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Abstract

We consider the problem of constructing a confidence intervals (CIs) for
nonlinear functions of the parameters. The classical approaches for construct-
ing Cls are the Delta method and the Fieller method. These methods can be
implemented in any context in econometrics and statistics.

There are two main reasons for the failure of these two methods. The first
is the bias of the parameters estimator. In many econometric and statistical
applications, the estimator of the nonlinear functions of the parameters is bi-
ased. The second problem is that the estimated parameters have non-normal
and asymmetric distributions.

We extended the Delta method to obtain a better approximation by using
the Edgeworth expansion. We then proposed a new interval by correcting the
skewness in the Edgeworth expansion. Such bias-corrected confidence intervals
are easy to compute and the coverage probability converges to the nominal level
at a rate of O(n~1/2) where n is the sample.size

We also define the bias of the nonlinear functions of the parameters and we
propose a bias-corrected estimator that is identical to the almost unbiased ratio
estimator proposed by Tin (1965). We then correct the CIs according to the
Delta method and the Edgeworth expansion. Thus we develop new methods
for constructing of confidence intervals that take into account both the bias and
the skewness of the distribution of the nonlinear functions of the parameters.

We conduct a simulation study to compare the confidence intervals of our
new methods with the two classical methods. The methods evaluated include
Fieller’s interval, Delta interval; Delta with the bias correction interval; Edge-
worth expansion interval, and Edgeworth expansion with the bias correction
interval. The results show that our new methods, generally, give good coverage
probability and the confidence width . When data are from skewed distributions,
the Edgeworth expansion and the Edgeworth expansion with the bias correc-
tion should be recommended for constructing confidence intervals for nonlinear
functions of estimated parameters.
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1 Introduction

Many econometric and statistical applications are interested in tests of the non-
linear functions of the parameters, which can be expressed as the ratio of two
unknown parameters including the ratio of regression coefficients, the ratio of
the two linear functions such as the ratio of affine transformations of random
variables and generally the ratio of the two nonlinear functions.

A non-exhaustive list of examples of econometric models where inferences
for the ratio of parameters are used as follows: the long-run elasticities and
flexibilities in dynamic models, (Li and Maddala 1999; Dorfman et al. 1990;
Bernard et al. 2007; Hirschberg et al. 2008); the willingness to pay value, i.e,
the maximum price an agent would pay to obtain an improvement in a par-
ticular attribute of a desired good or service, (Lye and Hirschberg 2018); the
turning point in a quadratic specification model where the estimated relation-
ship is either a U-shaped or an inverted U-shaped curve for example Kuznet
and Beveridge curves, in applications to dynamic panel data, (Bernard et al.
2019; Lye and Hirschberg 2018); the determination of the non-accelerating in-
flation rate of unemployment ( NAIRU), for example a Phillips curve, (Staiger
et al. 1997 Hirschberg and Lye 2010a; Lye, and Hirschberg, 2018); the struc-
tural parameter in an exactly identified system of equations as estimated by the
two-stage least squares method (Hirschberg and Lye 2017, Lye, and Hirschberg,
2018, Andews et al..2019); the notion of weak instruments in econometric mod-
els (Woglom 2001); inequality indices, (Dufour et al. 2024; Dufour et al. 2018);
structural impulse responses, (Olea et al. 2021). Lye and Hirschberg (2018)
give some other examples of econometric models.

Other examples of statistical applications, include cost-effectiveness analysis
(Briggs and Fenn (1998); and the comparison of health outcomes across spa-
tial domains (Beyene and Moineddin 2005); bioequivalence assessment, dose-
response analysis, (Sitter and Wu 1993; Faraggi, et al. 2003, Wang et al. 2015).
For other statistical applications, see Franz (2007) .

However, the statistical properties of the ratio of parameters can be prob-
lematic because the analytical expressions of the moments are generally not
available, e.g. the ratio of asymptotically normally distributed random vari-
ables is a non-central Cauchy distribution. Moreover, if the denominator of the
ratio is not significantly different from zero, the probability distribution of the



ratio shows unusual behaviour, and the confidence intervals are unbounded. An-
other problem worth highlighting is the bias of the estimator in a finite sample
when studying a nonlinear function of parameters.

To test the null hypothesis of the nonlinear functions of parameters, we use
confidence intervals (Cls). The two widely used approaches for constructing Cls
are the Fieller method and the Delta method. The advantage of these methods
is that they can be implemented in any context and are easy to compute, they
do not require the use of intensive calculation and sampling strategies as would
be needed when using a Bootstrap or Bayesian method, (Hirschberg and Lye,
2010, 2017; Lye and Hirschberg 2018).

Fieller (1954) proposed a method to derive the confidence interval (CI) of
the ratio of two random variables. In Fieller’s method, it assumes that both
the numerator and the denominator of the ratio follow normal distribution.
The method is based on the inversion of the pivotal t—statistic, it gives an
exact CI for achieving the required coverage probability. The Fieller’s CI is
asymmetric around the ratio estimate, which is a good property, as it can be
reflects the skewness of the small sample distribution of the ratio. However, if the
denominator of the ratio is not significantly different from zero, Fieller’s CI will
be unbounded, being either the entire real line or the union of two disconnected
infinite intervals. It has a positive probability to produce CI with infinite length.
Furthermore, Fieller’s interval requires finding roots of a quadratic equation and
these can be imaginary. In addition, if this quadratic equation has one root, the
confidence interval will be half-open.

The Delta method is based on the first-order Taylor expansion by consid-
ering nonlinear functions of parameters. By assuming asymptotic normality in
large samples, this method produces a symmetric and bounded CI, unlike the
Fieller method. However, the Delta method often has an inaccurate coverage
probability (Dufour 1997) and unbalanced tail errors even at moderate sample
sizes (Hirschberg and Lye 2010). A geometric interpretation of the Fieller and
Delta methods can be found in von Luxbur and Franz (2009); Hirschberg and
Lye,( 2010). According to Hirschberg and Lye,( 2010), if the true value of the
ratio has the same sign as the correlation coefficient between the numerator
and the denominator then the Delta and Fieller intervals may be very similar
even if the denominator has a high variance. However, if the signs are opposite
and the precision of the denominator is low, then the Delta method has poorer
performance.

Moreover, there are two potential problems with these Fieller and Delta
methods; first, the estimator of the parameters is biased in the nonlinear func-
tions of parameters. Second, the estimated parameters have non-normal and
asymmetric distribution. Thus the variance of the estimated parameters is
not useful in constructing confidence intervals, Dorfman et al. (1990); Li and
Madalla (1999).

In order to overcome the disadvantage of the previous methods, some numer-
ical procedures have been proposed in the literature such as the parametric boot-
strap method and the nonparametric bootstrap method ( bootstrap standard,
bootstrap t—statistic; bootstrap percentile, bootstrap bias-corrected, bootstrap



bias-corrected and accelerated) see (Krinsky and Robb (1986); Dorfman et al.
(1990), Li and Madalla (1999), among others. The CIs obtained from these
iterative procedures are bounded and are more computationally intensive.

Dorfman et al. (1990) compared the Delta and Fieller methods and three
types of the single bootstrap and found that the bootstrap did not achieve
nominal coverage and that all methods performed reasonably well.

The bootstrap percentile-t and the Delta methods confidence intervals are
very close to each other in many cases in terms of the length of the confidence
intervals, Li and Madalla (1999).

It should be noted that all the previous methods do not take into account the
bias of the estimator which should be a prerequisite for constructing a reliable
confidence interval.

In this regard, the paper has five main contributions. First, we propose a
novel analytical approach that modifies the Delta method to reduce the effect of
skewness. The method is based on the Edgeworth expansion (Hall 1992a). We
then propose a new easy to compute confidence interval for the ratio of para-
meters and the interval has the coverage probability converging to the nominal
level at a rate of O(n‘l/z) where n is the sample size. Second, the source of

potentlal bias is due to the nonlinearity of the ratio 0 = 91/ 92 in terms of 91
and 92 It is well known that even when exact unbiased estimators of 01 and 02
are available, the estimator 0 could still be badly biased in finite samples. This
is because the expected value of a ratio of random variables is not equal to the
ratio of the expected values and the use of the ratio of the expected values leads
to a biased estimate of the true measure although it is a consistent estimator.
We consider a second-order term in the Taylor series expansion to determine
the bias and we propose a bias-corrected estimator which is identical to the
almost unbiased ratio estimator proposed by Tin (1965). Third, we investigate
the problem of approximating the variance of a nonlinear function of parameters
based on a second-degree Taylor series expansion. Unfortunately, when calcu-
lating the variance of the second-degree Taylor expansion, most authors (Hayya
et al. 1975, Wang et al. 2015) did not take into account the possible covari-
ances between the random variables which is indispensable because it provides a
better approximation. This variance is none other than the variance of the bias-
corrected estimator (or the variance of the almost unbiased ratio estimator of
Tin (1965)). Fourth, we define a modified version of the Delta method, correct
the estimator of the bias, and calculate the corresponding variance. This can
be helpful in terms of more accurate coverage probabilities for the Cls. Fifth,
we propose a novel analytical approach to construct the CI for the ratio esti-
mate. Our method, Edgeworth expansion with bias-corrected estimator uses
the Edgeworth expansion but adopts an estimator corrected for the bias and its
variance. The method always produces a bounded CI. Simulation results show
that it generally outperforms the Edgeworth expansion in terms of controlling
the coverage probabilities and the average width and is particularly useful when
the data are skewed.



The rest of this paper is organised as follows. Section 2 presents some high-
lights. Section 3 studies the different methods for constructing Cls, the Fieller
and Delta methods and we will develop the Edgeworth expansions for the Delta
method. Section 4 provides an analytical form of the bias that can be used
to construct the bias-corrected estimator and to calculate the variance of the
bias-corrected estimator. Section 5 presents the confidence intervals with the
bias-corrected estimator. Section 6 presents some econometric applications.
The simulation study and the results are presented in Section 7 and Section 8
concludes the paper.

2 Some highlights

2.1 Definitions, notation

Let X and Y be two random variables, we assume that the moments exist then
the expected value of X is denote by F(X), the variance of X by V(X), and

the coefficient of variation of X is defined CV(X) = /V(X)/X? :.7”;()(). A
similar notation will be used for the random variable Y. The covariance of X and
Y is defined by Cov(X,Y) = E(XY) — E(X)E(Y), the correlation coefficient
between X and Y is defined by p = Cou(X.Y) ) so it satisfies —1 < p < 1

(VX)) (VVv(Y)
and Cov(X,Y) = py/V(X) /V(Y) . The coefficient of co-variation of X and Y’

is defined by CV(X,Y) = % which can be expressed as the produit of the

correlation coefficient and the coefficients of variation of X and Y respectively:

CV(X,Y) = pivv)gx)ivvxfy) = pCV(X)CV(Y). We use the notation [a =+ b
for the interval [a — b, a +b] (b > 0).

2.2 The ratio estimator is biased.

Let 51 and 52 are consistent estimators of 6; and 65, respectively, E(@l) =0,
and E(@g) = 0, and (= 51/52 is a consistent estimator of the ratio 6 = 6/6,
. It is well known that the ratio of two unbiased estimators is not, in general,
itself an unbiased estimator, i.e E(61/602) # E(61)/E(02) = 61/05

The expected value of the ratio between @1 and 52, provided that all moments
exist, is given by

E(01/0;) = E(6 x 1/6,)
E(01) x E(1/05) + Cov(61,1/6,)

If /9\1 and 92 are independent or if 51 and 1 /52 are uncorrelated, then



E6; x 1/85) = E(6,) x E(1/65).

It is well known that E(1 //9\2) # 1/E( 52), Jensen’s inequality implies that
E(1/03) > 1/E( 62) because the function 1/z is convex for z > 0 or z < 0, then
we have

E(0:1/02) = E(0r) x E(1/02) = E(01)/E(>)
and using that E(@l) =6; and E(@g) = 62 we have

E(01/05) = 01/05

This result shows that the estimator of the ratio of two unbiased estimators
is, in general, biased,

We will now consider a more general framework which can be precise the
bias of 0 o R

Note that the covariance of 81 /6, and 05 is

000(32,51/52) = E(b\g X 51/52) — E(b\z) X E(/él//éz)
= E(/él) — E(b\g) X E(/él//éz)

Then, by rearranging these terms, provided that E(@g) # 0, we obtain the
expected value of the ratio between 6; and 65

E(01/05) = E(01)/E(05) — 1/E(63) x Cov(8a,01/65)
and using that E(gl) =0, and E(/ég) = 05 we get
E(b\l/b\z) = 91/92 — 1/02 X COU(§2,51/52)
which can be written as
E(@) =0 - 1/92 X Cov(§2,§1/§2)
and the bias of 0 is
Bias(0) = E(6) — 0 = —1/64 x Cov(6, 61 /6,)

__ The size of the bias of [ depending on both 5 and the covariance between
05 and the ratio 61 /0.

Consequently, the absolute value of the bias is

)‘ ’Pm\/ V(02)
- i

V(0),/V (62)
02

‘Bias(@ =



where \/ V(@) and\/ V(/éz) are the standard errors of & and 05 respectively.
Thus an upper bound to the ratio of the absolute value of the bias to its standard
error is given by

Bias®)|  \Jv@)
X =CV(h)
2

V()
where CV(@Q) is the coefficient of variation of 0.

Remark 1 If 0, is distributed N (62, V(@g)) then the coefficient of variation
CV (02) is simply the inverse of the t— statistic of 0. This result implies that

an upper bound to the relative absolute bias of the ratio 0 is the inverse of the
t—statistic of the denominator.

For a large sample size, the bias in the ratio estimator 0 is negligible as
compared to its standard error. It is well known that the variance of estimator
V(62) is of O(n~1) then also the bias in (6) is also O(n~!). Cochran (1977) has
shown that if the coefficient of variation of 52 is less than 0.1, then the bias is
small relative to the standard error. Furthermore, it is difficult to obtain an
analytical expression of the bias, as we will see later using an approximation of
the ratio of the parameters gives an analytical form of the bias.

3 Methods

3.1 The Delta method (or the Taylor’s series expansion)

The Delta method (often referred to as the Taylor’s series expansion) estimates
the variance of a nonlinear function of two or more random variables is given
by taking a first-order Taylor expansion around the mean value of the variables
and calculating the variance for this expression. In the case of the ratio of
parameterss 6 = g(01,62) = 01/65 , the variance of 6 is

-~

V(0) = G'SG

where G is a Jacobian vector containing all the first-order partial derivatives
and Y is the variance-covariance matrix of #; and 05, defined as follows

V(1) Cov(6,6,)
E = o~ o~ ~
000(9291) V(eg)

We have



N 2
I 9 S 2\
V(0) == |V(61)—2 <A1> Cov(61,02) + (é) V(02)
0, 02 0,

(Full derivation details can be see in Appendix).

To construct a confidence interval for the ratio § = 61 /62, we assume that
nt/ 2(5 — 0) is asymptotically normal distributed with zero mean and variance
V().

Let V(8) be a consistent estimator of V (8), the Delta method 100(1 — )%
confidence limits for the ratio 61 /6> is given by:

~

0
Clp : 71 ﬂ:Za/QQD
02

S— L I o\ 112
where Qp = /V(0) = é [V(@l) -2 (%—;) Cov(01,02) + <,Z\§) V(Hg)] ,
2

the estimated standard error of 6 and Zqo/2 is the (a/2) th quantile for standard
normal distribution. R

It is useful to express the variance of § in terms of coefficients of variation and
coefficients of co-variation to give a more concrete interpretation of the results
in empirical applications; then, the variance of # in terms of the coefficient of
variation and the coefficient of co-variation of #; and 6 . is given by

V@) = % [OV@)? - 207V (0,.02) + TV (o)?

where C'V (51) ¢ = 1,2 is the estimate of coefficient of variation for a random
variable 0; and CV(01,02) = pCV (6,)CV (62) is the estimate of coefficient of

co-variation for the two random variables 8; and 52

The 100(1 — «)% confidence intervals becomes

-~

]
Clp : = + 24/5Q%
02

tb)‘jb)

= I IR . q1/2
where Qp, = /V(0)* = & [01/(491)2 — 20V (6,,05) +CV(92)2] " is the
estimated standard error of @ in terms of the coefficient of variation and the
correlation coefficient. R
This method assumes that 6 is normally distributed and thus symmetrical
around its mean. However, the assumption of normality is clearly strong as
there is no guarantee that 0 is normally distributed.



However, for large sample sizes (or rather small coefficients of variation) the
distribution of a ratio may be close to normal.

The assumption of a normal distribution may be justified in the case of
large samples, but it is unlikely that the distribution of a ratio will generally
follow a well-behaved distribution. Furthermore, the assumption of a normal
distribution may be quite inaccurate if the data have a skewed distribution.

3.2 The Fieller method

Fieller (1954) proposed a general procedure for constructing confidence limits
for the ratio of the means of two normal distributions. In Fieller’s method, the
ratio variable is transformed into a linear function. The confidence interval of
the ratio variable can be obtained by solving out the quadratic roots of the
linear function.

For testing the null hypothesis Hy : Z—; = v equivalently it is written as on
a linear combination of the parameters Hy) : 61 —y03 = 0, the method assumes
that gland 52 follow a joint normal distribution function such that @1 - ’yb\g is
normally distributed. Hence, the pivotal statistic for this test is:

/9\1 - ’Yb\g
VV(01) - 2/Co0(0:02) + 92V @)

T =

which is t—distribution with df degrees of freedom under the null hypothesis.

Let tq/2,q¢ denotes the 100(1 — «/2)th percentile of the ¢t—distribution with
df degrees of freedom, we have

P [T2 < ti/w] —1-a

By replacing the expression of square T and rearranging gives a quadratic
equation in ~.

ay* +by+c=0
_ 2 V(02) _ 0 2 Cov(8:8) _
where a = 1 — ta/?,dfT;’ b = —25 (1 _ta/Q,dfT;Q) y and ¢ =
—~ 2 ~ ~
(%) <1 —ti/z df‘/g‘;l)). The parameters, a,b and ¢ can be expressed in
! 1
terms of coefficient variation and coefficient co-variation a = 1—¢2 /2 dfg‘\/ (92)2,

— o~ o~ =\ 2 ~
b=—20 (1-22, yCV(B:1.52)), and ¢ = (2) (1- £, ,CV(01)?) . Find-
ing an explicit form for the confidence intervals for ~ requires solving the
quadratic equation. The solution of this inequality depends on the sign of a



and d = b? — 4ac, the discriminant of the quadratic equation. We can expressed
d as follows

SN2 . — 72 —
d=4 (%) 2 )y { [CV(92) - ﬁCV(al)] +aCV(0,)2(1 - ﬁQ)} Hence, a >~
0 also implies d = 0
If d = 0, let vy and ¢ (v < vy) be the two real valued solutions to the
quadratic equation in v by changing the inequality into an equality. This gives
the bounds of the Fieller interval in the case a = 0 . These two roots are the

lower and upper limits of the (1 — «) confidence interval. The bounds of the
interval are given by

1 (6, Cov(6:6,)
Clyp : 5 = —\{\= " §J——==— + ta Q
F s vl 1—g {92 7(02) [2,df W F
where Qp = é [ (6,) — 2 (%) Cov(0y,05) + (Z ) V(6)—g ({7(51) — Covl016)"
—2 V()
and g = te/2.df %

An equivalent form of the Fieller confidence interval (CI) in terms of the
coefficient of variation and the coefficient of co-variation of 6; and 92 is given

by
1 (0 _CV(0 .
Clr [y wl=1— {Al <1 - hpAEA1)> ita/z’deF}

02 2)

v
where Q@ = & [CV( )2 — 20V (01,05) + CV (82)2 — hOV (6,)%(1 — 7°)
and h = ta/Q,dfC’V(Hg)

}1/2

However, if a < 0 the Fieller CI will be unbounded. Hence, if d > 0 the
Fieller CI will be the complement of a finite interval (—oo,vy)U (v, 00) and if
d < 0 the Fieller CI will be the whole real line (—oco, +00).

Other intervals may be considered when a = 0 , the Fieller CI will be
}—oo, %C] if b > 0 otherwise, it will be [’TC, oo[ ifb=<0.

Remark 2 1) In the case of finite interval, the condition a = 0 is equivalent to

02
' V'V (62)
02 is significantly different from zero. The test of this null hypothesis is the first
step of Scheffé’s procedure, (Scheffé, 1970).
L. 9 . 1
2) The t—statistic '\/ﬁ’ s equal to ‘m
coefficient of variation for 52, so the null hypothesis is rejected if the_coefficient
of variation for 0y is negligible. (A high coefficient of variation for 62 means a
low statistical value).

= to/2,af which means rejecting the null hypothesis Ho : 02 = 0, i.e.

the absolute inverse of the

10



It should be noted that the null hypothesis H}, : §; —vf2 = 0, was obtained
from the non-linear relationship Z—; = v only when 65 # 0. However, Fieller’s
method does not take this information into account. Therefore, the Fieller CI

has the potential to overestimate the confidence length.

The advantage of Fieller’s method over the Delta method is that it takes
into account the potential skewness of the sampling distribution of the ratio
estimator and therefore may not be symmetric around the point estimate.

Fieller’s method provides an exact solution subject to the joint normality
assumption. However, it has been argued that the assumption of joint nor-
mality may be difficult to justify, particularly when sample sizes are small. In
particular, the random variable follows a skewed distribution, which may cause
problems for the normality assumption.

The normal approximation is a rather rough approximation, especially when
sample sizes are not large; it does not take into account the skewness of the
underlying distribution which is often the main source of error of the normal
approximation. To remove the effect of the skewness, we develop the Edgeworth
expansion.

3.3 Edgeworth expansion

The Delta method-based confidence interval is not very robust and can be quite
inaccurate in practice for non-normal data. It produces intervals that are sym-
metric around the point estimate, so it does not take skewness into account.
The correction for skewness used in our confidence intervals is based on the
Edgeworth expansion.

We propose a method based on the Edgeworth expansion to modify the
Delta intervals to remove the effect of skewness. The expansion provides a way
to correct for the skewness in the data and to derive new confidence intervals
for the ratio parameters. Thus we consider two aspects: first an Edgeworth
expansion is derived for the Delta method for a ratio of parameters on a normal
random variable and second by using the inverse of the Edgeworth expansions
which are the quantiles of the distribution that is the Cornish-Fisher expansion,
we construct an approximate confidence interval which contains a n~'/2 order
correction for the effect of skewness.

The Delta method can be easily extended for a better approximation by
using Edgeworth expansion . ~

Let U = V(0)~Y/2/n(f — 6) where § = %—; , 0= % and V(6) the estimate

-~

of V(0) in Delta method, we assume that the distriubtion of a random variable
U has the Edgeworth expansion (Hwang, 2019, Hall, 1992b)

F(z)=P(U <z)=®(x) — n—l/Qﬁé(af — Do(z) + O(n_1/2)

11



where ®(z) and ¢(x) are the standard normal distribution and density func-
tions respectively,  is the skewness, and n is the sample size. This expansion
can be interpreted as the sum of the normal distribution ®(z), and an error
due to the skewness of the distribution. When the error (the n~'/? skewness
correction) in absolute value is small, U can be accurately approximated by
a normal distribution. Conversely, when the error in absolute value is large,
the second term in the formulation cannot be ignored and therefore the normal
approximation would not be as accurate. The n~1/2 skewness correction is an
even function of z which means that it changes the distribution function sym-
metrically about zero. Thus, the skewness of the distribution F' has a significant
effect, especially when the sample size n is small.

To construct asymptotic confidence intervals, we should invert the Edge-
worth expansions to obtain expansions of distribution quantiles. Such expan-
sions are known as Cornish-Fisher expansions.

For any 0 < o < 1, let £, be the a —th quantile of distribution F(.), which
is the solution to F'(§,) = «. This quantile of distribution £, = F~!(«) admits
a Cornish-Fisher expansion of the form (Hwang, 2019).

g _
£, =20+ n71/2ﬂ6(2§ —1)+0(n 1/2)

where K is the estimate of xk and z, is the a — th quantile of the standard
normal distribution.

The 100(1 — o)% Edgeworth expansion confidence interval for the ratio g—;
is given by

) [
Clp: |= =€ _0Qp, = —&4/25Qp
02 02
L . N L 7172
where Qp = @i {V(Ql) -2 (%—1) Cov(b1,02) + (gi) V(Og)] and {,, /, and
2 2 2
§1_qa/2 are the (a/2)th and (1 — a/2)th quantiles of distribution F(.).

Or in terms of the coefficient of variation and the coefficient of co-variation

CIEZ

0, 0,
= — —a Q* sy = T Sa Q*
s §1-a/2@D 7 Ea/2 D}

~ o~ o~ o~ 1/2 N~ o~
where Q% = & [CV(91)2 — 20V (61, 05) +CV(92)2} and CV (0,,0,) =

02
ﬁﬁ/(@l)ﬁ/@) ay2 and §_, o are the (a/2)th and (1 — «/2)th quantiles of
distribution F'(.).

For positively skewed data, the true 1 —«/2 quantile £, _, /2 1s larger than the
associated standard normal quantiles z, /o and similarly the true lower quantile
€ay2 1s larger than —z, /5.

From the Cornish-Fisher expansion, we can state the asymptotic coverage
probability of the proposed intervals

12



The coverage probability of confidence intervals is given by

P(GfZ—lGCIE)—lfa+O( —1/2),

4 Bias-correction analysis

4.1 Bias of estimator

In Section 1, we showed that the parameter 6 is a biased estimator of the ratio
parameters. It’s essential to determine the expected direction and magnitude
of this bias.

It is well known in the literature that the ratio of the parameters uses only
first-order expansions to approximate asymptotic sampling distributions. How-
ever, calculating higher-order expansions can also be useful given that they can
be used to estimate the bias of the ratio of the parameters and the analytical
form of the bias obtained can be used to construct the bias-corrected estimator.

We consider a second-order term in the Taylor series expansion. This addi-
tional second-order term can be helpful, in the sense of more accurate coverage
probabilities for the Cls.

Let 0 is g(61,02) = 01 /02. then from a second-order Taylor’s series expansion,

57 01— 61 61 — 6, b1 — 61
01,02) = g(01,02) + G’ | ~ + = H| %
9(61,62) = 9(61,62) (92—92> <92—92 02 — 0>
where G is a Jacobian vector containing all the first-order partial derivatives
and H is a Hessian matrix containing all the second partial derivative for the
nonlinear function 9(91, 02) evaluated at 1 and 09
In this section, a delta approximation of the bias, based on a second-order

Taylor series expansion, is used to estimate the bias of the ratio of parameters.
Then we construct the bias-corrected estimator and derive its variance.

Proposition 3 For a ratio of parameters 8 = g—;, a second-order Taylor’s series
expansion gives the approximation of bias

Bias(@) =FE0)—-0= %(vecH)’vec(Z)

where vec(.) denotes the vectorisation operator which stacks the columns of
the matrix and H is a Hessian matrix of second order partial derivatives and ¥
is the variance-covariance matrix of 91 and 92
Proof. (see Appendix) m
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Proposition 4 Let H and S be the estimates of H and X respectively, the
estimate of bias is given by

. 1 N ~

Bias(0) = §(UECH)/U662

—— - R N P

Bias(0) = ——=5Cov(01,0:)+ =5V (02)
05 0,

which can also be written as

— 6, | V() Cov(8,0
Bias(f) = = /(\22) - A(Al 2)
02 0, 0201

where Véiz) _ Cov(01,02)

2
ratio estimator.
This bias is identical to Tin’s bias, Tin (1965). It uses the same information
as the correction factor formed by subtracting Véf) from CO%(%’el). This bias
2V1

2

is O(n~') Tin (1965). Our bias is derived by a different method. Tin (1965) and
David and Sukhatme (1974) used an asymptotic series expansion of the ratio
estimator under certain conditions. The high-order of Tin’s bias formulation
was given by David and Sukhatme (1974)

To obtain the sign of the bias, we express the bias as a function of the
coefficient of variation and the coefficient of co-variation

The bias can be expessed in terms of the coefficient of variation and the
coefficient of co-variation of 6; and 64

can be viewed as a correction factor to the estimated

. Oy r—— ~ N
Bias(0)" = 571 [CV(@z)2 - CV(eLeg)}
2
An another alternative form of the bias is

Bias()" = %W@@@)
2

V(01)
where p is the estimate of the correlation coefficient between ¢ and 05.
Following this latter formula, if the coefficient of variation of 6 is close to
zero, then the bias may be negligible relative to the variation in 6. Furthermore,
if the coefficient of variation of 03 : CV(0z) is greater than the coefficient of
variation of 6, : CV (51), the absolute value of the bias increases if the correlation
between @1 and 52 becomes zero or negative. Similarly, if oV (@1) - CV (52),
the bias is negative for a high positive correlation coefficient. Furthermore, if

~ _ CV((B2) . . . .
P= G then the ratio estimator is unbiased.

CV((02) _4
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4.2 The bias-corrected estimator

The bias given in the previous propositions can be used to construct bias-
corrected estimators of 6

Proposition 5 The bias-corrected estimator for 6 is given by

o~

. Y M N N
Opc = 0 — Bias(0) = a—l - §(vecH)'vecE
2

9 01— = i
</\1> = /\71 + /\7200’0(01,92) - ,T;’V(HQ)
92 BC 6)2 92 92

which can also be written as
0, 0, Cov(0y,05)  V(0s)
= = = ]- + =~ = - PG)
02 BC 02 0162 0,

Cov(01,02)  V(
610> o,
the estimated ratio estimator.
Proof. (see Appendix). m
This bias-corrected estimator for § has the same structure as Tin’s (1965)
almost unbiased ratio estimator in the sense that its bias is of O(n=2), i.e. the

}

where 1 + 2)] can be considered as a correction factor to

bias of (%1>Bc converges to zero at a fast rate than that of g—l. Tin called
2 2

it a "modified ratio estimator". He has shown that his estimator is better
than other competing estimators of population mean, up to the second order of
approximation and it is equivalent to the Beale (1962) estimator up to the first
order of approximation. Tin’s estimator has been studied theoretically and via
simulation by, Dalabehera and Sahoo (1995), Swain and Dash (2020) and they
found Tin’s estimator generally to be less biased and more efficient compared
with other proposed ratio estimators.

The bias-corrected estimator 6 p¢ in terms of coefficient of variation and the
coefficient of co-variation of 6; and 65 is

L) b (Ve oy - V@)
02 BC 92
An other equivalent form to

(“) _a {1 +CV(6,)CV (6,)

DY

_ CV(
5 (62)

—

CV(6y)

}
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where 1 + [6‘\/(/0\1/9\2) - 6‘\/(52)2} or 1+ 5‘\/(51)5‘\/(52) [ﬁ - %ﬁ%gﬂ can
1
be considered as a correction factor to the estimated ratio estimator.
In the next, we examine the case where the numerator and denominator of
a ratio are independent. In this case, we will specify the bias and the bias-

corrected estimator in the following proposition:

Proposition 6 If@l and 52 are independent, we have
(1a) The estimate of the bias is Bias(f) = g—éV(Gg)
2

(1b) Equivalently, the estimate of the bias is B/zEs(g) = E—lCV(Gg)2 =

0, 1
’9\2 t(’0\2)2
where 1&(92)2 denotes the square of t—statistic for 02 and ﬁ can be con-
2

sidered as a correction factor to the estimated ratio estimator.
The bias of the estimator of the ratio is the estimator of the ratio weighted
by the square of the coefficient of variation of 02 (the inverse of the square of

t—statistic for [9\2)

(2a) The bias-corrected estimator for 0 is (%)BC =0 @1‘7(/9\2)

2

0,
(2b) Equivalently, the bias-corrected estimator for 0 is (g—l) =4 {1 — 6‘\/(/0\2)2
1
[1 B t(§2)2}

The bias-corrected estimator of the ratio parameter is the estimator of the

i

ratio weighted by the simple statistic [1 — ﬁ] , this weight will be less than
2

one because CV (52)2 is positive. Thus, the bias-corrected estimator of the ratio
s smaller than the estimator of the ratio.

4.3 The variance of the bias-corrected estimator

As we have shown, the bias-corrected estimator 530 corresponds to the Tin
(1965) almost unbiased ratio estimator, also known as the modified ratio estima-
tor. The approximation of the variance of 0 with a second-order term expressed
in terms of the coefficient of variation and the coefficient of co-variation of 6,
and 69 is identical to the variance of the almost unbiased ratio estimator. We
therefore use this variance as the variance of the the bias-corrected estimator.

Proposition 7 The variance of the bias-corrected estimator for 6

v {(530)} == G'SG + =(vecH) (Z @ S)vecH

first-order part

N =

second-oder part
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where the first order part G’SG corresponds to the asymptotic (first-order)
variance of the estimator and the second order part permit to take into account
the correlation between the random variables and ® denotes the Kronecker
product.

~ ~2
~ T~ 1 |54 01 0.\ &~
V]0so)] = = |V@)- <A> Cov(By,02) + (3) V(0y)
0 9
2 2
first-order approximation
~ ~2
PP P 01\~ - R PN I [P
+/\74V(9 ) V(g ) = 000(917 92) +2 = V(ez) + ECOU(gl, 92)
0, 02 0, 0,
additional part from second-order approximation
which can also be written by
V(6,) C’ov(@l, 0y)  V(0y)
~2 +—
, 0, 010 0,
il @ rst-order approximation
V]0po)| =28 oo o mrdrspodne
92 V(02) V(91) _ 400’0(91,92) 19 V(GQ) CO’U(91,92)
9. 7 0162 9, 9.0,
additional part from second-order approximation

Thus, the variance V {(/H\Bc)} can be express in terms of coefficient variation

of 51 and 52 by

[CV(02)? - 200V (02)CV (B2) + OV (3:)°]

~2
Sl /a * 0 first-order approximation
Vilpe)| == e SLorder approxy . .
[ } 6. | +CV(02)” [CV(01)2 — 450V (0,)CV (0,) + 5°CV (0,)% + 20V(92)2}

additional part from second-order approximation

where p is the estimate of the correlation coefficient between 6; and 65.
(Full derivation details can be see in Appendix.)

This variance is identical to the variance of the almost unbiased ratio esti-
mator (or the variance of the modified ratio estimator) of Tin (1965), see also
David and Shutkame (1975).

Proposition 8 If@l and 52 are independent, we have
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(1) The variance of the bias-corrected estimator for 0

~2 ~2
~ T~ I IPNPN 0.\ &~ 1o~ |as 0.\ 5~
14 [(HBC)} =7 V(61) + (Q) V(b2)| + GATLV(ez) V(01) +2 (Q) V(6-)
2 2 2 2
first-order approximation additional part from second-order approximation
~2 ~ o~ ~ o~ ~ o~ ~ o~ ~ o~
_ 4 V()  V(02) V(62) | V(01)  ,V(02)
- 2 5 T3 ~2 5 T ~2
2 0, 0, 0, 0, 0,

first-order approximation additional part from second-order approximation

(2) The variance V (530)] can be express in terms of coeflicient variation of

/(9\1 and 52

?[(@BC)}*:ﬁ [é?/(@l)uéx\/@)ﬂ v OV(6,)? [é?(@l)uzéx\/(@z)?]

first-order approximation additional part from second-order approximation

5 Confidence intervals with bias-corrected esti-
mator

In this section, we would construct new confidence intervals that take into ac-
count the bias of the estimator for the Delta method, and both the bias of the
estimator and the asymmetry of the distribution for the Edgeworth expansion
method.

5.1 Delta method based confidence interval with bias-
corrected estimator

Let V [(53(;)} be a consistent estimator of V' |:(§BC)] , the variance of the bias-

corrected estimator for 6 then the standard error of 530 is

~

Qpc =4/V [(EBC)}

or in terms of coeffficient of variation and coeffficient of co-variation

Qhe =V [@sc)]

And the bias-corrrected estimator is
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Cov(01,05)  V(6>)

010 7

) _0/f,,
02) e 02

or in terms of coeffficient of variation and coeffficient of co-variation

<51> o gl {1 + [6?(5@) - 617(52)2}}

02) sc 2

where CV (01.62) = pCV (0,)CV ().

The 100(1 — a))% confidence limits of the Delta method bias-corrrected for
the ratio 6 /65 is given by:

)
Clppe : <A1> iza/QQBC
0 BC

2

where z, /5 is the (a/2) th quantile for standard normal distribution..
Or in terms of coeffficient of variation and coefficient of co-variation

0
Clppe : <A1> iza/2Q*BC
02 BC

5.2 Edgeworth expansion based confidence interval with
bias-corrected estimator

For the Edgeworth expansion based confidence interval, we use the same correct
term for the estimator of the ratio parameters, then the 100(1— )% confidence
interval for the ratio g—; based Edgeworth expansion becomes

0 0
Clpye : KJ> —&1_a2Qs0, <£> - gamQBc]
02 BC 02 BC

where £, /5 and §;_, /5 are the (a/2)th and (1 — «/2)th quantiles of distrib-
ution.
Or in terms of coeffficient of variation and coefficient of co-variation

0.\ ) 0\ \
Clgpe : l<§1> —&1-0/2@B0s <§1> - Ea/QQBC]
2/ Bc 2/ Bc
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6 Some econometric applications

6.1 The ratio of two linear combinations of parameters

Many of the nonlinear functions studied in economic applications are expressed
in the functional form of a ratio of two linear combinations of parameters. In
this section, we consider the test of one such nonlinear function.

We will specify the bias of the estimator, the bias-corrected estimator, and
its variance. Note that the formulations of the confidence intervals are given in
the previous section. We will see that the calculations are quite simple and do
not require intensive computation.

Consider the general linear model

Y=XB+¢

where Y is an nx 1 vector of observations, X is a nx k full-rank design matrix,
B is a k x 1 vector of unknown parameters, and ¢ is an n X 1 vector of normal
random errors with zero mean and variance %I : € ~ N(0,02I). The OLS
estimators of unknown parameters are 3 = (X'X)"'X'Y and 6% = &8/n — k
where € are the OLS residuals

Consider a null hypothesis for the ratio of two linear combinations of para-
meters

Ho 0= IE 8

where K and L are k x 1 vectors of known constants.

We have the following different ﬁerms R

= K'B, 67 =(K'B)%, V() =KV(BK =6"K'(X'X)"'K

= L'8, 02=(L'B)%, 05 = (L'B), V(0y) = L'V(B)L =L/ (X'X)"'L
9192 = (K'B)(L'B), 9292 (K'B)2(L'B)2, Cov(0y,05) = Cov(K'B,L'B) =
FPK'(X'X)'L
By replacing all these terms in the formulation of the bias for 0 the bias-
corrected estimator 9bc , and the variance of the bias-corrected estimator V(Hbc)
we have the following proposition

Proposition 9 (i) The bias for 0 is

1 K'B
PK'(X'X) L + b

~2 717/ / —1
A (L’B)?’U L'(X'X)"'L

Bias(0) = —
which can also be written by
. 2 [ 2271 vrivy—1 ~2 7010yl y\—1
Bz’as(&):KAﬁ O’L(XAX) L—JK(,{(X)A L
L'p (L'B)? (K'B)(L'B)
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FL(X'X)"'L 32K/(£{’X)’1L
(B2 (K'B)(L'B)
tor to the estimated ratio estimator..
(ii) The bias-corrected estimator for 0 is given by

where [ } can be considered as a corrrection fac-

51 Klg 1 ~2 11 I -1 K/B ~2 71/ i —1
— = — 4+ — K'(X'X)""L—- — L'(X'X)""L
<92>BC 7 + (L’B)QU ( ) (L’5)3J ( )

} can be considered as a correction

which can be written by

0, K'B e K'(X'X)"'L L'(X'X)"'L
= = = g = = - =
02) 5 L'B (K'B)(L'B) (L'B)?
~2 [K'(X'X)"'L  L'(X'X)"'L
where 1+ | {050 — O
factor for the estimated ratio estimator.
(iii) The variance of the bias-corrected estimator for 0

(5. ] = (KD’
V|@s0)] = s (At 40

where A; is the asymptotic (first-order) variance of estimator

a2 |[EXX)TE  K(X'X)'L (XX)TL
' (K'B)? (K'B)(L'B) (L'B)?

and A, is the additional part from second-order approximation

Y K'(X'X)"1L)?

(L'B)? (K'B)? (K'B)(L'B) (L'B)?

A FPL(X'X)'L _, |K'(X'X)"'K  K'(X'X)"'L N L LXX) L
= —< ag — = =
’ (K'B)2(L/B)2

Next, we consider the case where the numerator and the denominator of the
ratio are independent.

Proposition 10 (i) If@l and 52 are independent, then the bias for@ become

-
Bias(f) = K5 PL(X'X)'L
(L'B)?
which can be written by
K'B |3°L'(X'X)"'L

Bias (0) =

=

(L'5)?

L'B
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2L (X'X)"'L
L wpy
mated ratio estimator.

where [ ] can be considered as a correction factor for the esti-

(i) The bias-corrected estimator for 6 is given by

_ - -
by KB KP FL'(X'X)7'L
02) e LB (LB)?

which can be written by

0, _K'B - G2L(X'X)"1L
02) 5 L'B (L'B)?
FL(X'X)"'L

(L'B)?
timated ratio estimator.

where 1 — can be considered as a correction factor for the es-

(#ii) The variance of the bias-corrected estimator for 6

lK’(X’X)lK L LXX)TL

(K'B)? (L'B)?
|l _ (K/B)z ~2 first-order approzimation
v [(QBC)} o (L/3)2 g L/(X/)i)flL 32 K/(X/)/(\)flK 2L/(X/)/(\)—1L ]
LBy (K'B)2 (D)

additional part from second-order approximation

We will illustrate this result with an econometric application to show the
simplicity of calculation for our method. Let’s take the case of the turning
point, which has been the subject of numerous economic applications.

6.2 The turning point.

Consider a classical linear model described by the quadratic regression model
y=Bo+frz+ Bya’ +e

where y is the dependent variable and z the independent variable and ¢ is
an unobserved random error term with E(¢) = 0 and V(e) = 0?. A common
example of such model is the Kuznets (1955) curve that proposes the relationship
between income inequality and income, can be represented by an inverted U
shaped curve. The turning point is given by

6B

g— 21 _ _
02 28,
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In this case K = (0, —1,0)" and L = (0,0, 2)’

01 = —B1, 07 = B3, V(01) = V(B,) = 03,

~2 ~3
0y = 28,, 0, =485, 0,=8B5, V() =4V (B 2) = 403,
0102 = —2B,3,, 0703 = 48353 | Cov(6:,682) = 2C (61,ﬂ2)=
20‘@132

In the formulation of the bias for 6 , the bias-corrected estimator for 6 and
its variance, by replacing all these terms, we have the following proposition:

Proposition 11 (i) The bias for 0 is

— o 1]1. By s
Bias(0) = 5 [Bz B BQ]
2 2

which can be written as

~ ~2 ~
T 15y (%8, 9B,
Bias() = — o= | == — =42
28, Bo 5182

(i) The bias can be express in terms of the coefficients of variation and the
coefficient of co-variation of 51 and 52

Bias(®)' — —if;[ V((Ba)? ~ 90V (3,)CV (3|

)
25, |\tn)) ~ "\ ) \iBy)

where t(BZ) denotes the t — statistic for Bi fori=1,2,
An another alternative form of the bias is

P (D) * 181 1 1 t(gl) -~
Bias(0)" = ——— = = = —
=33, (t(ﬁn) <t(62)> L(m) p]

(#ii) The bias-corrected estimator for 6

eBC__lﬁl_lllaM 51A2]
9% ~295,8, ~ =398,
2, 2B, 525

which can be written as

foe — -0
BC 2




(iv) The bias-corrected estimator of f in terms of the
coeflicient of variation and the coefficient of co-variation of 5; and 34 is

OBc

;5[ + (POV BTV (B) - TV (@)

o (i) () )|
(81 £(B,)?
An another alternative form is

~ 15, 1 1 - t(By)

0 = —~= — = — = - =

o131+ () () - 13).

Proposition 12 (v)The variance of the bias-corrected estimator for 0

1 /5\2 A2 2 ~2 A2 (3" ~ )2
A 1 Bi [3 B: 9B, 818
Vv [(930)} =12 [ Az [ S 25 |
By 51 ﬁ 52 By 52 51 B B2 Ba 815,
first-order approzimation additional part from second-order approximation

(vi) Thus the variance V [(530)} can be express in terms of coefficient vari-

ation of Bl and BQ by

[CV(B.)? - 2CV (B,)CV (By) + CV (By)?

‘7 |:(’\ ):| * 1 61 first-order approzimation
=2 N N TS S NS S 9SS N
45, | +CV(B)? [CV(B1)? — 4pCV (B)CV (By) + 7°CV (By)? + 20V (By)?

additional part from second-order approximation

This variance is easily calculated using t — statistics for Bl fori=1,2.

() (@) * o
A7_2p = = + —=
t(B1)? t(B1)) \t(B2) )  t(B2)?

‘7 [ n ):| * 1 61 first-order approximation

(GBC - —2
B [( 1 )( 1 ) 1, ] ]
t(By)? | t(B1)? t(B1) ) \t(Bs) t(B1)?  t(By)?

additional part from second-order approximation

7 Simulation study

7.1 Overview
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In this section, we carry out a simulation study to assess the coverage prob-
abilities of the methods presented in the previous section. We also examine,
the average length of the confidence intervals. We evaluate the performance of
the Fieller interval, the Delta method interval without and with bias correction
and the Edgeworth interval without and with bias correction. Let Xy, ..., X,, be
i.i.d. observations from some distributions F' with mean py and variance o%
, Y1,...,Y, be ii.d. observations from some distributions G with mean p,- and
variance U% and poxoy the covariance between X/s and Yj' s where p is the
correlation coefficient. Let X = 13" | X; and Y = 23" | 'Y; and their ratio

= % is a consistent estimator of 6 = Z—X

We generate data from three bivariatg distributions: a bivariate normal dis-
tribution, and two positively skewed family of distributions. The two families
that we consider are the bivariate lognormal distribution and the bivariate mix-
ture (X/s are lognormal and Y}s are normal) distribution. We choose three
correlation coefficients between X; and Y; (-0,8, 0,1, 0,8) and four sample sizes
(25, 50, 100, 1000). We use 10 000 data sets. The data are generated as follows:

(a) Bivariate Normal Distribution

X; N by =17 U%(ZQ pPOXOY
(}/z ) Z.Z.dN2<< /-LY—5)7<pO'XO-Y O'%/Zl

(b) Bivariate Mixture Distribution
(Xi) =X

(5 )wen((523) (o 550)
Y; ny =4 )7\ pogoy 0% =05

(c) Bivariate Lognormal Distribution

X; N Uy =5H 0§(:0,2 pPOXOy
( Y; ) ii.d exp{NQ(< by =4 >’< pPOXTY 02 =0,5

7.2 Results

The results of our simulation are presented in Table 1. The values presented in
the table are confidence intervals based on the Fieller method, the Delta method,
the Delta method with the bias correction (denoted by Dbc), the Edgeworth
method, and the Edgeworth method with the bias correction (denoted by Ebc).
The values of the average width (denoted by Width) are the average lengths of
the corresponding intervals. For data generated from normal distribution, all
intervals give good performance. That is, all coverage probabilities are closer
to the nominal level. Average interval lengths (Width) are also comparable
for all methods. The Fieller and the Delta confidence intervals are in many
cases very close to each other in terms of the coverage probabilities and we can
also observe that the average interval lengths for Delta method with the bias
correction (Dbc) are less wide than for the Delta method without the bias cor-
rection which means that the estimator is more accurate. We also observe that
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the average interval lengths for the Edgeworth method with the bias correction
(Ebc) are narrower than for the Edgeworth method without the bias correction.
However, for data generated from bivariate mixture and bivariate lognormal
distributions, Delta methods confidence intervals are obviously inadequate, the
coverage probabilities are lower than the nominal level. Fieller’s intervals are
also insufficient in terms of coverage probabilities. All the other methods give
coverage probabilities lower than the nominal level. The Dbc intervals outper-
form Delta intervals. The Dbc intervals give better coverage probabilities than
Delta intervals. They are comparable and sometimes better than the Fieller
intervals. Note that the Delta interval has the longest average width whereas
the Dbc interval has the shortest average width. The same applies to the Ebc
compared to the Edgeworth expansion. We also observe that the Ebc interval
performs much better than the Edgeworth interval. This can be explained by
the fact that the estimated ratio is biased. Overall, the Edgeworth and the
Edgeworth bias corrected appear to be best in terms of coverage probabilities
and average width (width). To explore how the correlation coefficients affect the
coverage probabilities we performed simulations for different values (-0.8, 0.1,
0.8) from Table 1. The simulation results showed that the correlation coefficients
have an impact on the coverage probabilities. The sample sizes have a substan-
tial impact on the coverage probabilities for almost all methods. Among all the
methods, the Edgeworth bias-corrected ( Ebc) method seems to give a narrower
average than the others. The important conclusion from our simulation is that
one should use the Edgeworth bias corrected, rather than the Edgeworth ex-
pansion. We also consider other sample sizes and other correlation structures.
The results are similar and are not reported here.

In summary, the Edgeworth without and with the bias correction have good
performance in terms of coverage probability and average width and should be
recommended for constructing confidence intervals when data are from skewed
distributions.

Table 1. Coverage probability and average width (Width) of 95% confidence
intervals.
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1) Fieller

(a) Bivariate Normal Distribution

Width  Delta Width
1.9625  0.9491  1.9455
2.0572 09452  2.0443
2.4198 0.9482  2.4041
1.9625  0.9506  1.9485
2.0577 09480 2.0443
2.4187 09469  2.4036
1.9753  0.9501  1.9753

2.0678 0.9489  2.0621
2.3953 0.9468  2.3975
1.9780  0.9501  1.9658
2.0749 09469  2.0581
2.3763  0.9470  2.3860

(b) Bivariate Mixture Distribution

n =25
0.8  0.9505
0.1  0.9463
-0.8  0.9485
n = 50
0.8  0.9505
0.1  0.9489
-0.8  0.9476
n = 100
0.8 0.9504
0.1  0.9477
-0.8  0.9504
n = 1000
0.8 0.9501
0.1 0.9476
-0.8  0.9500
n =25
0.8 0.8286
0.1 0.8713
-0.8 0.8970
n =50
0.8 0.8485
0.1  0.8707
-0.8  0.8945
n = 100
0.8 0.8623
0.1 0.8798
-0.8 0.9015
n = 1000
0.8 0.8674
0.1 0.8723
-0.8 0.9001

90.13
107.30
139.34

91.70
107.18
138.37

90.87
106.87
137.21

91.10
105.34
136.21

0.8214
0.8474
0.8570

0.8329
0.8430
0.8553

0.8610
0.8725
0.9104

0.8735
0.8806
0.9312

86.48
103.57
133.28

88.26
103.78
132.36

89.24
102.53
130.87

90.13
102.14
131.51

(c) Bivariate Lognormal Distribution

n =25
0.8 0.8119
0.1  0.9027
-0.8  0.9232
n = 50
0.8 0.8472
0.1  0.9055
-0.8  0.9169
n = 100
0.8  0.8417
0.1  0.9130
-0.8 0.9244
n = 1000
0.8 0.8626
0.1  0.9088

-0.8  0.9248

1.5936
2.6677
3.4301

2.8002
2.6200
3.0737

1.1407
1.8217
2.2228

1.1691
1.8157
2.2106

0.8076
08546
0.8688

0.8351
0.8610
0.8688

1.4075
2.4743
3.1422

1.4512
2.4462
3.1422

0.8427 2710821

0.8819
0.8869

0.8573
0.8823
0.8965

1.7727
2.1603

1.1126
1.7375
2.2186

Dbc

0.9495
0.9458
0.9473

0.9504
0.9464
0.9478

0.9503
0.9463
0.9475

0.9500
0.9460
0.9477

0.8297
0.8512
0.8980

0.8496
0.8514
0.8598

0.8726
0.8798
0.8805

0.8765
0.8725
0.9422

0.8121
0.9037
0.8721

0.8486
0.9065
0.8765

0.8612
0.9139
0.8981

0.8621
0.9054
0.9045

Width

1.9364
2.0115
2.1464

1.9275
2.0324
2.1685

1.9212
2.0218
2.2358

1.9245
2.0510
2.2045

86.42
103.45
132.51

87.57
102.12
132.17

85.21
101.21
130.54

84.25
102.22
130.57

1.2761
2.4106
3.1256

1.4150
2.3812
3.1027

1.1835
1.6941
2.2844

1.1076
1.6975
2.2081

Edgeworth  Width

0.9531
0.9512
0.9528

0.9526
0.9510
0.9521

0.9524
0.9503
0.9506

0.9520
0.9504
0.9515

0.8674
0.8671
0.9013

0.8816
0.8904
0.9002

0.9002
0.9045
0.9068

0.9165
0.9046
0.9185

0.8618
0.8934
0.9066

0.8845
0.8981
0.9058

0.8766
0.9078
0.9134

0.8938
0.9057
0.9146

2.0523
2.0365
2.0523

2.0497
2.0342
2.0415

2.0520
2.0365
2.0522

2.0568
2.0412
2.0495

85.86
102.93
131.14

87.51
101.45
130.78

86.45
101.24
130.36

88.12
101.14
130.03

1.4063
2.4530
3.1047

1.4526
2.4175
3.1107

1.0665
1.7516
2.1281

1.1010
1.7434
2.1126

Ebc

0.9532
0.9511
0.9529

0.9522
0.9515
0.9519

0.9521
0.9506
0.9505

0.9520
0.9500
0.9514

0.8815
0.8705
0.9051

0.8898
0.9009
0.9121

0.9132
0.9187
0.9208

0.9218
0.9284
0.9298

0.8715
0.8963
0.9158

0.9005
0.9002
0.9084

0.9106
0.9178
0.9223

0.9115
0.9182
0.9268

Widtl

1.1935
2.0136
2.0310

1.9210
2.0387
2.0450

1.9215
2.0240
2.0486

1.914¢6
2.0168
2.0475

84.53
102.49
130.57

86.76
101.14
129.41

87.10
102.25
129.21

84.59
101.21
129.25

1.2326
2.2078
3.0985

1.4328
2.4076
2.9615

1.107¢
1.6851
2.0675

1.0981
1.6896
2.0198



Note: Dbc: Delta method with the bias correction; Ebc: Edgeworth method
with the bias correction; Width: average confidence interval lenghts; p : corre-
lation coefficients.

8 Conclusion

We have developed new methods for constructing confidence intervals for the
nonlinear functions of parameters. In many practical applications, the distrib-
ution of the data is not symmetric, in particular when the sample size is small.
We propose that the Edgeworth expansion to the statistics makes it possible to
remedy this inconvenience. Then the Delta method can be extended to obtain
a better approximation using the Edgeworth expansion. Furthermore, we have
shown that the nonlinear functions of the parameters are biased and we have
given an analytical form of the bias of the ratio of the parameters. This has al-
lowed us to define bias-corrected estimators and, more particularly, to calculate
the variance associated with these bias-corrected estimators. We have therefore
proposed two other new methods: the Delta method with bias correction and
the Edgeworth expansion with bias correction.

The results of the simulation study showed that our methods generally have
better coverage probabilities and confidence width and are narrower than the
Delta method and Fieller’s method. In the case of bivariate normality, the Delta
with bias correction intervals gives better coverage probabilities than the Delta
intervals. They are comparable and sometimes better than Fieller’s intervals.
When the data have been generated from a skewed distribution, the Edgeworth
without and with the bias correction have good performance in terms of con-
trolling the coverage probabilities and average length intervals. Therefore, in
this situation, we recommend using the Edgeworth without and with bias cor-
rection to construct a reliable confidence interval for nonlinear functions of the
estimated parameters.

9 APPENDIX

The Delta method is useful to approximate the moments of the nonlinear func-
tions of parameters by using Taylor’s series expansion. In the literature, only
first-order expansions are used to approximate asymptotic sampling distribu-
tions. The Delta method provides a compromise to approximate the asymptotic
sampling distribution of the ratio parameters 6 = 6;/0; where 6, and 05 are
unknwon parameters. However, higher-order expansions are also useful because
they can be used to estimate the bias of the ratio parameters and the analytical
form of the bias obtained can be used to construct the bias-corrected estimator.
We begin with how the variance of the ratio of the parameters in the main text
can be approximated with the Delta method. We then extend this approach
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to obtain the higher-order terms necessary to estimate the bias and derive a
bias-corrected estimator.
The variance of a first order Taylor’s series expansion,

Let 0 is g(01,62) = 61/605. On the basis of Taylor’s series expansion, the Delta
method approximates the variance of a function of estimators of parameters
g(61,62) which estimates g(01,602). Since 61 and 0, are unbiased estimators of
01 and 65 respectively i.e E(@) =0, for i = 1,2, the variance of 8 is

V(@) = V(g(0:1,0:) = G'SG Al

where G is a Jacobian vector containing all the first-order partial derivatives
of g(01,02) evaluated at 6; for i = 1,2.

G =

09(01,05) 99(01,05) | _ [1 91}
8@1 ’ 8@2 92, 93

and X is the variance-covariance matrix of 51 and 52 defined as follows

M =

V(1) Cov(0,0)
Cov(0:01) V(6,)

Solving Eq.A.1 and using the estimators 51 and 52 to substitute for unknown
parameters 1 and 65 respectively we get the variance of

~ ~2
~ 1 -~ 0 ~ 0 ~
V(O) == |V(01) -2 <A1> Couv(64,02) + <A§> V(62)
92 92 92

which can be written by

0 Q 01,0 9
)= [ o), vl
0, | 0, 6102 0,

-~

Thus, the variance V() can be express in terms of the coefficient of variation
and the coefficient of co-variation of €7 and 05

~2
~ [ ~ ~ - ~
V(O = 5; (CV(#1) = 20V (81,02) + CV(B2)?]
2
~2

= 1 [CV@)Q —2pCV (0,)CV (B5) + CV@)?}
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where p is the correlation coefficient between 6, and 65

Bias of estimator

The first-order Taylor’s series approximations may not be accurate in some
applications because of bias from truncation of the Taylor’s series or small-
sample bias in the asymptotic regression parameter variances used in the Tay-
lor’s series formulas. A second order Taylor’s series expansios of g(01,03) is

~ ~ / _~
o 0, — 0 1({6,—-0 (-
01,05) = g(01,05)+G | =27t = S R I B CRG A2
9(01,02) = g(01,02)+ (0202 )4‘2(0202 Oy — 0,

__where H is a Hessian matrix containing all the second partial derivatives of
g(61,602) evaluated at 0; i = 1,2.

32g(§1 ,b\g) (92_(]’\(’051’,;0\2)

1
H— 805 7 00,002 _ 0, *a*%
| 9%9(01,6) 8%9(61.60) | —9%, 29—31
N an —~2
002001 ’ a0, 2 72

By taking expectation of Eq. A2 and since E(@Z —6;))=0fori=12, we
obtain
~ o~ 1
E[9@1,02)] = 9(61,6) + tr (1)
-~ 1
B@) = 0+ 5tr{HZ}
where tr(.) denotes the trace of matrix, then the bias for 0 is defined by

~ ~ 1 1
Bias(0) = E(0) — 0 = St {HY} = §(vecH)’vecZ

where vec(.) denotes the vectorisation operator which stacks the columns of
the matrix and the matrix H is symmetric so that vecH’ = vecH
Since H and ¥ are unknown, we estimate bias as

= ~ 1 TS| =, a
Bias(0) = 5” {HZ} = é(vecH) vect
S Il =~ 5 01~
Bias(0) = ——=Cov(01,02)+ 5V (02)
0
2 2

which can be written as
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=

Bias(9) = 01 | Y02) _ Covl61.02)
021 o, 0102

The bias-corrected estimator

We have obtained an analytic form of the bias and the estimate bias of

the ratio parameters can be used to correct the estimator, the bias-corrected
estimator for 6 is given by

Opc 0 — Bias(0) =0 — %(vecﬁ)’veci
~ O 1~ = O
Opc =~ + —Cov(01,05) — =5V (62)

2 0y 0

which can be written as

A~ o~

G 0 [Cononty V@
bpo — Ly 01 | Covl1,02) _ V(0:)

0, 0> 010 9

The calculation of the variance of the second order Taylor series reveals the
covariances between the random variables.and gives a better approximation.
The approximation of the variance of § with a second-order term

'~ o~ /
To facilitate notation, let us define the random vector z = (01 — 01 ,05 — 05

with E(z) =0, E(22) = ¥ and z is a normal random variable .z ~ N(0, %)
We can rewrite the second order of Taylor’s expansion as follows

~ 1
g(01,02) = g(01,02) + G'z + §Z’Hz

and its variance is

~ o~ 1
V( 9(91,92)) = V{g(91,92)+G/Z+221HZ}

1
V(G'z) + EV (2’Hz) + Cov (G'z, 2 Hz)

To obtain the variance V' ( 9(51752)) we need to calculate the three terms
() V(G'2) = G'2G

(i) 1V (#/Hz) =1 {E [ Hz]? — [E(Z/Hz)f}
—1 {[tr(HE)]2 ot (HD)? — [tr(HE)]2}
= Jir(HY)?
(i) Cov (G'z,2’Hz) = G'E [22' HZ]
= G'F 2 ® 22| vecH
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=0
since odd moments of z are zero. Thus the linear form G’z and the quadratic
form z’'H z are uncorrelated.
By combining these three results, we obtain the following result

V]e@.0)] = @36 +%tr[(HE)2]
first-order part S———

second-order part

1 ’
— / -
= G'EG  + 3 (vecH) (£ ® L)vecH
first-order part

second-oder part

where ® denotes the Kronecker product, the first order part G'XG is the
variance of 6 corresponding to a first order approximation and the second order
part permit to take into account the correlation between the random variables.
It which yields

~ ~2
PO 1 0 ~ 0 ~
V9@, = = V(@l)—2<§1> Cov(91792)+<§§> v (82)
2 2 2
first-order part
TP O WP 7 A WA R IR
+j4V(92) V(Gl)—4 = 000(91,92)"‘2 = V(92) +r400’l](91,92)
0, 02 0, 0,

second-oder part

which can be written as

~ 0, |V Cov(0 ,5 V(6
] - B[ oy v
0, L 6, 0162 0,

first-order part

2 —~ —~ ~ o~ —~ ~ o~
0, | V(0 V(0 Cov(61,0 V(o Cov(81,09)?
té{ Co) | H) _ ConlOnfa) , , T0R) | ConlCiPe) }
0y 0, 2 0102 0 0,05

second-order part

Thus the variance V' {9(51,52)} can be express in terms of the coefficient of

variation and the coefficient of co-variation of #; and 05.
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~ o~ 0 ~ ~ o~ ~
v [9(91,92)] - 5% [CV(@l)Q — 20V (0,,05) + CV(QQ)Q}
2
first-order part
/9\2
+3{CV(B2)? [CV(@1)? — 40V (B1,82) + 20V (02)°] + €V (81,0:)°}
02
second-order part
~2
9 ~ ~ ~ ~
- 5; [cvwl)? —2pCV (0,)CV (85) + CV(QQ)Z}
2
first-order part
~2

0,

+2 {CV @) [CV(@1)? — 49CV @1)CV B2) + 2OV (01)* + 20V (02)°] }

second-order part
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