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Abstract

There exist situations where firms (identical or not) are in a state of renewed
interaction and where, at each period, in addition to exits, new firms (identical or
not) may arrive. In such cases, no one is able to know ex ante exactly how many
firms there will be in each period. One of the questions an incumbent firm might
therefore ask itself, in this context, is what expected payoff it can expect. Our
paper aims to provide an answer to this question, in finite and infinite horizons,
using a discrete-time dynamic game with random arrival(s) and exit(s) of different
types of firm(s). We first propose a general model, which we then particularize by
considering the types as composed of identical players. Within this framework, we
address the case of a dynamic Cournot oligopoly with sticky prices, and provide
numerical illustrations to underline the interest of this approach and demonstrate
its operational character.
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1 Introduction
The great diversity of markets bears witness to the extraordinarily diverse forms of

strategic interactions that can exist. One of the most robust conclusions of economic
analysis is undoubtedly the importance of studying these interactions in order to better
understand and, where necessary, regulate different markets. Our article focuses on
contexts where there are renewed interactions on a market, in discrete time, without
product differentiation and without information asymmetries, but where nobody, nei-
ther the firms, nor the authorities, nor the modeler, knows ex ante exactly how many
firms there will be in each period. All that each firm knows in our framework are: 1/
its personal characteristics (i.e. its type), 2/ the size of the market, 3/ the possible types
of the other firms (i.e. their characteristics), and 4/ the probability laws that determine,
in each period, the random exit(s) as well as the random arrival(s) of one (or more)
entrant(s).

In addition to the theoretical interest of studying this type of configuration, we think
that it can, for example, help us better understand the situation in which a classic restau-
rant (i.e. with premises, kitchen staff and waiting staff) finds itself in trying to estimate
how much it can expect to earn over the course of a year, or over several years. In fact,
it seems to us that it is in a position, albeit imperfectly, to know its characteristics (i.e.
its cost), the size of the market (i.e. demand), as well as the characteristics of the dif-
ferent types of restaurants that are or may be in competition with it. However, neither
it, nor anyone else, is in a position to know with certainty how many competitors of
each type there will be in each period. This ignorance stems both from the fact that it
doesn’t know how many restaurants of each type will leave the market, and from the
fact that it doesn’t know how many restaurants of each type will arrive.

Facing this situation, we consider that the restaurant can use the information pro-
vided by statistical institutes, professional chambers or associations, trade unions and
courts, to estimate a probability of exit for different types of restaurant. Similarly, when
it comes to the potential entry of different types of restaurant, it can find out what com-
mercial premises are available for this type of business in the town or surrounding area
(depending on the geographical limits of the relevant market it estimates). However,
today, it must also take into account the possible arrival of “dark kitchens”.1 In other
words, here again, it has to deal with uncertainty and estimate probabilities.

We then make the simplifying assumption that each restaurant will proceed in the
same way and arrive at the same conclusions concerning: market size, types, and entry
and exit probabilities for each type of restaurant. We are then able to establish how
much a restaurant can expect to obtain, over a finite or infinite horizon, in a dynamic
Cournot oligopoly with a homogeneous good, in discrete time, with sticky prices.

1This expression refers to independent kitchens that provide a catering service through takeaway sales
or deliveries, without generally having a place for on-site consumption for their customers. As they are
not subject to specific administrative registration, it is extremely difficult to quantify their number. Most of
these restaurants market their products via delivery platforms (e.g. Deliveroo, Grubhub, Just Eat, Uber Eats).
These restaurants can be distinguished from set-up restaurants with a stand-alone delivery business, as well
as from platforms delivering dishes prepared in their own kitchens. For a more detailed presentation of dark
kitchens, we refer readers to da Cunha et al. [2024].
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From a theoretical point of view, our dynamic modeling of a market with random
arrivals and exits of different types of competitors, where nobody knows ex ante how
many competitors will be present in each period, is related to questions concerning
entries and exits on a market, those concerning renewed interactions, those concerning
the existence of different types of players, and those concerning uncertainty about the
number of players. Without claiming to be exhaustive in our review of the literature,
we will begin by briefly discussing entry models, taking up the elements provided by
Biard and Deschamps [2021]. We will then give an overview of the main classical
game-theoretic models with a known number of players, showing that they cannot an-
swer our question. Finally, we present the models that directly address the question of
uncertainty in the number of players.

Simplifying Polo’s presentation [2020], it is possible to distinguish two main paths
within the theoretical literature on entry modeling. Firstly, there are models where entry
decisions precede market strategies, in other words situations where firms’ strategies
cannot be determined with the aim of affecting entry decisions. In the first stage, the
(possibly infinite number of) players decide (or not) whether to enter a market where
there is no one else, and in the second stage they adopt their strategies, depending in
particular on the number of competitors present, which is common knowledge. Alter-
natively, there are models in which the entry decisions of certain firms are taken after
the known number of established firms have chosen their market strategies, and after
the first firms have observed these strategies. In this case, the game necessarily com-
prises several linked stages, and can be conceived at least as a two-period game, in
which in the first period the established firms play, and before the start of the second
period the potential entrants observe the results and decide (or not) to enter the market.
This leaves established firms free to choose their strategies, taking into account not only
current competition but also potential competition, in particular by implementing fore-
closure strategies. Within these two models, models with free entry occupy a specific
place because, on the one hand, they make it possible to endogenize entry when there
is an entry cost and, above all, because by using the total surplus criterion it becomes
possible to answer the normative question of whether a deregulated market leads to an
excessive, insufficient or optimal number of firms on the market (e.g. Belleflamme and
Peitz [2015]).

In our model, entries and exits in each period are exogenous, and there may be
one (or more) entrant(s) and/or exit(s) with the same (or another) type as the installed
firm(s). We limit the number of potential entrants by type, and this number is com-
mon knowledge. Furthermore, the installed firm(s) has (have) no opportunity to adopt
strategies that deter or slow entries. Nor do we have any normative thoughts on the op-
timal number of firms to be present in the market. For each type, the strategies played
by firms in each period are identical and common knowledge.

The usual game-theoretic models, such as those found for example in the text-
books by Maschler et al. [2020] or Osborne and Rubinstein [1994], are all based on a
framework in which the number of players is known. This is naturally the case for full-
information games, whether static or dynamic, with perfect or imperfect information,
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but it is also the case for Bayesian games. Indeed, even though Bayesian games can
handle configurations with incomplete information, thanks to the Harsanyi transforma-
tion, the uncertainty only concerns the characteristics of the players (i.e. their types)
and not their number. Similarly, repeated or stochastic games cannot handle situations
where nobody knows ex ante exactly the number of players present at each period.

To the best of our knowledge, as already pointed out by Bernhard and Deschamps
[2017] whom we follow here, there are currently only two approaches in game theory
that directly address the issue of uncertainty in the number of players.

The first, and oldest, approach is that which models this type of situation in games
where the number of active players is not common knowledge. According to Levin
and Ozdenoren [2004], this approach has been developed in two directions. The first
is to consider that there are a number of potential players, and that a stochastic process
represented by Nature determines which of these will be active players. The number
of potential players and the probability distribution are common knowledge, whereas
whether or not a potential player is an active player is private information. The second
direction taken in this approach endogenizes the entry process. It considers a market
with no one, and a number of potential entrants that is common knowledge. Each
potential entrant then privately receives a message from Nature indicating its type (i.e.
its cost of entering the market), and each then decides (or not) to enter the market. By
way of illustration, the question of how many students are going to take an exam can
be answered using this type of modeling. Indeed, the number of students registered is
common knowledge, and it can be assumed that each of them knows, privately, whether
he or she will take (or not) the exam.

The second approach was developed by Roger Myerson in the late 1990s (e.g.
Myerson [1998], and Myerson [2000]), and is known as games with population uncer-
tainty. It models uncertainty in the number of players by considering that the number
of players who will actually be on the market is the result of a stochastic process whose
probability distribution and mean are common knowledge. Within this type of game,
the sub-classes of Poisson games (where the number of players is a random variable
following a Poisson distribution of mean n) and extended Poisson games (where the
size of the population and the utility functions of the players may depend on an un-
known state of the world) have received the most attention. Using this kind of model,
Ritzberger [2009] was able to demonstrate that in a Bertrand game with an uncertain
population, the presence of two competitors is not sufficient to eliminate profits. And,
more recently, De Sinopoli et al. [2023] have proposed a variant of Cournot’s oligopoly
in which firms are uncertain as to the total number of firms in the industry.

Despite the identical nature of the research question we share with these models,
namely uncertainty about the number of players, our modeling differs from them in
one respect. Our framework is dynamic, in the sense that the number of players can
vary, and no one knows ex ante what the actual number will be at any given time. The
only information that is common knowledges in our modelis: the size of the market,
the number of incumbent firms at the present time, the types of potential entrants and
exits —and the maximum size of these types—, and the probability laws governing
entries and exits. Our model is technically in line with the work on piecewise de-
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terministic systems (Davis [1985] and Haurie et al. [1994]) and with the literature
on discrete-time dynamic game theory developed by Kordonis and Papavassilopoulos
[2015], Bernhard and Hamelin [2016], Bernhard and Deschamps [2017] [2021], and
Biard and Deschamps [2021]. Our contribution with regard to the latter is firstly to
complement some of their results, to take into account the arrival(s) and exit(s) of one
(or more) competitor(s) with a different type(s) to that of the installed firm(s), but above
all to propose a dynamic equilibrium and not a sequence of static equilibria.

The rest of our paper is organized in four sections. Section 2 presents the general
framework and proves a theorem ensuring the existence of a closed-loop Nash equi-
librium with sufficient conditions. As we are unable to prove other results within this
general framework, Section 3 makes it more specific by assuming that the different
types of possible competitors are made up of players who are identical to each other.
We then propose the complete resolution of the case of a dynamic Cournot oligopoly
with sticky prices, in discrete time, and both finite and infinite horizons. Section 4 pro-
vides numerical illustrations of the model from the previous section, based on Scilab
programs, demonstrating both its interest and its operational character. Our final sec-
tion, Section 5, presents our conclusions, highlights the limitations of our model, and
outlines some possible future improvements.

2 The framework
Our model is in discrete time. The time steps are numbered t ∈ N. Current time

is always common knowledge, as are the number and types of players present on the
market and those that may enter or leave according to the following description.

2.1 Players
2.1.1 Arrivals and departures

There are ν ∈ N different types of players numbered from one to ν, usually denoted
with indices i or j. We denote T = {1, 2 . . . , ν} the set of types. This information is
common knowledge.

At each instant of time starting with time 1, players may enter the game. Let a(t) ∈
A(t) ⊂ Nν be the vector of arriving players at time t, where ai(t) is the number of
players of type i. Note that there are therefore

∑
i ai(t) players arriving at time t.

Although there may be a large number of players involved, in the general theory the
game is not anonymous. (A simplification will occur later on.) Players are numbered
by an index or “rank” n, assigned to each arriving player, starting with the first available
rank, e.g. in lexicographic order of type numbers. Its rank is used as the name of each
player. The maximum rank reached at time t is N(t) = N(t− 1) +

∑
i ai(t). In some

cases, we need to bound the maximum number of players potentially involved. Let
N ⊂ N be the set of possible ranks, bounded by some Nmax or unbounded depending
of the precise description on the game.
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We need to keep track of the sequence of past arrivals and departures. We denote
by tn the arrival time of player n. The sequence {tn}n is non-decreasing. Moreover,
each arriving player is characterized by its type. We denote τn ∈ T the (fixed) type of
player n. And we denote τN (t) = (τ1, τ2, . . . , τN(t)) the ordered list of length N(t)
of the players’ types. At time t, τN (t− 1) is concatenated with the list of types of the
arriving players.

At each instant t, some of the players in the game may leave. The list of the ranks
of leaving players is ℓ(t) ⊂ {1, 2, . . . , N(t − 1)}. The list τN is then modified by
setting the types of these players at zero.

As a consequence of this setup, it is assumed that once a player has left the game, it
does not re-enter, or rather if it does, it is with a new “name”: its rank, n. The updating
of the list τN after arrivals and departures as outlined above is denoted τN(t)(t) =
T (τN(t−1)(t− 1), a(t), ℓ(t)).

2.1.2 The Markov process

Depending on the specific rules of the game, the sets A(t) of possible arrivals and
L(t) of possible departures may depend on N(t) and τN(t) (as L(t) always do).

A probability law rules the probability P(a, ℓ; t) of each pair (a, ℓ) ∈ A(t)×L(t).
These probabilities are to be derived from a more refined description of the possible
events, including a stochastic description of how arrivals and departures happen. These
rules may only depend on the current list τN(t) of players present. They are common
knowledge.

The sequence of the τN is a Markov process. However, this process has an infinite
(if N is infinite) or exceedingly large set of states (νNmax if N is bounded). We will
investigate later a special case where this may be dramatically reduced.

2.2 The dynamic game
2.2.1 Dynamics and payoff

There is a state set X . To distinguish it from the Markov state, we will call it the
set of action states. The action state of the game at time t is x(t) ∈ X . There is a
disturbance set W , the disturbances being a sequence of i.i.d. random variables w(t)
with a known probability law. There are ν strategy sets Si. Player’s n strategy choice
at time t is sn(t) ∈ Sτn . We will use the notation sN = (s1, . . . , sN ) ∈ SN , sN\k the
list sN deprived of sk, and sN = (sN\k, sk). Note that SN = Sτ1 × · · · × SτN is a
function of τN . All this information is common knowledge.

The Markov state, the disturbances and the actions of the players govern the evo-
lution of the action state in the following way: there are functions fN : X × TN ×
SN ×W → X , independent of sk for each k such that τk = 0. The action state evolves
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according to

x(t+ 1) = fN (x(t), τN (t), sN (t), w(t)) , x(0) = x0 , where N = N(t) .

The payoff is given by a set of bounded functions LN
n : X × TN × SN × W → R,

independent of sk ∈ sN , and most likely equal to zero, if τk = 0. Each player gets a
payoff discounted according to a discount factor ρ ∈ (0, 1):

Πn = E
∞∑

t=tn

ρt−1LN
n (x(t), τN (t), sN (t), w(t)) , where N = N(t) .

(This formalism allows one to define a different payoff function for each player. In an
application, the Ln might only depend on the type τn of each player. See our example
below.)

Mixed strategies We will allow mixed strategies σn belonging to the set Sn of prob-
ability distributions over Sn. In that case, we will write with a transparent abuse of
notation, and for each w ∈ W

LN
n (x, τN , σN , w) =

∫

SN

LN
n (x, τN , sN , w) dσN (sN ) .

2.2.2 Markov Perfect Equilibrium strategies

We allow closed-loop, state feedback —or Markov— strategies, and as the equi-
librium strategies are to be determined by dynamic programming, which is Kuhn’s
backward induction, the equilibrium thus computed are perfect.

Closed-loop strategies (CL-strategies) are thus defined as N -tuples of the form

sn(t) = φN
n (x(t), τN (t)) ∈ Sn , or σn(t) = φN

n (x(t), τN (t)) ∈ Sn .

Depending on the detailed problem considered, there may be restrictions on the set Σn

of admissible feedbacks. A complete set Φn = {φM
n (·, ·)}M∈N is called a CL-strategy

of player n. A complete set ΦN = {Φn}n∈N of CL-strategies defines a strategy set
leading to a set of individual profits {Πn(Φ

N )}n∈N . We denote ΦN\n = {Φk}k∈N\n
and ΦN = (ΦN\n,Φn). The set of admissible strategies of player n is denoted Ψn.

Definition 1 A closed-loop Nash equilibrium is a complete family Φ̂N of CL-strategies
such that

∀n ∈ N , ∀Φn ∈ Ψn , Πn(Φ̂
N ) ≥ Πn(Φ̂

N\n,Φn) .

Theorem 1 If there exists a family of bounded functions Vn : X × TN → R and an
admissible strategy Φ̂N = {φ̂N

n }n,N such that

∀n ∈ N , ∀x ∈ X ,∀N ∈ N ,∀τN ∈ TN ,∀sn ∈ Sτn ,

Vn(x, τ
N ) =

= ELN
n (x, τN , φ̂N

n (x, τN ), w) + ρEVn(fNn (x, τN , φ̂N
n (x, τN ), w), T (τN , a, ℓ))

≥ ELN
n (x, τN , (φ̂N\n

n , sn), w) + ρEVn(fNn (x, τN , (φ̂N\n
n , sn), w), T (τN , a, ℓ)) ,
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where the expectations are over the disturbances w and the entries and exits (a, ℓ)

ruled by the probabilities P(a, ℓ; t), then the strategy Φ̂N is a CL-Nash equilibrium,
where the payoff of each player n is Vn(x0, ∅).

Proof By standard dynamic programming.

Remark To save on notation, we have stated the game as an infinite horizon one. It is
a simple matter to derive the analogous theorem for a finite horizon game, where the
functions fNn , LN

n , the strategies φ̂N
n , and the Value functions Vn are time-dependent.

The fixed-point stationary Isaacs equation above becomes an explicit backward recur-
sion to be initiated at Vn(T,X, τN ) = 0. Boundedness is no longer required. Notice
also that this same algorithm may be viewed as a Picard algorithm to try and solve the
theorem’s fixed-point equation.

By its excessive level of generality, the above model borders on the useless. The
relevent question is: how to particularize it to create a useful model?

2.3 Types as clones
We particularize the general set-up above to a situation leading to a problem with a

much smaller Markov state space.

We assume that the players of a given type are all identical, having the same pay-
ment function L, and share the same entry and departure probabilities. Moreover, if
m out of a maximum of N players of a given type are present on the market, each
one of them has a probability m/N of being among the ones that are present. As a
consequence of being perfect clones, they share the same feedback strategy.

To make this precise, we introduce the vector m(t) ∈ Nν of players present at time
t, where mi is the number of players of type i. We write

m(t) = m(t− 1) + a(t)− b(t)

where the vector of arrivals a has been defined above, and b(t) = β(ℓ(t)) is the vector
of the numbers of leaving players by type, both random variables. The detailed rules of
the game define the probability laws ruling the random vectors a(t) and b(t), depend-
ing only on m(t).

We assume that fN (x, sN , τN ) depends in fact on m:

x(t+ 1) = f(x(t),m(t), s(t), w(t)) ,

and likewise

Πi = E
∞∑

t=1

ρt−1mi(t)

Ni
Li(x(t),m(t), s(t), w(t))

is the payoff of any player of type number i.
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It may be noticed that another interpretation of the same criterion is in terms of
teams, each type behaving as a team that in fine shares its earnings equally among its
members.

In that case,m(t) characterizes the Nerode equivalence class of the arrival sequence
τN(t) in the automaton transforming this sequence into the sequence of outputs f and
L(t). Thus, the pair (x,m) is now the complete state of the game, instead of the much
larger (x, τN ).

Assuming, for instance, that each mi is bounded by a number Ni, the state space
of the Markov process m is finite with N =

∏ν
i=1(Ni + 1) elements. This allows one

to number these states by a number k(m). Then, the detailed probabilities of entry and
exit are sufficiently characterized by the N ×N transition matrix M where Mk

ℓ stands
for the probability of reaching state number ℓ at the next step if current state is number
k.

Theorem 1 may easily be re-written in terms of this new state. We dispense with
this easy re-writing and directly turn to an example.

3 Example: Dynamic Cournot oligopoly with sticky prices

3.1 The problem
There are ν types of producers of an identical good sold on a market. In each time

period t, producers of type i all produce a quantity qi(t). These producers interact in
the fashion descibed above as clones within each type.

It must be underlined that upper indices, typically k, ℓ, in the sequel are not powers,
but indices specifying the Markov state. Accoringly, mk

i denotes the number mi of
players of type i present on the market in state number k. Upper indices 2 denote
squares, often written e.g. as (∆k)2.

We need to introduce an index εki defined as

εki =

{
0 if mk

i = 0 ,
1 if mk

i > 0 .

The market considered is ruled by an affine inverse demand function

P (q) = a0 −
ν∑

i=1

(bimiqi) .

But prices are “sticky”, so that there exists a positive number θmeasuring the stickyness
and the production q(t) is sold at an average price p(t) = θP (q(t−1))+(1−θ)P (q(t)).
Technical as well as economic considerations lead us to assume that θ ≤ 1/2, and con-
sequently the alternative mesure of stickyness δ = θ/(1− θ) ∈ [0, 1].
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Each type has a linear production cost ciqi per producer. It is convenient to intro-
duce the price state x:

x(t) = P (q(t− 1)) = a0 −
ν∑

i=1

mibiqi(t− 1) .

A discount factor ρ < 1 is given. We consider a time horizon T which may be finite or
infinite. The expected profit of players of type i is:

Πi = E
T∑

t=1

ρt−1mi(t)

Ni

[
θx(t) + (1− θ)

(
a0 −

ν∑

i=1

mibiqi

)
− ci

]
qi(t) .

Finally, we simplify the notation by posing

θ

1− θ
= δ , ai = a0 −

ci
1− θ

, bimiqi = ri ,

ν∑

i=1

ri = R .

And we will consider the equivalent modified profit

Nibi
1− θ

Πi = Π̃i .

As a result, we get

x(t+ 1) = a0 −R(t) ,

Π̃i = E
T∑

i=1

ρt−1[δx(t) + ai −R(t)]ri(t) .

3.2 Finite horizon
We seek a dynamic Cournot-Nash equilibrium. We let ρtV k

i (t, x) be the equilib-
rium expected profit-to-go of player i in terms of the modified profit Π̃i from time t
onwards if current states are k and x. We ignore the natural constraints qi ≥ 0 and
P (q) ≥ 0. We leave them to be checked on any numerical application.

We will show that we can find Value functions as follows (here, x2 is a square):

V k
i (t, x) =

1

2
F k
i (t)x

2 +Gk
i (t)x+Hk

i (t) . (1)

Value functions V k
i are given by Isaacs’ equation:

V k
i (t, x) = max

ri

{
(δx+ ai −R)ri

+ ρE
[
1

2
F

k(t+1)
i (t+1)(a0 −R)2 +G

k(t+1)
i (t+1)(a0 −R) +H

k(t+1)
i (t+1)

]}
,
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Using the theorem of embedded conditional expectations, we may condition the expec-
tation above on the current value of k. Let

F̄ k
i (t) := E[F k(t+1)

i | k(t) = k] =

N∑

ℓ=1

Mk
ℓ F

ℓ
i (t) =MF k

i (t) ,

and likewise

Ḡk
i (t) = E[Gℓ

i(t) | k] =MGk
i (t) , H̄k

i (t) = E[Hℓ
i (t) | k] =MHk

i (t) .

Isaacs’equation becomes

V k
i (t, x) =max

ri

{
(δx+ ai −R)ri

+ ρ

[
1

2
F̄ ℓ
i (t+1)(a0 −R)2 + Ḡℓ

i(t+1)(a0 −R) + H̄ℓ
i (t+1)

]}
.

Let rki (t) stand for the maximizing ri above and Rk(t) accordingly. The equilibrium
productions are undefined ifmk

i = 0, and ifmk
i > 0, given by qki (t) = rki (t)/(m

k
i (t)bi).

Let

γki (t) = ai − ρḠk
i (t) , and Γk(t) =

ν∑

i=1

εki γ
k
i (t) .

Performing the maximization, we easily find that

rki = εki

(
δx−Rk

[
1− ρF̄ k

i (t+1)
]
+ γki (t+1)− ρF̄ k

i (t+1)a0

)
. (2)

Summing over the i, and defining

Φk(t) =

ν∑

i=1

εki F̄
k
i (t) and ∆k(t) = 1 + νk − ρΦk(t) ,

we obtain
Rk =

1

∆k(t+1)

[
νkδx+ Γk(t+1)− ρΦk(t+1)a0

]
. (3)

Placing these in Isaacs’ equation and identifying coefficients of like powers of x, we
obtain

F k
i (t) =

δ2

(∆k(t+1))2

[
2εki

[
ρνkF̄ k

i (t+1) + 1− ρΦk(t+1)
]
[1− ρΦk(t+1)]

+ ρ(νk)2F̄ k
i (t+1)

]
,
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Gk
i (t) =− δ

∆k(t+1)

{
ρḠk

i (t+1)[εki (1− ρΦk(t+1)) + νk]

+ εki
[
2(1− ρΦk(t+1)) + νkρF̄ k

i (t+1)
]
ai

}

+
δ

(∆k(t+1))2

{[
εki ρΦ

k(t+1)
[
2(1−ρΦk(t+1)) + (1+2νk)ρF̄ k

i (t+1)
]

− ρF̄ k
i (t+1)(εki +ν

k)(1+νk)
]
a0

+
[
εki (1−ρΦk(t+1))(ρF̄ k

i (t+1)−2) + νkρF̄ k
i (t+1)(1−εki )

]
Γk(t+1)

}
,

Hk
i (t) = εki

[
∆k(t+1)ai − Γk(t+1) + ρΦk(t+1)a0

]
×

[
∆k(t+1)

[
γki (t+1)−ρF̄ k

i (t+1)a0
]
−
[
Γk(t+1)−ρΦk(t+1)a0

][
1−ρF̄ k

i (t+1)
]]

+
ρ

2
F̄ k
i (t+1)

[
∆k(t+1)a0 − Γk(t+1) + ρΦk(t+1)a0

]2

+∆k(t+1)ρḠk
i (t+1)

[
∆k(t+1)a0 − Γk(t+1) + ρΦk(t+1)a0

]

+ ρH̄k
i (t+1) .

and finally

F̄ (t) =MF (t) , Ḡ(t) =MG(t) , H̄(t) =MH(t) .

These equations are to be initialized at F (T ) = 0, G(T ) = 0, H(T ) = 0. They are
explicit.

3.3 Infinite horizon
We turn now to the case T = ∞, for which we look for a stationary solution.

3.3.1 Equilibrium productions

We seek a Value function of the form

V k
i (x) =

1

2
F k
i x

2 +Gk
i x+Hk

i . (4)

The stationary Isaacs-Bellman equation reads, if εki = 1:

V k
i (x) = max

ri

{
(δx+ ai −R)ri + ρE

[
1

2
F ℓ
i (a0 −R)2 +Gℓ

i(a0 −R) +Hℓ
i

]}
,

where ℓ stands for k(m(t+1)). The notation F̄ k
i , Ḡk

i and H̄k
i carry over from the finite

horizon case, but are now constant. The same applies to the notation γki , Γk, Φk, and
∆k:

Φk =

ν∑

i=1

εki F̄
k
i , γki = ai − ρḠk

i , Γk =

ν∑

i=1

εki γ
k
i , ∆k = 1 + νk − ρΦk .
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Isaacs’ equation becomes, as previously,

V k
i (x) = max

ri

{
(δx+ ai −R)ri + ρ

[
1

2
F̄ k
i (a0 −R)2 + Ḡk

i (a0 −R) + H̄k
i

]}
,

(5)
and if it has a solution, the function (4) being bounded, since x ∈ [0, a0], it is indeed a
valid Value function and the corresponding strategies rki are equilibrium strategies.

We perform the maximization in ri. We recover the previous formula (2) for rki ,
and summing over i, formula (3) for Rk =

∑ν
i=1 r

k
i , but now both time-independent.

As previously, if mk
i = 0, then rki = 0 also, while qki is not defined. If mk

i > 0, then
qki = rki /(bim

k
i ).

3.3.2 Determination of Fi and F̄i

Placing back formula (2) in (5) and identifying terms in x2, we get, before any
expansion:

V k
i (x) = 1

(∆)2

{
εki
[
(1− ρΦk)δx+∆kai − Γk + ρΦka0

]

×
[
(1− ρΦk + νkρF̄ k

i )δx+∆k(γki − ρF k
i a0)− (Γk − ρΦka0)(1− ρF̄ k

i )
]

+ 1
2ρF̄

k
i (−νkδx+∆ka0 − Γk + ρΦka0)

2

+∆kρḠk
i (−νkδx+∆ka0 − Γk + ρΦka0)

}
+ ρH̄k

i .

(6)

Identifying the coefficients in x2, we find

1

2
F k
i =

δ2

(∆k)2

[
εki (ρν

kF̄ k
i + 1− ρΦk)(1− ρΦk) +

1

2
ρ(νk)2F̄ k

i

]
.

This allows one to write the N × ν matrix F in terms of F̄ =MF .

We obtain a complicated fixed-point equation F = F(F ) concerning the matrix F .
Its form shows that for δ small enough, the right hand side is a contraction, therefore
in that case there is a unique solution to this equation, which can be approached via a
Picard iteration. Only numerical experiments can tell what happens for δ close to one
and how quickly the algorithm converges when it does. Our experiments exhibit rapid
convergence even for δ = 1.

3.3.3 Determination of Gi and Ḡi

We remark that the Picard iterations for F are exactly the non-stationary equation
carried over until convergence. One might do likewise for G and H . However, the
convergence for G is much slower than for F , and that for H again much slower than
for G. Indeed, if H is to be apprached to, say 10−4, then we must certainly go up to T
such that ρT /(1 − ρ) = 10−5. If ρ = .95, this means 283 iterations, and if ρ = .99,
1604 iterations, if the algorithm converges at all. (We observed a slower convergence.)
We therefore have rather to find explicit formulas.
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Identifying terms in x in (1) and (6), we obtain

Gk
i =− δ

∆k

{
ρḠk

i [ε
k
i (1− ρΦk) + νk] + εki

[
2(1− ρΦk) + νkρF̄ k

i

]
ai

}

+
δ

(∆k)2

{[
εki ρΦ

k
[
2(1−ρΦk) + (1+2νk)ρF̄ k

i

]
− ρF̄ k

i (ε
k
i +ν

k)(1+νk)
]
a0

+
[
εki (1− ρΦk)(−2 + ρF̄ k

i ) + νkρF̄ k
i (1− εki )

]
Γk
}

For ease of manipulation, we write this as

Gk
i = −δρζki Ḡk

i + δφk
i ai + δχk

i a0 + δψk
i Γ

k = −δρζki Ḡk
i + δωk

i + δψk
i Γ

k .

where the coefficients ζki , φk
i , χk

i , and ψk
i , can be read directly from lines 1, 1, 2, and 3

respectively of the three-line equation, and ωk
i = φk

i ai+χ
k
i a0 from the above equation.

Use the N ×N diagonal matrices

Ei = diagk{εki } , Zi = diagk{ζki } and Ψi = diagk{ψk
i }

and the N -vectors Ḡi and ωi to write the N equations above as

Gi = −δρZiḠi + δωi + δΨiΓ = −δρZiMGi + δ(ωi +ΨiΓ) .

Let also the N ×N matrices Ki and Li be defined as

Ki = (I + δρZiM)−1 , and Li =MKi ,

to get

Gi = δKi(ωi +ΨiΓ) , Ḡi = δLi(ωi +ΨiΓ) , EiḠi = δEiLi(ωi +ΨiΓ) .

We may now use this equation to find an explicit expression of Γ. The vector EiḠi has
its entry k as εki Ḡ

k
i . Remembering that

Γk =

ν∑

i=1

εki (ai − ρḠk
i ) ,

and using the N × ν matrix ε and the ν-vector a of the ai, we obtain

Γ = εa− δρ

ν∑

i=1

(EiLiωi + EiLiΨiΓ ) .

Define finally

Λ =

ν∑

i=1

EiLiΨi

to get

Γ = εa− δρ

ν∑

i=1

EiLiωi − δρΛΓ ,

hence

Γ = (I + δρΛ)−1

[
εa− δρ

ν∑

i=1

EiLiωi

]
.
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3.3.4 Determination of Hk
i and H̄k

i

It remains to identify terms without x in (6). It yields

Hk
i = εki [∆

kai − Γk + ρΦka0][∆
k(γki − ρF̄ k

i a0)− (Γk − ρΦka0)(1− ρF̄ k
i )]

+
ρ

2
F̄ k
i (∆

ka0 − Γk + ρΦka0)
2 +∆kρḠk

i (∆
ka0 − Γk + ρΦka0) + ρH̄k

i .

There does not seem to be much to gain in expanding and regrouping terms. At this
stage all terms in the right hand side are known. Let us write it as

Hk
i = hki + ρH̄k

i or in matrix form H = h+ ρH̄ = h+ ρMH ,

and thus
H = (I − ρM)−1h, and H̄ =MH .

The discount coefficient ρ being strictly smaller than one, the matrix I − ρM is indeed
invertible.

3.3.5 A significant simplification

If the entry-and-exit process is such that there is always at least one producer of
each type in the market, then all the complexity linked to the case mi = 0 disappears.
Several simplifications occur. First of all, the coefficients F k

i and F̄ k
i are independent

of i. Therefore, not only is the fixed-point equation simpler, but more importantly,
the unknown is now the unique N -vector F̄ instead of the matrix of the F̄ k

i . Thus N
unknowns instead of νN . Further, it also turns out that in that case, the coefficients ζki
are all equal to one, simplifying the calculation of Ḡi, and consequently of Γ.

4 Some numerical illustrations
In order to check the feasibility, and to gain some intuition about the qualitative

consequences of the theory, we performed some numerical computations.2

The number of free parameters needed to define an experiment is daunting. For
example, for the case below with three types of four producers each, the Markov tran-
sition matrix has 15,500 free parameters... We made a series of hypotheses to simplify
this. But there are also such parameters as θ, ρ, a0 and the bi and ci.

In the following cases, we assumed the following:

• Prices:

– θ = 1/2. This is the least favorable case for the fixed-point algorithm and
other matrix inversions.

– a0 = 10.
2The Scilab programs are provided as an online complement.
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– bi = 1 for all types.

• Discounting: ρ = .95.

• Time horizon: the same experiments were performed with a time horizon of 12
and for the infinite horizon case.

• Types

– Number: 3 (a fourth one for the “institution”, see below).

– Number Ni of producers per type: 3 or 4.

– Characteristics: A “medium” type serves as a reference. One type is less
efficient (called “weak”) and one more efficient (called “strong”). This
translates into the coefficients ci which are chosen as 3, 2, and 1 respec-
tively.

– In some cases, one medium producer, called the “institution”, is privileged
in that it never leaves the market. (We make it a fourth type, with mk

4 = 1
for all k.)

• Entering and exiting: at each time step, the probabilities of a given number of
producers entering or leaving are independent of the current state m, and only
depend on the type. Specifically, to let the efficiency be the only differentiating
factor, we have chosen for the three types probabilities of one, two, three or four
producers entering equal to .4, .16, .064, 0 respectively, and the corresponding
probabilities of leaving once there as .2, .04, .008, 0 respectively.

• Initial conditions:

– Markov state (0, 1, 0). If there is an institution, it is the initial producer
present. (i.e. m = (0, 0, 0, 1).)

– Price state: the monopoly price of a median player = 6.

The initial condition with one “medium” producer alone present on the market results
in the medium producers faring better than the strong ones in some of the experiments.

The numerical results are reported in the following table.

T Ni weak median strong Institution
12 3 9.863 23.27 16.25 None
12 3 5.282 10.31 10.45 57.37
12 4 7.219 17.36 12.07 None
12 4 3.751 7.206 7.630 55.81
∞ 3 21.88 39.46 37.27 None
∞ 3 11.79 23.66 24.24 87.82
∞ 4 15.79 29.13 25.56 None
∞ 4 8.274 16.25 17.66 84.35

As a comparison, the monopoly infinite horizon payoff of the median player is 320
without viscosity, and 327.4 with θ = .5.
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5 Conclusion
We think that our paper provides some answers to the question of how to evaluate

the expected profit for a player in an oligopoly model with random arrival(s) and exit(s)
of players with the same type (or not). In our view, it offers a flexible model that allows
the use of various probability laws and numerical simulations to estimate the sensitivity
of results to parameters.

However, our current modelling also has a number of limitations. We are aware
of at least four of them. The first stems from the fact that, in our framework, market
size (i.e. demand) is constant and exogenous, which means in particular that we do
not take into account changes in the latter that might be linked to firms’ strategies, as
with advertising, for example. The second limitation relates to the fact that we do not
model the entry decision. This is exogenous, so it is not possible for incumbent firms
to implement strategies to deter or delay entry. The third limitation stems from the
implicit assumption that the type of each agent is constant throughout the game. The
fourth limit relates to our assumption of common knowledge of stochastic processes
concerning market entry and exit. In theory, there’s nothing to prevent these stochastic
processes from depending on the number of competitors present on the market, but
in practice the size of the transition matrix (e.g. 15,500 probabilities in the case of
three types of four players) means that we have to make simplifications to construct
this matrix. We have therefore chosen, in our numerical applications, to make these
probabilities independent of the number of producers present.

Given our current state of knowledge, these limitations seem very difficult to over-
come. However, as far as the constant nature of demand is concerned, we can construt
a model that takes account of random exogenous demand.
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A Notations of Section 3
Data

• a0: constant coefficient in inverse demand function.

• bi: weight of the productoin of type i in the inverse demand function.

• ci: unit production cost of team number i.

• k(m): numbering of the Markov states. k a particular state number.

• m: a state of the Markov chain. A ν-vector.

• mi: number of actors of team i present on the market.

• mk
i : mi when in Markov state number k.

• M : transition matrix of the Markov chain.

• N : number of distinct Markov states.

• P (q) = a0 −
∑ν

i=1 bimiqi: Inverse demand function.

• qi: production of any producer of type i.

• qki (x): equlibrium production of producers of type i when in Markov state k,
and price state x. One of the quantities sought.

• ν: number of types.

• Πi: expected intertemporal profit of type i.

• θ: viscosity coefficient.

• ρ: time-discount coefficient.

Other notation

• ai = a0 − ci/(1− θ).

• ak =
∑ν

i=1 ε
k
i ai, a the N -vector of the ak.

• F k
i , G

k
i , H

k
i : V k

i (x) = F k
i x

2 +Gk
i x+Hk

i .

• Fi , Gi , Hi ∈ RN (column) N -vectors of coordinates upper-indexed by k.

• F̄ k
i , Ḡk

i , H̄k
i ∈ R coordinates of F̄i = MFi, Ḡi = MGi, H̄i = MHi

respectively.

• hki the r.h.s. in the calculation of Hk
i , and hi the N -vector of the hki .

• Ki = (I + δρZiM)−1.
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• Li =MKi.

• ℓki Line vector, line number k of Li.

• ri = bimiqi, used as the control of producers of type i.

• rki : equilibrium control of producers of type i in Markov state k. (Function of
x.)

• R =
∑ν

i=1 ri. Rk =
∑ν

i=1 r
k
i .

• V k
i (x) Isaacs Value function of producers of type i for the performance index

Π̃i.

• Zi = diagk{ζki } a N ×N diagonal matrix,

• αk =
∑ν

i=1 ε
k
i ℓ

k
i φiai and a the N -vector of the ak.

• βk =
∑ν

i=1 ε
k
i ℓ

k
i χi and β the N -vector of the βk.

• γki = ai − ρḠk
i .

• Γk =
∑ν

i=1 ε
k
i γ

k
i .

• δ = θ/(1− θ).

• ∆k = 1 + νk − ρΦk.

• εki = 0 if mk
i = 0, and εki = 1 if mk

i > 0.

• Ei = diagk{εki } a N ×N diagonal matrix.

• ζki , scalar coefficient of Ḡk
i in r.h.s. of equation for Gk

i . (See Zi above.)

• λk =
∑ν

i=1 ε
k
i ℓ

k
iΨi a N -line vector.

• νk =
∑ν

i=1 ε
k
i .

• Φk =
∑ν

i−1 ε
k
i F̄

k
i .

• φk
i , χk

i , ψk
i scalar coefficients in Gk

i .

• φi and χi, N -vectors of the φk
i and χk

i

• Ψi = diagk{ψk
i }, a N ×N diagonal matrix.

• ωk
i = φk

i ai + χk
i a0, ωi the N -vector of the ωk

i .
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