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Abstract

A new class of allocation rules combining marginalistic and egalitarian principles is introduced
for cooperative TU-games. It includes some modes of solidarity among the players by taking the
collective contribution of some coalitions to the grand coalition into account. Relationships with
other class of allocation rules such as the Egalitarian Shapley values and the Procedural values are
discussed. Two axiomatic characterizations are provided: one of the whole class of allocation rules,
and one of each of its extreme points.
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1. Introduction

One of the main issues in economic allocation problems is the trade-off between marginalism and
egalitarianism, which can be tackled by cooperative games with transferable utility. A cooperative
game with transferable utility (TU-game) on a given player set specifies, for each coalition of players,
a worth measuring the best possible result for the coalition should its members cooperate without
the help of any other player. An allocation rule assigns a payoff vector to each such game, which
can be interpreted as the payoffs given by a regulator to the players for participating in the game.

The Shapley value (Shapley, 1953) and the egalitarian division rule are two well-known allocation
rules, but each only incorporates one of the two above-mentioned principles. Assuming that the
grand coalition has formed by a succession of one-by-one arrivals, the Shapley value of an player
is equal to his expected contribution to the coalition of players he joins upon arriving. Therefore,
the Shapley value is exclusively based on a marginalistic principle. As a consequence, unproductive
players get zero payoff, which means that the Shapley value rules out every kind of solidarity
between the players. By contrast, the Egalitarian Division rule, which divides the worth achieved
by the grand coalition equally among all players, does not depend on the players’ contributions at
all, and as such can be seen as too solidaristic. Although these two allocation rules seem to be
rather opposite, they both satisfy basic axioms such as Efficiency, Anonymity and Linearity. The
class of allocation rules satisfying these three axioms has been studied and characterized by Ruiz
et al. (1998) and Radzik and Driessen (2013), among others. In the latter article, it is proved that

∗Corresponding author
Email addresses: sylvain.beal@univ-fcomte.fr (Sylvain Béal), eric.remila@univ-st-etienne.fr (Eric

Rémila), philippe.solal@univ-st-etienne.fr (Philippe Solal)
URL: https://sites.google.com/site/bealpage/ (Sylvain Béal)

Preprint submitted to Elsevier March 6, 2015



any efficient, anonymous and linear allocation rule can be formulated as the Shapley value of an
appropriately modified game.

A growing literature in which less extreme visions of the solidarity principle are invoked to
design allocation rules has emerged within the class of efficient, anonymous and linear allocation
rules. Such allocation rules incorporate some modes of solidarity: the most productive players
should obtain a better treatment, but a solidarity principle should ensure a reduction of the payoffs
inequalities with the less productive players. The Equal Surplus Division rule (Driessen and Funaki,
1991) first assigns to each player his stand-alone worth and then splits equally what remains of the
worth of the grand coalition. The Solidarity value (Sprumont, 1990; Nowak and Radzik, 1994) is
similar to the Shapley value, except that the contribution of an player to a coalition is replaced
by the average contribution over the coalition’s members. The Least Square Prenucleolus (Ruiz
et al., 1996) first assigns to each player his Banzhaf value (Banzhaf, 1965) and then splits equally
what remains of the worth of the grand coalition. The Consensus values (Ju et al., 2007) is the
class of all convex combinations between the Shapley value and the Equal Surplus Division rule.
The Egalitarian Shapley values (Joosten, 1996; van den Brink et al., 2013) is the class of all convex
combinations between the Shapley value and the Egalitarian Division rule. The allocation rules
belonging to the class introduced in Casajus and Huettner (2014a) are distinguished by the type
of player whose removal from a game does not affect the remaining players’ payoffs. This class
contains the Shapley value and the Egalitarian Division rule as extreme points, and the Solidarity
value is its center. The Procedural values (Malawski, 2013) is a class of allocation rules similar in
spirit to the Shapley value except that the contribution of the arriving player can be arbitrarily
shared among him and the players arrived before him. The Solidarity value, the Egalitarian Division
rule, the Shapley value and the Egalitarian Shapley values are instances of the Procedural values.
These relationships have allowed for comparable axiomatic characterizations of these allocation
rules (see van den Brink, 2007; Kamijo and Kongo, 2012; Chameni Nembua, 2012; Casajus and
Huettner, 2013, 2014a,b, in addition to the aforementioned articles). The Equal Surplus Division
rule, the Consensus values and the Least Square Prenucleolus are not Procedural values; and the
class studied in Casajus and Huettner (2014a) is not related to the class of Procedural values by
set inclusion.

In this article, we introduce a new class of allocation rules which combines marginalistic and
egalitarian principles and which is included in the class of efficient, anonymous and linear allocation
rules. As for the Solidarity value and the Procedural values, we keep Shapley’s idea that the one-
by-one formation of the grand coalition is modeled by permutations of the players. Nonetheless,
instead of rewarding every player with his (individual) contribution to the coalition he joins upon
entering, we also rely on the notion of collective contribution to the grand coalition so as to reflect
some aspects of solidarity. More specifically, for a coalition S, the collective contribution of S to
the grand coalition N is measured by the difference between the worth of N and the worth of the
coalition of players in N but not in S. In a sense, if S was considered as a single entity, then the
collective contribution of S to N would reduce to the individual contribution of player S to N .
The computation of the Shapley value only involves individual contributions. To the contrary, the
Egalitarian Division rule only rests on the collective contribution of the grand coalition to itself,
which then is split evenly.

In the building blocks of our class of allocation rules, the collective contribution to the grand
coalition replaces the individual contributions as soon as the currently formed coalition has reached
some size p. Thus, there are two distinct steps. Before attaining the critical size p, each entering
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player gets his individual contribution to the coalition he joins. When the critical size p is reached,
the remaining players keep on entering one by one, but instead of rewarding each of them when
entering, they cumulate their contributions until the grand coalition is formed. Then, the collective
contribution of the coalition of remaining players to the grand coalition is evenly distributed among
them. This procedure can be interpreted as the creation of a mutual fund by these remaining
players, which is used for promoting equality among them, creating de facto some solidarity. Our
construction procedure can be justified by two phenomena. On the one hand, the fact that the
mutual fund is established when some size p is attained seems consistent with both empirical and
theoretical findings as emphasized by García and Vanden (2009, pp. 1980). On the other hand,
the appeal to a regulator to ensure some solidarity among the players is sometimes necessary. For
instance, in the context of health insurances, Stone (1993) points out that a mutual insurance
can hardly be implemented without the coercive authority of a state. The author underlines that
the competitive insurance industry in the U.S. often leads to fragmentation of the society into
ever-smaller, more homogeneous groups, which in turn implies the destruction of mutual aids.

We call Solp the allocation rule defined by averaging the payoff vector described in the previous
paragraph over all permutations of the players. The class of solidarity allocation rules that we
study, denoted by SolN , is the convex combination of all Solp allocation rules. The class SolN and
its elements are investigated through the following two types of results.

Firstly, we relate our class to the previously mentioned allocation rules and class of allocation
rules. Proposition 6 shows that SolN is (strictly) included in the class of Procedural values. Nev-
ertheless, although the construction of SolN and the Procedural values are different, Proposition 6
also provides an alternative formulation of each extreme point Solp of SolN in terms of Procedural
values. More specifically, Solp coincides with the Procedural value in which the contribution of the
entering player is assigned to himself if the size of the current coalition is not larger than p + 1,
and to the player entered in position p + 1 otherwise. Since Sol0 and Soln−1 coincide with the
Egalitarian Division rule and the Shapley value, respectively, SolN also contains the class of all
Egalitarian Shapley values. Furthermore, SolN includes the Solidarity value. This result follows
from Proposition 8, which characterizes SolN by means of the modified game studied in Radzik
and Driessen (2013). Based on this result, we derive closed form expression of each Solp.

Secondly, we provide an axiomatic characterization of SolN and of each of its extreme points
Solp. Proposition 9 characterizes each Solp allocation rule by the standard axioms of Efficiency,
Equal treatment of equals and Additivity together with the new p-null player axiom. The latter
axiom falls in line with other parametrized alterations of the null player axiom (see Ju et al., 2007;
Kamijo and Kongo, 2012; Chameni Nembua, 2012; Casajus and Huettner, 2014a; Béal et al., 2015).1

It assigns a null payoff to an player who has null contribution to coalitions of size less than p and
such that every coalition of size p without this player has the same worth as the grand coalition.
In order to characterize the class SolN , we invoke in Proposition 10 the four axioms Efficiency,
Additivity, Desirability and Monotonicity used by Malawski (2013) to characterize the larger class
of Procedural values, and add the new axiom of Null player in a null environment for positive
games. The latter axiom imposes that a null player does not obtain a positive payoff if both the
worth of all coalitions are non-negative and if the grand coalition achieves a zero worth. This
axiom aims at emphasizing the limits of the solidarity when the resources available to the society
are not sufficient to redistribute monetary payoffs to unproductive players. Our characterization is
also comparable to Theorem 2 in Casajus and Huettner (2013), which characterizes the Egalitarian

1The modified version of the null player axiom invoked in Nowak and Radzik (1994) does not rely on a parameter.
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Shapley values by Efficiency, Additivity, Desirability and Null player in a productive environment.
The latter axiom points out situations in which solidarity is possible by requiring that null players
obtain non-negative payoff if the grand coalition has a non-negative worth. One can move from
our Proposition 10 to Theorem 2 in Casajus and Huettner (2013) by dropping Monotonicity and
by replacing Null player in a null environment for positive games by Null player in a productive
environment. Finally, Proposition 10 implies that SolN neither includes nor is included in the class
of allocation rules studied in Casajus and Huettner (2014a).

The rest of the article is organized as follows. Section 2 gives the basic definitions and con-
textualizes our study by stating the closest results. The class SolN and its extreme points are
constructed in section 3. Their properties are studied in section 4. Section 5 contains the axiomatic
characterizations. Section 6 concludes. All proofs are relegated to the Appendix.

2. Preliminaries

2.1. TU-games
Throughout this article, the cardinality of a finite set S will be denoted by the lower case s, the

collection of all subsets of S will be denoted by 2S , and, for notational convenience, we will write
singleton {i} as i.

Let N = {1, 2, . . . , n} be a fixed and finite set of n players. Each subset S of N is called a
coalition while N is called the grand coalition. A cooperative game with transferable utility or
simply a TU-game on a fixed player set N is a function v : 2N −→ R such that v(∅) = 0. For each
coalition S ⊆ N , v(S) describes the worth of the coalition S when its members cooperate. For any
two TU-games v and w in VN and any α ∈ R, the TU-game αv + w ∈ VN is defined as follows:
for each S ⊆ N , (αv + w)(S) = αv(S) + w(S). A TU-game v ∈ VN is positive if, for each S ⊆ N ,
v(S) ≥ 0. A TU-game v ∈ VN is monotone if, for each S ⊆ T ⊆ N , v(S) ≤ v(T ).

A permutation σ on N assigns a position σ(i) to each player i ∈ N . Let ΣN be the set of n!
permutations on N . Given v ∈ VN and σ ∈ ΣN , σv ∈ VN is defined as: for each nonempty S ⊆ N ,
σv(∪i∈Sσ(i)) = v(S).

Two distinct players i ∈ N and j ∈ N are equals in v ∈ VN if for each S ⊆ N \ {i, j}, it holds
that v(S ∪ i) = v(S ∪ j). Player i ∈ N is a nullifying player in v if for each coalition S 3 i, it holds
that v(S) = 0. Player is null in v if, for each coalition S 3 i, v(S) = v(S \ i).

2.2. Allocation rules
An allocation rule Φ on VN is a mapping Φ : VN −→ Rn which uniquely determines, for each

v ∈ VN and each i ∈ N , a payoff Φi(v) ∈ R for participating to v ∈ VN . In this article we consider
the following allocation rules.

The Egalitarian Division rule, ED, is defined on VN as:

∀i ∈ N, EDi(v) =
v(N)

n
.

For any permutation σ and any player i ∈ N , define the coalition containing player i and the
set of its predecessors in σ as P σi = {j ∈ N : σ(j) ≤ σ(i)}. The Shapley value (Shapley, 1953), Sh,
is defined on VN as follows:

∀i ∈ N, Shi(v) =
1

n!

∑

σ∈ΣN

(
v(P σi )− v(P σi \ i)

)
=

∑

S∈2N :S3i

(n− s)!(s− 1)!

n!

(
v(S)− v(S \ i)

)
.
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The set of Egalitarian Shapley values has been suggested by Joosten (1996). Each allocation
rule belonging to this class, denoted by EDShα, is a convex combination of Sh and ED, i.e. there
is α ∈ [0, 1] such that:

EDShα(v) = αSh(v) + (1− α)ED(v).

Malawski (2013) introduces a set of allocation rules, called the Procedural values. A Procedural
value is the average of contribution vectors associated with all permutations of the player set, where,
for each permutation and each player, a procedure specifies how the contribution of this player is
shared among him and all his predecessors in the permutation. Formally, a procedure l on VN is a
collection of nonnegative coefficients ((lp,q)

p
q=1)np=1 such that for each p ∈ {1, . . . , n},∑p

q=1 lq,p = 1.
The coefficient lp,q specifies the share of player at position q ≤ p in the contribution of player at
position p in the permutation. Obviously, l11 = 1. For each permutation σ ∈ ΣN , and each v ∈ VN ,
the procedure l generates a contribution vector rσ,l(v) defined as follows:

∀i ∈ N, rσ,li (v) =
∑

j∈(N\Pσi )∪i
lσ(j),σ(i)

(
v(P σj )− v(P σj \ j)

)
. (1)

The Procedural value associated with procedure l is the allocation rule PVl on VN defined as follows:

∀i ∈ N, Pvli(v) =
1

n!

∑

σ∈ΣN

rσ,li (v).

2.3. Axioms for allocation rules
An allocation rule Φ on VN satisfies:

Efficiency if for each v ∈ VN , it holds that:
∑

i∈N Φi(v) = v(N);
Anonymity if for each v ∈ VN and each σ ∈ ΣN , it holds that: Φi(v) = Φσ(i)(σv);
Equal treatment of equals if for each v ∈ VN and each pair {i, j} ⊆ N of equal players in v, it
holds that: Φi(v) = Φj(v);
Desirability2 if for each v ∈ VN and each pair {i, j} ⊆ N such that, for each S ⊆ N \ {i, j},
v(S ∪ i) ≥ v(S ∪ j), it holds that: Φi(v) ≥ Φj(v);
Null player axiom if for each v ∈ VN and each null player i ∈ N in v, it holds that: Φi(v) = 0;
Null player axiom in a productive environment if for each v ∈ VN such that v(N) ≥ 0, and
each null player i ∈ N in v, it holds that: Φi(v) ≥ 0;
Nullifying player axiom if for each v ∈ VN and each nullifying player i ∈ N in v, it holds that:
Φi(v) = 0;
Linearity if for each v and w in VN and each α ∈ R, it holds that: Φ(αv + w) = αΦ(v) + Φ(w);
Additivity if for each v and w in VN , it holds that: Φ(v + w) = Φ(v) + Φ(w);
Monotonicity3 if in each monotone game v ∈ VN and each i ∈ N , it holds that: Φi(v) ≥ 0.

2Desirability appears in the literature under different names, such as local monotonicity (e.g. Malawski, 2013; van
den Brink et al., 2013) or Fair treatment (e.g. Radzik and Driessen, 2013).

3Monotonicity is also known as Positivity (e.g. Kalai and Samet, 1987) and Weak monotonicity (e.g. Malawski,
2013). We refrain from using the latter name because Weak monotonicity is used in van den Brink et al. (2013) for
a weak version of Strong monotonicity as introduced by Young (1985).
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Note that Anonymity implies Equal treatment of equals, Desirability implies Equal treatment
of equals, Linearity implies Additivity, the Null player axiom implies the Null player axiom in a
productive environment. In the rest of the article, we use the acronyms EALN for the set of
all allocation rules satisfying Efficiency, Anonymity and Linearity on VN , PvN for the set of all
Procedural values on VN , and EDShN for the set of all Egalitarian-Shapley values on VN .

2.4. Some existing results
Various characterizations of the Shapley value have been given in the literature. One of the

most famous characterizations uses Additivity, Efficiency, Equal Treatment of Equals, and the Null
player axiom. It can be easily derived from the seminal article by Shapley (1953).

Proposition 1 (Shapley, 1953)
An allocation rule Φ on VN is equal to Sh if and only if it satisfies Efficiency, Equal treatment of
equals, Additivity, and the Null player axiom.

Deleting the Null player axiom and adding the Nullifying player axiom in the statement of Propo-
sition 1 yields the Egalitarian Division rule. This result is due to van den Brink (2007).

Proposition 2 (van den Brink, 2007)
An allocation rule Φ on VN is equal to ED if and only if it satisfies Efficiency, Equal treatment of
equals, Additivity, and the Nullifying player axiom.

Casajus and Huettner (2013) show that substituting Equal treatment of equals and the Null
player axiom in the statement of Proposition 1 by Desirability and the Null player axiom in pro-
ductive environment selects the set of Egalitarian-Shapley values.

Proposition 3 (Casajus and Huettner, 2013, Theorem 2)
An allocation rule Φ on VN belongs to EDShN if and only if it satisfies Efficiency, Desirability,
Additivity, and the Null player axiom in a productive environment.

In order to select the Procedural values, Malawski (2013) replaces in Proposition 3 the Null
player axiom in a productive environment by Monotonicity.

Proposition 4 (Malawski, 2013, Theorem 3)
An allocation rule Φ on VN belongs to PvN if and only if it satisfies Efficiency, Desirability,
Additivity, and Monotonicity.

Propositions 1-4 offer comparable characterizations of different types of allocation rules mixing
marginalist and egalitarian principles. In fact, Theorem 3 in Malawski (2013) invokes Linearity
instead of Additivity. In general, Additivity does not imply Linearity. However, (Casajus and
Huettner, 2013, Lemma 5) show that this implication holds in presence of Efficiency and Desirability.
Therefore, Linearity can be replaced by Additivity in the original result by Malawski (2013). It
should be also clear that each Egalitarian Shapley value satisfies Monotonicity, which implies that
that the set of Procedural values contains the set of Egalitarian Shapley values. In general, Equal
treatment of equals does not implies Anonymity. It turns out that for allocation rules satisfying
Efficiency and Linearity, Anonymity is equivalent to Equal treatment of equals (see Malawski, 2007,
Theorem 2). From this and the fact that Desirability implies Equal treatment of equals, we deduce
from Propositions 1-4 that the Shapley value, the Egalitarian Division rule, the Egalitarian Shapley
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values, and the Procedural values belong to the larger set of allocation rules satisfying Efficiency,
Anonymity and Linearity. Note also that PvN is a convex set of allocation rules (see Malawski,
2013, Remark 1). From these comments, we obtain the following corollary.

Corollary 1 It holds that: EALN ⊇ PvN ⊇ EDShN ⊇ {Sh,ED}. Furthermore, EALN , PvN ,
and EDShN are convex sets.

The set of allocation rules satisfying Efficiency, Anonymity (or Equal treatment of equals) and
Linearity has been studied by Ruiz et al. (1998), Driessen and Radzik (2003) and Radzik and
Driessen (2013) among others.

Proposition 5 (Driessen and Radzik, 2003; Radzik and Driessen, 2013)
An allocation rule Φ on VN belongs to EALN if and only if there exists a unique vector of constants
BΦ = (bΦs : s ∈ {0, 1, . . . , n}) such that bΦ0 = 0, bΦn = 1, and

Φ(v) = Sh(BΦv), (2)

where (BΦv)(S) = bΦs v(S) for each coalition S of size s, s ∈ {0, 1, . . . , n}.

Since the Shapley value, the Egalitarian Division rule, the Egalitarian Shapley values and the
Procedural values satisfy all Efficiency, Linearity and Anonymity, each of them has its representation
in the form of (2) with some constants bs.

Remark 1 The previous results allow for several specifications.

1. For the Shapley value we obviously have, for each s ∈ {1, . . . , n− 1}, bShs = 1.
2. For the Egalitarian Division rule, we have, for each s ∈ {1, . . . , n− 1}, bEDs = 0.
3. For each Egalitarian-Shapley value EDShα, α ∈ [0, 1], we have, for each s ∈ {1, . . . , n − 1},
bαs = α.

4. For each Procedural value Pvl, Lemma 2 in Malawski (2013) shows that, for each s ∈
{1, . . . , n− 1}, bls = ls+1,s+1, where, by definition of procedure l, ls+1,s+1 ∈ [0, 1]. In particu-
lar, if l is such that lss = 1 for each size s, we have Pvl = Sh; if the procedure l is such that
lss = 0 for each s > 1, we obtain Pvl = ED.

�

Remark 2 Point 4 in Remark 1 suggests that the allocation determined by a procedure l only
depends on the real numbers (lss : s ∈ {1, . . . , n}) where l11 = 1. This property of Procedural
values has been proved by (Malawski, 2013, Theorem 1). �

Remark 3 Note that the function

Ψv : Rn+1 −→ VN defined as Ψv(B) = Bv,

where Bv is defined as in Proposition 5, is linear. So, for any α ∈ R, and any two vectors B(1) and
B(2), we have:

(αB(1) +B(2))(v) = Ψv(αB
(1) +B(2)) = αΨv(B

(1)) + Ψv(B
(2)) = α(B(1)v) +B(2)v.

�
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3. Construction of the Solidarity allocation rules

We introduce a new set of solidarity allocation rules which rely on both marginalist and egali-
tarian principles. The scenario envisaged to define and compute these allocation rules consists of
the following steps.

1. Consider any integer p between 0 and n− 1.
2. Choose any v ∈ VN and any permutation σ ∈ ΣN in order to gradually form the grand

coalition N .
3. Each player i ∈ N arriving at position σ(i) ≤ p obtains his contribution v(P σi ) − v(P σi \ i)

upon entering.
4. Each player i ∈ N arriving at position σ(i) > p obtains an equal share of the remaining worth
v(N)− v(P σσ−1(p)).

5. Steps 1-4 determine a payoff vector denoted by cσ,p(v) ∈ Rn.
6. Define the payoff vector Solp(v) as the average of the payoff vectors cσ,p(v) over the n! per-

mutations σ ∈ ΣN .
7. Then, assume that the integer p is drawn from {0, . . . , n − 1} according to the probability

distribution α = (αp : p ∈ {0, . . . , n − 1}). The Solidarity allocation rule induced by the
probability distribution α is defined for each v ∈ VN as the expected payoff vector Solα(v)
given by:

Solα(v) =

n−1∑

p=0

αpSolp(v). (3)

Step 3 is based on the classical contribution on the entering (single) player. It indicates that
each player entering at one of the first p positions receives his contribution to the coalition formed
by his entry according to permutation σ. Similarly, step 4 can be seen as relying on the collective
contribution of the remaining players, i.e. players arriving after position p according to σ. Each
player still brings his contribution to the current coalition, but these contributions are gathered into
a mutual fund until the grand coalition is formed. The coalition consisting of the players arrived
after position p behaves as a single entity: the accumulated worth is its collective contribution to
N , and it makes sense to share it equally among the coalition’s members. Latter, we will propose
another interpretation which does not rely on the idea of a collective contribution. Step 5 collects
the payoffs received by each player with respect to σ and p. In step 6, these payoffs are averaged
over all possible permutations of the players. Step 7 envisages the situation where the threshold
p from which the remaining players enter collectively in a coalition of size p, is chosen according
to a probability distribution. Taking into account this random event, the solidarity allocation rule
computes the expected payoff of each player under this probability distribution.

Formally, Solp(v) is defined as:

∀v ∈ VN , Solp(v) =
1

n!

∑

σ∈ΣN

cσ,p(v), (4)

where

∀σ ∈ ΣN ,∀i ∈ N, cσ,pi (v) =





v(P σi )− v(P σi \ i) if σ(i) ≤ p,

v(N)− v(P σσ−1(p))
n− p if σ(i) > p.

(5)
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and, by convention and abusing notation, P σσ−1(0) = ∅.

From (4) and (5), we have for each i ∈ N :

Solpi (v) =
1

n!

[ ∑

σ∈ΣN :σ(i)≤p

(
v(P σi )− v(P σi \ i)

)
+

∑

σ∈ΣN :σ(i)>p

v(N)− v(P σσ−1(p))

n− p

]
,

where
∑

σ∈ΣN :σ(i)≤p

(
v(P σi )− v(P σi \ i)

)
=

∑

S∈2N :S3i,
s≤p

∑

σ∈ΣN :Pσi =S

(
v(S)− v(S \ i)

)

=
∑

S∈2N :S3i,
s≤p

(n− s)!(s− 1)!
(
v(S)− v(S \ i)

)

and
∑

σ∈ΣN :σ(i)>p

(
v(N)− v(P σσ−1(p))

)
=

∑

S∈2N :S 63i,
s=p

∑

σ∈ΣN :Pσ
σ−1(p)

=S

(
v(N)− v(S)

)

=
∑

S∈2N :S 63i,
s=p

(n− s)!s!
(
v(N)− v(S)

)
.

Therefore, an equivalent representation of Solp(v) is given by:

∀i ∈ N, Solpi (v) =
∑

S∈2N :S3i,
s≤p

(n− s)!(s− 1)!

n!

(
v(S)−v(S\i)

)
+

∑

S∈2N :S 63i,
s=p

(n− s− 1)!s!

n!

(
v(N)−v(S)

)
,

(6)
or

∀i ∈ N, Solpi (v) =
∑

S∈2N :S3i,
s≤p

(n− s)!(s− 1)!

n!

(
v(S)−v(S\i)

)
+

∑

S∈2N :S3i,
s=p+1

(n− s)!(s− 1)!

n!

(
v(N)−v(S\i)

)
.

(7)

4. Properties

Let SolN be the set of all possible Solidarity allocation rules Solα on VN defined as in (3). By
construction, each Solp, p ∈ {0, . . . , n− 1}, is an extreme point of the convex set of allocation rules
SolN . We begin by describing some useful properties of these extreme points.

Proposition 6 Fix any p ∈ {0, . . . , n− 1}.
1. If p = 0, then Sol0 = ED; if p = n− 1, then Soln−1 = Sh.
2. For each v ∈ VN , Solp(v) coincides with Sh(Bpv), where Bp = (bps : s ∈ {0, 1, . . . , n}) is such

that:

bp0 = 0, bpn = 1, bps =

{
1 if s ∈ {1, . . . , p},
0 if s ∈ {p+ 1, . . . , n− 1}.

9



3. Solp coincides with the Procedural value Pvl
p
generated by the procedure lp defined as:

lpk,q =





1 if k > p+ 1 and q = p+ 1
1 if k ≤ p+ 1 and q = k
0 otherwise.

By Remark 2, the procedure lp described in Proposition 6 is only one of the possible procedures
leading to Solp. In lp, each player entering at position k > p+1 transfers his or her own contribution
to the player entered at position p+ 1 while each other player entering at position k ≤ p+ 1 keeps
his or her own contribution. Notice that Point 3 of Proposition 6 follows from Point 2 of Proposition
6 by using the fourth item of Remark 1. Nevertheless, we prefer to provide a detailed and more
instructive proof in Appendix.

Combining Proposition 6 with Corollary 1 and keeping in mind that SolN is a convex set of
allocation rules, we obtain the following result.

Proposition 7 It holds that: EALN ⊇ PVN ⊇ SolN ⊇ EDShN ⊇ {Sh,ED}.

Remark 4 The class SolN and the class of allocation rules studied in Casajus and Huettner (2014a)
have a nonempty intersection since they both contain the Shapley value, the Egalitarian Division
rule and the Solidarity value (see also Remark 6 below). However, the two classes are not related
to each other by set inclusion. On the one hand, SolN is not included in the class of allocation
rules considered in Casajus and Huettner (2014a). This follows from expression (7) in Theorem 3 in
Casajus and Huettner (2014a), which implies that the constants bs associated with any allocation
in the class are linear fractional transformations of s. As a consequence, any allocation rule Solp

with p 6∈ {0, n − 1} cannot be formulated as (7) in Theorem 3 in Casajus and Huettner (2014a).
On the other hand, the class of allocation rules introduced in Casajus and Huettner (2014a) is not
included in SolN . This property comes from the fact that any element of SolN satisfies Desirability
and Monotonicity as a Procedural value, while this is not the case for all allocation rules in the
class of allocation rules examined in Casajus and Huettner (2014a) as shown by their Theorem 6.
�

The second result in this section characterizes the class SolN in terms of the constants bs in the
representation (2).

Proposition 8 An allocation rule Φ on VN belongs to SolN if and only it can be represented by
(2) with constants BΦ = (bΦs : s ∈ {0, . . . , n}) such that:

bΦ0 = 0, bΦn = 1, and ∀s ∈ {1, . . . , n− 1}, 1 ≥ bΦ1 ≥ bΦ2 ≥ · · · ≥ bΦn−1 ≥ 0.

Furthermore, Φ = Solα where α = (αs : s ∈ {0, . . . , n − 1}) is obtained from the transformation
BΦ 7−→ α such that:

α0 = 1− bΦ1 , αn−1 = bΦn−1, and ∀s ∈ {1, . . . , n− 2}, αs = bΦs − bΦs+1.

Remark 5 From Proposition 8, the inclusion PvN ⊇ SolN , and the fourth item of Remark 1, it
is possible to interpret each Solα as the Procedural value Pvl

α
where:

lαk,q =





αq−1 if q < k,

n−1∑

j=q−1

αj if q = k.

10



In other words, the contribution of the player entering at position k is shared as follows: for q < k,
the player entering at position q receives a share αq−1 of the contribution, and the player k keeps
the remaining part. As such, the coefficients αp, p ∈ {0, . . . , n− 1}, can be interpreted as transfer
rates of the contribution of the entering player to his or her predecessors in the permutation. For a
given p ∈ {0, . . . , n− 1}, by setting αp = 1 and αj = 0 for each j ∈ {0, . . . , p− 1, p+ 1, . . . , n− 1},
we easily recover that lαk,q = lpk,q, and thus Solα = Solp. �

Remark 6 The Solidarity value introduced by Nowak and Radzik (1994) belongs to EALN . The
associated constants bSvs are given by (see Radzik and Driessen, 2013, Corollary 1):

bSv0 = 0, bSvn = 1, and ∀s ∈ {1, . . . , n− 1}, bSvs =
1

s+ 1
.

By Proposition 8, conclude that the Solidarity value belongs to SolN . �

Remark 7 One might want to determine the barycenter of SolN . By Proposition 8, it is given by
the EALN allocation rule Φ with constants

bΦ0 = 0, bΦn = 1, and ∀s ∈ {1, . . . , n− 1}, bΦs =
n− s
n

,

or equivalently, it is equal to Solα, where αs = 1/n for all s ∈ {0, . . . , n − 1}. As a consequence,
the barycenter of SolN possesses a natural interpretation in terms of Procedural values. More
specifically, the entering player gives up a share 1/n of his contribution to each of his predecessors,
and keeps what remains. As such, the fraction that the entering players keeps for himself gradually
decreases with the number of his predecessors. This means that the degree of solidarity increases
with the size of the coalition to which the entering player contributes. �

5. Axiomatic characterizations

This section offers two characterizations: one of each Solp, p 6= 0, and one of the class SolN . As
a start, recall that Point 2 of Proposition 6 indicates that each Solp has a representation in terms
of the Shapley value as expressed in Proposition 5. The corresponding vector of constants Bp is
binary. More precisely, the constants in Bp coincide with the unitary constants BSh of the Shapley
value Sh up to p, and then shrink to zero. Thus, Bn−1 = BSh (point 1 of Proposition 6). From this
point of view, Solp is a generalization of the Shapley value Sh. As a consequence, it is possible to
generalize the classical characterization of the Shapley value contained in Proposition 1. To that
end, we introduce the following variant of the null player axiom.

Given p ∈ {1, . . . , n− 1}, and v ∈ VN , we say that i ∈ N is a p-null player in v if:

∀S 3 i, s ≤ p, v(S) = v(S \ i) and ∀S 63 i, s = p, v(N) = v(S).

p-null player axiom An allocation rule Φ on VN satisfies the p-null player axiom if, for each
v ∈ VN and each p-null player i ∈ N in v, it holds that: Φi(v) = 0.

In case p = n− 1, the p-null player axiom is identical to the null player axiom. Modifications of
the null player axiom in the same spirit are invoked in Nowak and Radzik (1994), Ju et al. (2007),
Kamijo and Kongo (2012), Chameni Nembua (2012), Casajus and Huettner (2014a) and Béal et al.
(2015).
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Proposition 9 An allocation rule Φ on VN is equal to Solp, p ∈ {1, . . . , n − 1}, if and only if it
satisfies Efficiency, Equal treatment of equals, Additivity, and the p-null player axiom.

The logical independence of the axioms can be demonstrated as follows:

• The Shapley value Sh satisfies Efficiency, Equal treatment of equals, and Additivity, but
violates the p-null player axiom.

• The null allocation rule on VN , which assigns to each v ∈ VN and each i ∈ N the payoff
vector Φi(v) = 0 satisfies Equal treatment of equals, Additivity, and the p-null player axiom,
but violates Efficiency.

• Fix σ ∈ ΣN and p ∈ {1, . . . , n − 1}. The allocation rule cσ,p on VN satisfies Efficiency,
Additivity, and the p-null player axiom, but violates Equal treatment of equals.

• The Equal Surplus Division rule ESD (Driessen and Funaki, 1991) is defined on VN by

∀i ∈ N, ESDi(v) = v(i) +
1

n

(
v(N)−

∑

j∈N
v(j)

)
.

The allocation rule Φ on VN such that Φ(v) = ESD(v) if v(i) 6= 0 for all i ∈ N and Φ(v) =
Solp(v) otherwise satisfies Efficiency, Equal treatment of equals, and the p-null player axiom,
but violates Additivity.

It is interesting to note that Proposition 2 and Proposition 9 are comparable characterizations
of allocation rules based on egalitarian and marginalist principles.

We are now in a position to provide a characterization of SolN comparable to the character-
izations of PvN and EDShN given in Proposition 4 and Proposition 3, respectively. In order to
characterize EDShN , Casajus and Huettner (2013) use the axiom of Null player in a productive
environment in Proposition 3. This axioms indicates that a null player obtains a non-negative pay-
off whenever the worth generated by the grand coalition N is non-negative. Here, deviations from
the Shapley payoffs are perceived as an expression of a certain degree of solidarity among players.
Since Null players do not exert negative effects when they join a coalition, it is not necessary that
they receive negative payoffs. As underlined by the authors, relaxing this axiom of Null player
in productive environment by imposing that Null players receive a non-negative payoff when the
worth of the grand coalition is null (i.e. in a null environment) has a strong implication on the
nature of solidarity among the players within the set of allocation rules EALN : the combination
of Efficiency, Linearity, Anonymity (or Equal treatment of equals) and the axiom of Null player in
a null environment characterizes the set of all affine combinations of Sh and ED (see Casajus and
Huettner, 2013, footnote 4). There exist allocation rules in SolN that do not satisfy the axiom of
Null player in a null environment. Whenever the environment is null, one can also estimate that the
resources of the society are not sufficient to redistribute monetary payoffs to unproductive players
even if the other coalitions are productive. Consequently, one can impose that null players should
not receive positive payoffs. This point of view expresses the limits of the solidarity principle among
the players in a situation where the cooperation of all the members of the society is unproductive.

Null player in a null environment for positive games. An allocation rule Φ on VN satisfies
the Null player in a null environment for positive games axiom if for each positive v ∈ VN such that

12



v(N) = 0 and each null player i ∈ N in v, it holds that: Φi(v) ≤ 0.

It turns out that this axiom has a strong implication on the nature of solidarity among the
players within the set of allocation rules PvN .

Proposition 10 An allocation rule Φ on VN belongs to SolN if and only if it satisfies Efficiency,
Additivity, Desirability, Monotonicity, and Null player in a null environment for positive games.

Thanks to Proposition 4, an equivalent statement of Proposition 10 is that an allocation rule Φ
on VN belongs to Sol if and only if Φ is a Procedural value satisfying Null player in a null environ-
ment for positive TU-games.

The logical independence of the axioms can be demonstrated as follows:

• The Equal Surplus Division rule ESD satisfies Efficiency, Additivity, Desirability, and Null
player in a null environment for positive games, but violates Monotonicity.

• The null allocation rule on VN , which assigns to each v ∈ VN and each i ∈ N the payoff
vector Φi(v) = 0 satisfies Additivity, Desirability, Monotonicity, and Null player in a null
environment for positive games, but violates Efficiency.

• Fix σ ∈ ΣN and p ∈ {1, . . . , n − 1}. The allocation rule cσ,p on VN satisfies Efficiency,
Additivity, Monotonicity, and Null player in a null environment for positive games, but violates
Desirability.

• Consider any allocation rule Φ on VN , which assigns to all games v ∈ VN the payoff vector
Φ(v) = Sh(BΦv), where BΦ = (bΦs : s ∈ {0, 1, . . . , n}) is such that: for each s ∈ {0, . . . , n},
bΦs ∈ [0, 1], bΦ0 = 0, bΦn = 1, and bΦ1 < bΦ2 < · · · < bΦn−1. Then, Φ satisfies Efficiency, Additivity,
Desirability, Monotonicity, but violates Null player in a null environment for positive games.

• The allocation rule Φ on VN defined in Example 6 in Malawski (2013) satisfies Efficiency,
Desirability, Monotonicity, and Null player in a null environment for positive games, but
violates Additivity.

6. Conclusion

Different conceptions of the solidarity principle are envisaged in the literature, and a contribution
of our article is to propose a new one, based on the idea of collective contributions of a coalition.
In the proof of the logical independence of the axioms invoked in our characterizations, we called
on the Equal Surplus Division rule. This allocation rule reveals another mode of solidarity: the
amount of the mutual fund, which is evenly distributed among all the players, is what remains of
the worth of the grand coalition after each player has received his stand-alone worth. Nonetheless,
the Equal Surplus Division rule is excluded from all the classes of allocation rules discussed in this
article, except the largest class of allocation rule satisfying Efficiency, Anonymity and Linearity.
A challenging issue for future research is therefore to design a class of allocation rules relying on
solidarity principles, and that would include the Equal Surplus Division rule.
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Appendix

In this Appendix, we employ the following extra definition. For any non-empty coalition T ⊆ N ,
the Dirac TU-game δT ∈ VN is defined as: δT (T ) = 1, and δT (S) = 0 for each other S.

Proof. (Proposition 6)
Point 1 follows from (6).

Point 2. Consider the vector of constants Bp as defined in point 2 of Proposition 6. From the
definition of Sh(Bpv), for each i ∈ N , we have:

Shi(Bpv) =
∑

S∈2N :S3i

(n− s)!(s− 1)!

n!

(
bsv(S)− bs−1v(S \ i)

)

=
∑

S∈2N :S3i,
s≤p

(n− s)!(s− 1)!

n!

(
bsv(S)− bs−1v(S \ i)

)

+
∑

S∈2N :S3i,
s>p

(n− s)!(s− 1)!

n!

(
bsv(S)− bs−1v(S \ i)

)

=
∑

S∈2N :S3i,
s≤p

(n− s)!(s− 1)!

n!

(
v(S)− v(S \ i)

)
+

∑

S∈2N :S3i,
s=p+1

(n− s)!(s− 1)!

n!

(
−v(S \ i)

)
+

1

n
v(N)

=
∑

S∈2N :S3i,
s≤p

(n− s)!(s− 1)!

n!

(
v(S)− v(S \ i)

)
+

∑

S∈2N :S3i,
s=p+1

(n− s)!(s− 1)!

n!

(
−v(S \ i)

)

+
∑

S∈2N :S3i,
s=p+1

(n− s)!(s− 1)!

n!
v(N)

=
∑

S∈2N :S3i,
s≤p

(n− s)!(s− 1)!

n!

(
v(S)− v(S \ i)

)
+

∑

S∈2N :S3i,
s=p+1

(n− s)!(s− 1)!

n!

(
v(N)− v(S \ i)

)

= Solpi (v),

where the last equality follows from (7).

Point 3. Consider the procedure lp as defined in point 3 of Proposition 6. First, for any permutation
σ ∈ ΣN , the contribution vector rσ,lp given by (1) writes:

∀i ∈ N, rσ,l
p

i (v) =





v(P σi )− v(P σi \ i) if σ(j) ≤ p and σ(i) = σ(j),∑
j∈(N\Pσi )∪i v(P σj )− v(P σj \ j) if σ(j) ≥ p+ 1 and σ(i) = p+ 1,

0 otherwise.

or equivalently,

∀i ∈ N, rσ,l
p

i (v) =





v(P σi )− v(P σi \ i) if σ(i) = σ(j) ≤ p,
v(N)− v(P σσ−1(p)) if σ(i) = p+ 1 ≤ σ(j),

0 otherwise.
14



Because the expression does not depend on σ(j), we have:

∀i ∈ N, rσ,l
p

i (v) =





v(P σi )− v(P σi \ i) if σ(i) ≤ p,
v(N)− v(P σσ−1(p)) if σ(i) = p+ 1,

0 otherwise.

Second, the previous observation implies that the Procedural value induced by lp assigns to a player
i ∈ N in a game v ∈ VN , the payoff

Pvl
p

i (v) =
1

n!


 ∑

σ∈ΣN :σ(i)≤p

(
v(P σi )− v(P σi \ i)

)
+

∑

σ∈ΣN :σ(i)=p+1

(
v(N)− v(P σσ−1(p))

)



=
1

n!


 ∑

σ∈ΣN :σ(i)≤p

(
v(P σi )− v(P σi \ i)

)
+

∑

σ∈ΣN :σ(i)>p

v(N)− v(P σσ−1(p))

n− p




=
1

n!

∑

σ∈ΣN

cσ,pi (v)

= Solpi (v),

where the second equality follows from the fact that the number of permutations in which σ(i) is
greater than p is (n − p) times larger than the number of permutations in which σ(i) is equal to
p+ 1. �

Proof. (Proposition 8) Assume that Φ ∈ SolN . Then there is a probability distribution
(α0, . . . , αn−1) such that:

Φ =

n−1∑

p=0

αpSolp.

By point 2 of Proposition 6, we have:

∀v ∈ VN , Φ(v) =

n−1∑

p=0

αpSh(Bpv).

Define the vector of constants BΦ as:

BΦ =
n−1∑

α=0

αpB
p.

By Linearity of the Shapley value and Remark 3, we get:

Φ(v) =

n−1∑

p=0

αpSh(Bpv) = Sh
(n−1∑

p=0

αp(B
pv)

)
= Sh

((n−1∑

p=0

αpB
p

)
v

)
= Sh(BΦv)

Using the definition of Bp, we obtain:

bΦ0 = 0, bΦn = 1, and, for each s ∈ {1, . . . , n− 1}, bΦs =

n−1∑

s=p

αp.
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Because, for each p ∈ {0, . . . , n− 1}, αp ∈ [0, 1], we conclude that

1 = bΦn ≥ bΦ1 ≥ bΦ2 ≥ · · · ≥ bΦn−1 ≥ bΦ0 = 0,

as desired.
Reciprocally, consider an allocation rule Φ on VN such that Φ(v) = Sh(BΦv), where the vector

of constants BΦ is such that:

1 = bΦn ≥ bΦ1 ≥ bΦ2 ≥ · · · ≥ bΦn−1 ≥ bΦ0 = 0. (8)

Define the collection of real numbers (αp : p ∈ {0, . . . , n− 1}) as follows:

∀p ∈ {1, . . . , n− 2}, αp = bΦp − bΦp+1, αn−1 = bΦn−1 and α0 = 1− bΦ1 .

By (8):

∀p ∈ {0, 1 . . . , n− 1}, αp ∈ [0, 1], and
n−1∑

p=0

αp = 1,

which means that (αp : p ∈ {0, . . . , n − 1}) can be viewed as a probability distribution over the
sizes p ∈ {0, . . . , n− 1}. Furthermore, it holds that:

∀s ∈ {1, . . . , n− 1},
n−1∑

p=s

αp = bΦs .

From this, it follows that:

n−1∑

p=0

αpB
p =

(
0,
n−1∑

p=1

αp,
n−1∑

p=2

αp, . . . ,
n−1∑

p=n−2

αp, αn−1,
n−1∑

p=0

αp

)
= BΦ.

Therefore, using Remark 3, we obtain:

Φ(v) = Sh(BΦv) = Sh
((n−1∑

p=0

αpB
p

)
v

)
= Sh

(n−1∑

p=0

αp(B
pv)

)
=

n−1∑

p=0

αpSh(Bpv) = Solα(v),

as desired. Finally, the second statement of Proposition 8 immediately follows from the previous
steps. �

Proof. (Proposition 9) By Propositions 5 and 6, Solp satisfies Efficiency, Linearity, Anonymity,
and so it also satisfies Additivity and Equal treatment of equals. From the definition of cp,σ given
in (5), we easily conclude that Solp satisfies the p-null player axiom.

To prove that there exists a unique allocation rule that satisfies Efficiency, Equal treatment
of equals, Additivity, and the p-null player axiom for some p ∈ {1, . . . , n − 1}, consider any such
allocation rule Φ on VN . We have already underlined that the combination of these axioms implies
that Φ also satisfies Linearity and Anonymity. By Proposition 5, there exists a unique vector of
constants BΦ = (bΦs : s ∈ {0, 1, . . . , n}) such that bΦ0 = 0, bΦn = 1, and Φ(v) = Sh(BΦv). By
Proposition 6, it remains to show that BΦ = Bp.
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Fix any player i ∈ N . For any size s ∈ {1, . . . , n− 1}, any coalition S ⊆ N of size s such that
S 3 i, consider the TU-game δS + δS\i. For each s 6= p+ 1, player i is p-null. By the p-null player
axiom, we have:

0 = Φi(δS + δS\i) = Shi(BΦ(δS + δS\i)) =
(n− s)!(s− 1)!

n!
(bΦs − bΦs−1), and so bΦs = bΦs−1.

We conclude that:
bΦ1 = · · · = bΦp and bΦp+1 = · · · = bΦn−1. (9)

Next, define the TU-game vp,i as follows:

∀S ∈ 2N , vp,i(S) =





1 if s ≥ p+ 1,
1 if s = p and S 63 i,
0 if s = p and S 3 i,
0 if s < p.

Player i is p-null in vp,i. By the p-null player axiom, we have:

0 = Φi(vp,i)

= Shi(BΦvp,i)

=
∑

S∈2N :S3i

(n− s)!(s− 1)!

n!
(bΦs − bΦs−1)

=
∑

S∈2N :S3i,s≥p+1

(n− s)!(s− 1)!

n!
(bΦs − bΦs−1)

=
n∑

s=p+1

(
n− 1

s− 1

)
(n− s)!(s− 1)!

n!
(bΦs − bΦs−1)

=
1

n

n∑

s=p+1

(bΦs − bΦs−1)

=
1

n
(bΦn − bΦp ).

Since bΦn = 1, it follows that bΦp = 1. By (9), we obtain:

bΦ1 = · · · = bΦp = 1. (10)

This gives the result for p = n− 1. To complete to proof for each other p ≤ n− 2, note that player
i ∈ N is p-null for each p ≤ n− 2 in the TU-game δN\i. By the p-null player axiom, we have:

0 = Φi(δN\i) = Shi(BΦδN\i) = −b
Φ
n−1

n
, and so bΦn−1 = 0.

By (9), we obtain:
bΦp+1 = · · · = bΦn−1 = 0. (11)

By (10) and (11), we conclude that BΦ = Bp, as desired. �
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Proof. (Proposition 10)We first prove that each Φ ∈ SolN satisfies all the axioms of the statement
of the Proposition 10. By Corollary 1, we have PvN ⊇ SolN . Therefore, by Proposition 4, each
Φ ∈ SolN satisfies Efficiency, Additivity, Desirability, Monotonicity. It remains to show that any
Φ ∈ SolN satisfies Null player in a null environment for positive games. Pick any positive v ∈ VN
such that v(N) = 0, and any null player i ∈ N in v. For any σ ∈ ΣN and any p ∈ {0, . . . , n − 1},
the fact that i is null in v and v(N) = 0 implies that (5) can be rewritten as follows:

cσ,pi (v) =





0 if σ(i) ≤ p,
−
v(P σσ−1(p))
n− p if σ(i) > p.

By positivity of v, cσ,pi (v) ≤ 0, which in turn implies that Solpi (v) ≤ 0 for each p ∈ {0, . . . , n − 1},
and consequently Φi(v) ≤ 0, as desired.

Reciprocally, pick any Φ which satisfies Efficiency, Additivity, Desirability, Monotonicity, and
Null player in a null environment for positive games. By Proposition 4, Φ ∈ PvN , and by Corollary,
Φ ∈ EALN . By Proposition 5, there is a unique vector of constants BΦ = (bΦs : s ∈ {0, 1, . . . , n})
such that bΦ0 = 0, bΦn = 1 and:

∀v ∈ VN , Φ(v) = Sh(BΦv).

By Theorem 2 in Radzik and Driessen (2013), we also know that each real number bΦs ∈ [0, 1]. By
Proposition 8, it remains to show that, for each s ∈ {1, . . . , n − 2}, bΦs ≥ bΦs+1. To that end, pick
any i ∈ N and any non-empty coalition S ⊆ N \ i, S 6= N \ i, and consider the TU-game δS∪i + δS .
This TU-game is positive, the environment is null (δS∪i + δS)(N) = 0 since S 6= N \ i, and i is a
null player in δS∪i + δS . Therefore, Null player in a null environment for positive games yields:

Φi(δS∪i + δS) ≤ 0. (12)

On the other hand, we have:

Φi(δS∪i + δS) = Shi(BΦ(δS∪i + δS)) =
s!(n− s− 1)!

n!
(bΦs+1 − bΦs ). (13)

Combining (12) and (13) yields bΦs ≥ bΦs+1 for each s ∈ {1, . . . , n− 2}, as desired. �
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