a fixed player

set that contain the set of totally positive games (Theorem 4.6). Section 5 concludes.
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2. Preliminaries

Let N be a finite set of at least two elements, which is called the set of players. Throughout,

let n = ∣N ∣. A coalitional game with transferable utility (for short, a game) on N is a pair

(N,v) where v is a function that associates a real number v(S) with each subset S of N . We

always assume that v(∅) = 0. As N is fixed in this article, we identify a game (N,v) with

its coalition function v. A coalition is a nonempty subset of N . Player i ∈ N is a null-player

in game v if v(S ∪ {i}) = v(S) for all S ⊆ N ∖ {i}. Two players i, j ∈ N are substitutes of the

game v if v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆ N ∖ {i, j}.

For each nonempty coalition T we denote by uT the unanimity game on T , i.e., for each

S ⊆ N ,

uT (S) = {
1, if S ⊇ T,

0, otherwise.

According to Shapley (1953), the unanimity games form a basis of the set of all games.

Therefore, for each game v there exists a unique collection (αT (v))T ∈2N∖{∅} of real coefficients

such that

v = ∑
T ∈2N∖{∅}

αT (v)uT . (2.1)

A game v is totally positive (Vasil’ev, 1975) if αT (v) ≥ 0 for all T ∈ 2N ∖ {∅}.

For each S ⊆ N and each vector x = (xi)i∈N ∈ RN , let x(S) = ∑i∈S xi (x(∅) = 0). We also

denote the indicator function of S by 1S ∈ RN , i.e.,

1
S
i = {

1, if i ∈ S,

0, if i ∈ N ∖ S.

Let X(v) be the set of Pareto efficient feasible vectors, i.e.,

X(v) = {x ∈ RN ∣ x(N) = v(N)}.

The core of a game v is the set of vectors

C(v) = {x ∈X(v) ∣ x(S) ≥ v(S)∀S ⊆ N}.

Remark 2.1. For each game v there exist totally positive games u,w such that v + u = w.
Indeed, with A = {T ∈ 2N ∖ {∅} ∣ αT (v) ≤ 0} and B = {T ∈ 2N ∖ {∅} ∣ αT (v) ≥ 0} put
u = ∑T ∈A(−α

T (v))uT and w = ∑T ∈B α
T (v)uT . Then u and w are totally positive and v+u = w.

A game v is convex (Shapley, 1971) if v(S) + v(T ) ≤ v(S ∩ T ) + v(S ∪ T ) for all S,T ⊆ N .

A game v is balanced (Bondareva, 1963; Shapley, 1967) if and only if C(v) ≠ ∅. Let Γpos,
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Γvex and Γbal denote the sets of totally positive, convex and balanced games, respectively.

As unanimity games are convex and the set of convex games is closed under summation

and under multiplication by a non-negative scalar, each totally positive game is convex.

Furthermore, each convex game is balanced (Shapley, 1971).

An ordering of N is a bijective mapping π ∶ N → {1, . . . , n}. Denote by ΠN the set of

orderings of N . For each π ∈ ΠN and i ∈ N , denote by P π
i the coalition of predecessors of i,

i.e., P π
i = {j ∈ N ∣ π(j) ≤ π(i)}. Moreover, for each game v, denote by aπ(v) the contribution

vector of π, i.e., the vector defined by

aπi (v) = v(P
π
i ) − v(P

π
i ∖ {i})∀i ∈ N. (2.2)

Note that aπ(v) = x ∈ RN is uniquely determined by the n equations x(P π
i ) = v(P

π
i ) for all

i ∈ N .

Remark 2.2. According to Shapley (1971) the core of a convex game v is the convex hull
of all of its contribution vectors:

C(v) = { ∑
π∈ΠN

λπa
π(v)∣λπ ≥ 0∀π ∈ ΠN , ∑

π∈ΠN
λπ = 1} . (2.3)

As a consequence, for each c ≥ 0 and each coalition S,

C(cuS) = {x ∈ RN
+ ∣x(S) = c, xj = 0∀j ∈ N ∖ S}. (2.4)

A (set-valued) solution σ on a set Γ of games assigns a set of vectors σ(v) ⊆ {x ∈ RN ∣ x(N) ≤

v(N)} to each game v ∈ Γ. Let σ be a solution on a set Γ of games on N . Then σ satisfies

� non-emptiness (NE) if σ(v) ≠ ∅ for all v ∈ Γ,

� the null-player property (NP) if, for all v ∈ Γ and all null-players i ∈ N , xi = 0 for all

x ∈ σ(v),

� additivity (ADD) if, for all v, u,w ∈ Γ with w = u + v, σ(u) + σ(v) = σ(w),

� super-additivity (SUPA) if, for all v, u,w ∈ Γ with w = u + v, σ(u) + σ(v) ⊆ σ(w),

� individual rationality (IR) if, for all v ∈ Γ and all x ∈ σ(v), xi ≥ v({i}) for all i ∈ N ,

� Pareto efficiency (EFF) if σ(v) ⊆X(N,v) for all v ∈ Γ,

� scale covariance (SCOV) if, for all v ∈ Γ and all α > 0 with αv ∈ Γ, σ(αv) = ασ(v).
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The core satisfies NP, SUPA, IR, EFF, and SCOV on each set of games. It satisfies NE on

each subset of balanced games. The core satisfies ADD on certain sets of games as shown by

Bloch and de Clippel (2010), e.g., on each subset of Γvex. Note also that a solution satisfying

ADD also satisfies SUPA, while the converse implication may not hold.

We conclude this section by proving the following useful lemma.

Lemma 2.3. Let Γ be a set of games such that Γpos ⊆ Γ. Then the core on Γ satisfies ADD
if and only if Γ ⊆ Γvex.

Proof. Let Γ be as hypothesized. The if part is well-known as mentioned. To show the

only if part, assume that the core on Γ satisfies ADD on Γ. Let v ∈ Γ and let S,T ⊆ N . It

remains to show that v(S) + v(T ) ≤ v(S ∩ T ) + v(S ∪ T ). We may assume that S /⊆ T and

T /⊆ S because otherwise the inequality is obviously satisfied. Hence, there exists π ∈ ΠN

such that S ∩ T = {i ∈ N ∣ π(i) ≤ ∣S ∩ T ∣} and S ∪ T = {i ∈ N ∣ π(i) ≤ ∣S ∪ T ∣}. By Remark

2.1 there exist u,w ∈ Γpos such that v + u = w. By Remark 2.2, z ∶= aπ(w) ∈ C(w). As

Γpos ⊆ Γ and as the core is assumed to satisfy ADD, there exist x ∈ C(u) and y ∈ C(v)

such that x + y = z. As z(S ∩ T ) = w(S ∩ T ) and z(S ∪ T ) = w(S ∪ T ), we conclude that

x(S ∩ T ) = u(S ∩ T ), x(S ∪ T ) = u(S ∪ T ), y(S ∩ T ) = v(S ∩ T ), and y(S ∪ T ) = v(S ∪ T ).

However, v(S ∩ T ) + v(S ∪ T ) = y(S ∩ T ) + y(S ∪ T ) = y(S) + y(T ) ≥ v(S) + v(T ). ◻

3. Axiomatization of the core on domains of convex games

In this section we provide a characterization of the core on an arbitrary cone of convex

games. Here, we say that set of games is a cone if it is closed under multiplication with

positive scalars (a set Γ of games is closed under multiplication with positive scalars if cv ∈ Γ

for all v ∈ Γ and c > 0) that contains all totally positive games.

For this purpose we introduce one further property. This axiom may be regarded as a weak-

ening of a natural generalization to n-person games of a well-known property for 2-person

games used by Peleg (1989) in an axiomatization of the core based on some consistency

properties. As our characterization results do not rely on consistency properties, such a

generalization to n-person games seems reasonable. Recall that, according to Peleg (1989),

a solution satisfies unanimity for 2-person games (UTPG) if the solution assigns the set of

all imputations, i.e., X ir(v) = {x ∈ X(v) ∣ xi ≥ v({i}) for all i ∈ N}, to each 2-person game

v under consideration. Now, a 2-person game for which X ir is nonempty is, up to strategic

equivalence, a unanimity game. Hence, UTPG mainly requires that the solution selects the

set of imputations for each 2-person unanimity game. Hence, a natural generalization of

UTPG to n-person games would be to require that the solution assigns to each unanimity
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game its set of imputations, i.e., its core. Our new axiom is weaker. It only requires that

the vertices of the imputation set are contained in the solution of every unanimity game.

The formal definition is as follows. Let Γ be a set of games and let σ be a solution on Γ.

Then σ satisfies

� unanimity (UNA) if, for all T ∈ 2N ∖ {∅} such that uT ∈ Γ, 1{i} ∈ σ(uT ) for each i ∈ T .

The interpretation of UNA is simple: A solution that satisfies UNA is liberal in the sense

that it allows to assign the entire amount of money available in a unanimity game to each

player in the determining coalition. Hence, the convex hull of these vectors is the entire set

of imputations, i.e., the entire core. Clearly, the core satisfies UNA on any domain of games.

The following lemma is useful.

Lemma 3.1. Let Γ ⊇ Γpos and σ be a solution on Γ that satisfies SUPA such that aπ(v) ∈
σ(v) ⊆ C(v) for all π ∈ ΠN and v ∈ Γpos. Then σ(w) ⊆ C(w) for all w ∈ Γ.

Proof. Let v ∈ Γ. By Remark 2.1, there exist u,w ∈ Γpos such that v + u = w. Let

y ∈ σ(v). Let S ∈ 2N ∖ {∅}. It remains to show that y(S) ≥ v(S). To this end let π ∈ ΠN

such that S = {j ∈ N ∣ π(j) ≤ ∣S∣}. By (2.2), ∑j∈S a
π
j (u) = u(S). Hence, by SUPA,

aπ(v) + y ∈ σ(w) ⊆ C(w), which implies that y(S) ≥ v(S). ◻

Theorem 3.2. Let Γ be a cone of games such that Γpos ⊆ Γ ⊆ Γvex. Then the core is the
unique solution on Γ that satisfies EFF, ADD, IR, NP, and UNA.

Proof. The core satisfies the axioms (see the two preceding sections). It remains to show

uniqueness. To this end let σ be a solution on Γ that satisfies the desired six axioms.

Step 1: We first show that the prerequisites of Lemma 3.1 are satisfied. Let v ∈ Γpos. If

v = cuS for some c ≥ 0, S ∈ 2N ∖ {∅} and x ∈ σ(v), then, by EFF, x(N) = v(N) = c, and,

by NP, xi = 0 for all i ∈ N ∖ S. Hence, x(S) = v(N). By IR, xj ≥ 0 for all j ∈ S, Hence,

x ∈ C(v) by (2.4). For π ∈ ΠN , let απ(v) ∶= caπ(uS). Hence, for c ∈ N, απ(v) ∈ σ(v) by

UNA and ADD. If c = 0, then aπ(v) = (0, . . . ,0) ∈ RN is the unique core element by (2.4).

By ADD, σ(v) + σ(uN) = σ(uN) so that, by UNA, σ(v) ≠ ∅, hence σ(v) = {(0, . . . ,0)}.

If c > 0 such that c ∈ R ∖ N, then, for c′ ∈ N with c′ > c, aπ(c′uS) ∈ σ(c′uS) as shown

before. By ADD, σ(cuS) + σ((c′ − c)uS) ∋ c′aπ(uS). As σ(cuS) ⊆ cC(uS) = C(cuS) and

σ((c′ − c)uS) ⊆ (c′ − c)C(uS) = C((c′ − c)uS), ADD guarantees that there are y ∈ C(cuS) and

z ∈ C((c′ − c)uS) such that y + z = aπ(c′uS) ∶= x′. By (2.2), x′(P π
i ) = c

′uS(P π
i ) for all i ∈ N .

Hence, y(P π
i ) = cu

S(P π
i ) and z(P π

i ) = (c
′ − c)uS(P π

i ) for all i ∈ N so that y = aπ(cuS) and

z = aπ((c′ − c)uS). If v ∈ Γpos is arbitrary, then aπ(v) ∈ σ(v) ⊆ C(v) by ADD.
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Step 2: We now show that, for each v ∈ Γ and π ∈ ΠN , aπ(v) ∈ σ(v) ⊆ C(v). Indeed, by

Lemma 3.1, σ(v) ⊆ C(v). By Remark 2.1, there exist u,w ∈ Γpos such that v + u = w. As

w ∈ Γpos, z ∶= aπ(w) ∈ σ(w). By ADD, there exist x ∈ σ(u) ⊆ C(u) and y ∈ σ(v) such that

x + y = z. For each r ∈ {1, . . . , n} put Sr = {i ∈ N ∣ π(i) ≤ r} and note that z(Sr) = w(Sr).

As σ(v) ⊆ C(v), we conclude that x(Sr) = u(Sr) and y(Sr) = v(Sr) so that y = aπ(v).

Step 3: We now finish the proof. If y is an arbitrary element of C(v), then, by (2.3),

y = ∑π∈ΠN λπa
π(v) for some λπ ≥ 0, π ∈ ΠN , such that ∑π∈ΠN λπ = 1. As v = ∑π∈ΠN λπv, and

as caπ(v) = aπ(cv) and cv ∈ Γ for all c ≥ 0, we get y ∈ σ(v) because σ satisfies ADD. ◻

Let Γ be a cone of games such that Γpos ⊆ Γ ⊆ Γvex. The following examples show that each

of the axioms employed in Theorem 3.2 is logically independent of the remaining axioms:

� The solution σ1 on Γ, defined by

σ1(v) = (C(v) −RN
+ ) ∩ {x ∈ RN ∣ xi ≥ v({i}) for all i ∈ N}

for each v ∈ Γ, satisfies all axioms except EFF.

� The solution σ2 on Γ, defined by σ2(v) = C(v) if v ∈ Γ contains at least one null player

and σ2(v) = C(v) ∪ {ESD(v)} if v ∈ Γ does not contain a null player, where ESD is

the equal surplus division value given by ESDi(v) = v({i}) + (v(N) −∑j∈N v({j})/n

for each v ∈ Γ and each i ∈ N , satisfies all axioms except ADD.

� The solution σ3 on Γ, defined by σ3(uT ) = {x ∈ X(uT ) ∣ xj = 0 for all j ∈ N ∖ T} for

all T ∈ 2N ∖ {∅} and, for each v ∈ Γ, by σ3(v) = ∑T ∈2N∖{∅}α
T (v)σ3(uT ), satisfies all

axioms except IR.

� The solution σ4 on Γ, defined by σ4(v) = {x ∈ X(v) ∣ xi ≥ v({i}) for all i ∈ N} for all

v ∈ Γ, satisfies all axioms except NP provided that n ≥ 3. For n = 2, NP follows from

IR and EFF.

� The solution σ5 on Γ, defined by σ5(v) = {φ(v)} for each v ∈ Γ, where φ(v) is the

Shapley value (recall that φ(v) = ∑π∈ΠN
aπ(v)
n! ), satisfies all axioms except UNA.

The following example, which can easily be generalized to the case n > 3, shows that it is

crucial to assume in Theorem 3.2 that the set Γ is a cone. For n = 2, all convex games are

totally positive.

Example 3.3. Let n = 3, say N = {1,2,3}, let v0 = u{2} + 2u{3} + u{1,2} + u{1,3} + u{2,3} − uN ,
and let Γ = Γpos ∪ {v0}. Note that v0 ∈ Γvex. We define the solution σ on Γ by σ(v0) =

8



{λaπ(v0) + (1 − λ)aπ
′

(v0) ∣ 0 ≤ λ ≤ 1, π, π′ ∈ ΠN} and σ(v) = C(v) for all v ∈ Γpos. As
{aπ(v0) ∣ π ∈ ΠN} = {(0,2,3), (1,1,3), (1,2,2)}, we obtain

σ(v0) = {(λ,2 − λ,3) ∣ 0 ≤ λ ≤ 1} ∪ {(λ,2,3 − λ) ∣ 0 ≤ λ ≤ 1} ∪ {(1,2 − λ,2 + λ) ∣ 0 ≤ λ ≤ 1},

i.e.,

X∶=σ(v0)−(0,1,2)={(λ,1−λ,1) ∣ 0 ≤ λ ≤ 1}∪{(λ,1,1−λ) ∣ 0 ≤ λ ≤ 1}∪{(1,1−λ,λ) ∣ 0 ≤ λ ≤ 1}.

Except ADD, the remaining axioms in Theorem 3.2 are punctual/“local” properties, i.e.,
properties that do not require to compare games. All properties are satisfied for all games
in Γpos because restricted to this domain our solution is the core. EFF, IR, and NP are also
satisfied for v0 because σ(v0) ⊆ C(v0). As v0 is not a unanimity game, UNA is also trivially
valid. Hence, it remains to show that ADD is satisfied. For this purpose, let u, v,w ∈ Γ
such that u + v = w. By SUPA of the core it remains to show that σ(w) ⊆ σ(u) + σ(v).
If u, v ∈ Γpos, then w ∈ Γpos and the proof is finished by ADD of the core. The case that
u = v = v0 does not appear because 2v0 ∉ Γ. Hence, we may assume that u = v0, v ∈ Γpos,
and w ∈ Γpos. Hence, v = uN + v′ for some v′ ∈ Γpos. By ADD of the core, σ(w) = C(w) =
C(v0 + v) = C(v0 + uN) + C(v′) = σ(v0 + uN) + σ(v′). Hence, it suffices to consider the case
v = uN . Let v1 = v0 − u{2} − 2u{3}, i.e., v1 is the 0-normalization of v0. As the core is
covariant under strategic equivalence, it remains to show that C(v1 +uN) ⊆X +C(uN). Let
z ∈ σ(v1 + uN) = C(v1 + uN). By symmetry of v1, hence of v1 + uN , we may assume that
z3 ≥ 1 because z(N) = 3. Let x = ( z1

z1+z2 ,
z2

z1+z2 ,1) and y = z − x. Then (see Fig. 1) x ∈ X and
y ∈ C(uN) so that the proof is finished.

Figure 1: Sketch to Example 3.3
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4. Axiomatization of the core on general domains of games

We use the results of the former section to establish characterizations of the core on broader

domains of games. An immediate consequence of Theorem 3.2 is the following corollary.

Corollary 4.1. The core is the unique solution on Γbal that satisfies EFF, IR, NP, NE,
UNA and SUPA and, on Γpos, ADD.

Proof. The core satisfies the desired properties. In order to show uniqueness, let σ be

solution that satisfies EFF, IR, NP, NE, UNA, and SUPA on Γbal and ADD on Γpos. Let

v ∈ Γbal. It remains to show that σ(v) = C(v). If n ≤ 2, then v ∈ Γvex, so that σ(v) = C(v)

by Theorem 3.2. So assume that n ≥ 3. By Lemma 3.1, σ(v) ⊆ C(v) for all v ∈ Γbal. In

order to prove the converse inclusion, let x ∈ C(v). As Peleg (1986) we consider the game w

given by w({i}) = v({i}) for all i ∈ N and w(S) = x(S) otherwise. Note that C(w) = {x}.

By Lemma 3.1 and NE, σ(w) = C(w) = {x}. Furthermore, set u = v − w and note that

C(u) = {(0, . . . ,0)}. As before we conclude that σ(u) = {0}. SUPA finishes the proof. ◻

In order to provide a characterization of the core on an arbitrary set of games that contains

the set of totally positive games, we note that, by Lemma 3.1, the core on such a set of

games is the maximum solution that coincides with the core on Γpos and satisfies SUPA.

Here, “maximum” is meant in the sense that each solution σ that satisfies the mentioned

properties is a subsolution of the core (i.e., σ(v) ⊆ C(v) for all v ∈ Γ) and that the core

satisfies the mentioned properties. In order to replace “maximum”, we reconsider the axiom

SUPA. Recall that a solution σ on a set Γ of games satisfies SUPA if for each v ∈ Γ and all

x ∈ RN :

x ∈ σ(v)⇒ {x} + σ(w) ⊆ σ(v +w) for all w ∈ Γ such that v +w ∈ Γ

This formulation of SUPA motivates to define the following “converse” version of SUPA,

which requires that, for each v ∈ Γ and all x ∈ RN :

x ∈ σ(v)⇐ {x} + σ(w) ⊆ σ(v +w) for all w ∈ Γ such that v +w ∈ Γ (4.5)

We now show that the core on Γ satisfies the following property that is even stronger than

(4.5), provided that Γ contains Γpos, the set of totally positive games. A solution σ on a set

Γ of games satisfies

� converse super-additivity (CSUPA) if, for all v ∈ Γ and all x ∈ RN the following condi-

tion is satisfied: If x+ y ∈ σ(v +w) for all y ∈ σ(w) and all w ∈ Γ∩Γpos such that w ≠ 0

and v +w ∈ Γ ∩ Γpos, then x ∈ σ(v).
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Lemma 4.2. Let Γ be a set of games that contains Γpos. Then the core on Γ satisfies
CSUPA.

Proof. Let v ∈ Γ and x ∈ RN such that {x} +C(w) ⊆ C(v +w) for each w ∈ Γpos ∖ {0} such

that v+w ∈ Γpos. It remains to show that x ∈ C(v). By Remark 2.1, there exists w ∈ Γpos such

that v +w ∈ Γpos. We may assume that w ≠ 0 because in the case that v ∈ Γpos we may select

an arbitrary w ∈ Γpos∖{0}. Assume, on the contrary, x ∈ RN∖C(v), then either x(N) > v(N)

or there exists S ⊆ N such that x(S) < v(S). In the former case (x + z)(N) > (v + w)(N)

for all z ∈ C(w) so that x + z ∉ C(v +w). In the latter case, there exists z ∈ C(w) such that

z(S) = w(S). Hence, (x + z)(S) < (v +w)(S), i.e., x + z ∉ C(v +w) as well, and the desired

contradiction has been obtained. ◻

Thus, we may now show the following result.

Proposition 4.3. Let Γpos ⊆ Γ. A solution on Γ that coincides with the core on Γpos satisfies
SUPA and CSUPA if and only if it coincides with the core on the entire set Γ.

Proof. The core satisfies SUPA so that the if part is due to Lemma 4.2. For the only if

part, assume that σ satisfies SUPA and CSUPA on Γ ⊇ Γpos and coincides with the core

on Γpos. Let v ∈ Γ. By Lemma 3.1, σ(v) ⊆ C(v). In order to show the other inclusion, let

x ∈ C(v). By SUPA of the core, {x} + C(w) ⊆ C(v + w) for all w ∈ Γ such that v + w ∈ Γ,

hence x ∈ σ(v) by CSUPA. ◻

Therefore, Proposition 4.3 and Theorem 3.2 lead to the following corollary.

Corollary 4.4. Let Γ be a set of games that contains Γpos. Then the core is the unique
solution on Γ that satisfies EFF, SUPA, CSUPA, IR, NP, and UNA and, when restricted to
Γpos, ADD.

Further axiomatizations of the core that avoid “ADD on Γpos” may be obtained by replacing

IR and NP by one of the following versions of reasonableness.

For a game v and i ∈ N denote the maximal and minimal contribution of i by bmax
i (v) and

bmin
i (v), i.e.,

bmax
i (v) = maxS⊆N∖{i}(v(S ∪ {i}) − v(S)) and

bmin
i (v) = minS⊆N∖{i}(v(S ∪ {i}) − v(S)).

11



Recall that x ∈ RN is called reasonable from above (Milnor, 1952) if xi ≤ bmax
i (v) for all i ∈ N .

Similarly, we say that x is reasonable from below if xi ≥ bmin
i (v) for all i ∈ N . Arguments

supporting these kinds of reasonableness are as follows. It seems, indeed, unreasonable to pay

to any player more than her maximal contribution to any coalition and, vice versa, a player

may refuse to join any coalition if she does not receive at least her minimal contribution.

Note that individual rationality implies reasonableness from below.

We now define coalition-wise reasonableness as follows. The maximal and minimal contri-

bution of a coalition T ∈ 2N ∖ {∅}, respectively, is

bmax
T (v) = maxS⊆N∖T (v(S ∪ T ) − v(S)) and

bmin
T (v) = minS⊆N∖T (v(S ∪ T ) − v(S)).

Let Γ be a set of games and σ be a solution on Γ. Say that σ satisfies

� coalition-wise reasonableness from above (REAB) if, for all v ∈ Γ, x ∈ σ(v) and T ∈

2N ∖ {∅}, x(T ) ≤ bmax
T (v);

� coalition-wise reasonableness from below (REBE) if, for all v ∈ Γ, x ∈ σ(v) and T ∈

2N ∖ {∅}, x(T ) ≥ bmin
T (v).

Note that the core satisfies REBE by definition. If x ∈ X∗(v) does not satisfy REAB,

then there exists a coalition T such that x(T ) > v(S ∪ T ) − v(S) for all S ⊆ N ∖ T , hence,

x(T ) > v(N) − v(N ∖ T ) which implies T ≠ N and, as x(N) ≤ v(N), x(N ∖ T ) < v(N ∖ T ).

Hence, the core also satisfies REAB.

Now, if v ∈ Γvex, T ∈ 2N ∖ {∅}, and S ⊆ N ∖ T , then

v(S) + v(T ) ≤ v(S ∪ T ) and v(S ∪ T ) + v(N ∖ T ) ≤ v(N) + v(S)

so that bmin
T (v) = v(T ) and bmax

T (v) = v(N) − v(N ∖ T ).

Remark 4.5. Let v ∈ Γvex.

(1) The core of v coincides with the set of all feasible vectors that are coalition-wise
reasonable from below because bmin

T (v) = v(T ) for all T ∈ 2N ∖ {∅}.

(2) Similarly it can be shown that the core of v is the set of Pareto efficient feasible vectors
that are coalition-wise reasonable from above.

We conclude with the following result.
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Theorem 4.6. Let Γpos ⊆ Γ. The core on Γ is the unique solution that satisfies REBE,
UNA, SUPA, SCOV, and CSUPA. Moreover, in this characterization REBE can be replaced
by EFF and REAB.

Proof. It remains to show the uniqueness part. Let σ be a solution that satisfies REBE (or

EFF and REAB, respectively), UNA, SUPA, SCOV, and CSUPA. In view of Proposition

4.3 it suffices to show that σ coincides with the core on Γpos. In view of Remark 4.5, σ is a

subsolution of the core on Γpos. Now, we proceed similarly as in the proof of Theorem 3.2.

Let v ∈ Γpos. Let T ∈ 2N ∖ {∅}, c > 0, and π ∈ ΠN . By UNA and SCOV, aπ(cuT ) ∈ σ(cuT ).

Hence, if v ≠ 0, then απ(v) ∈ σ(v) by SUPA. If v = 0, then 0 + απ(w) ∈ σ(0 + w) for each

w ∈ Γpos∖{0} so 0 = aπ(0) ∈ σ(0) is guaranteed by CSUPA. The proof can now be completed

by literally copying Step 3 of the proof of Theorem 3.2 by using SUPA instead of ADD. ◻

It should be noted that each property in Theorem 4.6 is logically independent of the re-

maining properties provided that Γ is large enough. For instance, the solution that assigns

the core to each game v ∈ Γ such that v(S) ∈ N ∪ {0} for all S ⊆ N and the empty set to all

other games in Γ satisfies all axioms except SCOV.

5. Concluding remarks

Some final remarks are of interest.

� For T ⊆ 2N ∖ {∅}, put ΓvexT = {v ∈ Γvex ∣ αT (v) ≠ 0 ⇒ T ∈ T }. That is, ΓvexT is the set

of convex games that are linear combinations of unanimity games on coalitions in T .

Moreover, let ΓposT be the set of all totally positive games that are linear combinations

of such unanimity games, i.e., ΓposT = ΓvexT ∩ Γpos. Then the statement of Theorem 3.2

is valid for each cone Γ satisfying ΓposT ⊆ Γ ⊆ ΓvexT .

� A game v is called almost positive if αT (v) ≥ 0 for all T ⊆ N with ∣T ∣ ≥ 2. Hence, almost

positive games arise by adding inessential (additive) games to totally positive games.

It should be noted that despite of Example 3.3 the statement of Theorem 3.2 holds

for an arbitrary set of almost positive games (not necessarily a cone) that contains all

totally positive games because the core of an inessential game is a singleton.

� Note that CSUPA is the only axiom invoked in Corollary 4.4 that has to be requested

for all games in Γ, whereas it is sufficient to apply all other axioms to totally positive

games.
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Figure 2: Domains of Games

Γpos Γ in Thm 3.2ΓvexΓbal

the set of all TU-games

Fig. 2 illustrates the domains for which our results are formulated. The union of the green

cones reminds us that Theorem 3.2 works on each set of games contained in the set of convex

games (the purple cone) that contains all totally positive games (the blue cone) and is a

cone. Corollary 4.4 and Theorem 4.6 are valid on each set of games that contains all totally

positive games (the blue cone). Such a set of games can include non-balanced games and

not all convex games. Fig. 2 illustrates that Theorem 3.2 can be applied to sets of games

that are not necessarily convex. This is also true for the sets of games for which Corollary

4.4 and Theorem 4.6 work. Finally, Corollary 4.1 applies to the set of balanced games (the

orange cone).
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