
Working paper No. 2015 – 07

C
R

E
S

E 30, avenue de l’Observatoire
25009 Besançon
France
http://crese.univ-fcomte.fr/

The views expressed are those of the authors
and do not necessarily reflect those of CRESE.

A strategic implementation of the sequential
equal surplus division rule for digraph
cooperative games

Sylvain Béal, Eric Rémila, Philippe Solal

June 2015



A Strategic Implementation of the Sequential Equal Surplus Division Rule for
Digraph Cooperative Games1
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Abstract

We provide a strategic implementation of the sequential equal surplus division rule (Béal
et al., 2014). Precisely, we design a non-cooperative mechanism of which the unique subgame
perfect equilibrium payoffs correspond to the sequential equal surplus division outcome of a
superadditive rooted tree TU-game. This mechanism borrowed from the bidding mechanism
designed by Pérez-Castrillo and Wettstein (2001), but takes into account the direction of the
edges connecting any two players in the rood tree, which reflects some dominance relation be-
tween them.
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1 Introduction

The Nash program, intended to bridge the gap between cooperative and non-cooperative game
theory, has in recent literature been influenced much by the work of Pérez-Castrillo and Wettstein
(2001), which implements the Shapley value (Shapley, 1953) through a mechanism consisting of a
bidding stage followed by a proposal stage. Follow-up this seminal article, Ju and Wettstein (2009)
provide a framework for implementing and comparing several solution concepts for transferable
utility cooperative game (shortly, TU-games) by using a class of bidding mechanisms. On each of
these bidding mechanisms, modeled through a non-cooperative extensive form game, the outcome
of each sub-game perfect equilibrium (SPE) outcome coincides with the allocation of a value among
a set of players that a solution concept for TU-games recommends.

In TU-games, the primitive information to allocate a value is what productive value is generated
by each possible group of players or coalition. However, an important characteristic of social
and economic situations is that players are part of a relational structure which possibly affects
the cooperation possibilities. That is, alternative graph structures connecting the same set of
players might lead to very different costs and benefits for coalitions. Thus, in many situations
it is important to account for graph structures and not just coalition functions. Myerson (1977)
makes a seminal contribution in adapting the cooperative game theory structure to accommodate
information about the graph connecting players. The way in which he does this is by augmenting a
cooperative game by an undirected graph over the player set. The Myerson value of an undirected
graph TU-game is the Shapley value of the Myerson restricted game, being the TU-game that
results from taking into account the fact that players can cooperate only if they are connected in
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the graph. Adapting the mechanism of Pérez-Castrillo and Wettstein (2001), Slikker (2007) and
van den Brink et al. (2013) construct bidding mechanisms to implement several allocation rules
for cooperative environments with an undirected graph structure.

Nevertheless, many of the aforementioned relational structures are better represented by a
directed graph rather than by an undirected graph. A typical example is the river sharing prob-
lem in which the importance of directional flow is pointed out by Ambec and Sprumont (2002).
Specifically, a group of players (firms, farmers, cities, countries) are located along a river with one
source and one sink. The benefit of the players depend on the amount of water they consume, but
they have unequal access to water. On the one hand, as players can only consume water entering
upstream to their location, upstream players have a dominance advantage in water consumption.
On the other hand, because of rainfall and inflow from tributaries, the river flow picks up volume
along its course. Water inflow at the territory of downstream players cannot be consumed by
upstream players. These directional constraints can be well represented by a directed-line graph.
Ambec and Sprumont (2002) study the fair distribution of welfare resulting from the optimal allo-
cation of water among the riparian players by modeling the river sharing problem as a cooperative
TU-game augmented by a directed-line graph.

Béal et al. (2014) consider the scenario where the TU-game is augmented by a rooted tree. As
a directed line is a special case of a rooted tree, our class of rooted tree TU-games are well suited
to deal with the river sharing problem where the river has one source and multiple bifurcations.
A new allocation rule, called the sequential equal surplus division rule, is introduced for rooted
tree TU-games. It is constructed sequentially by following the direction of the edges of the rooted
tree. The root player of this tree has possibly several successors, each of them initiating a separate
branch of the tree, viewed as a coalition. Together with each branch, one for each successor, the
root player achieves some surplus (positive or negative depending on the properties of the TU-
game), measured by the difference between the worth achieved by the entire component and the
sum of the worths achieved separately by each branch. In order to distribute this surplus, the
root as well as each branch are considered as single bargaining entities. The participation of each
entity is necessary to attain this surplus. Therefore, it seems natural to give to each entity an
equal share of the surplus in addition to the worth it can secure in the absence of cooperation.
This is equivalent to reward each entity by the well-known equal surplus division for TU-games.
For each branch, the obtained total payoff is what remains to be shared among its members. The
sequential equal surplus division rule then consists of applying recursively the above step to the
root of all (sub-)branches of the tree. The distribution of the surplus of cooperation between two
or more coalitions is also at the heart of the construction of many of the solutions proposed in
the literature. Béal et al. (2014) provide two axiomatic characterizations of the sequential equal
surplus division rule, and then apply it to solve the river sharing problem.

The aim of the present article is to implement the sequential equal surplus division rule through
a bidding mechanism for the subclass of rooted-tree superadditive TU-games. Since the seminal
article by Pérez-Castrillo and Wettstein (2001), several bidding mechanisms have been constructed
for implementing solutions for TU-games. Most, if not all, of these bidding mechanisms share a
set of desirable properties which prove very useful to demonstrate the uniqueness of equilibrium
payoffs. In a first step, we identify a sufficient condition under which a bidding mechanism, where
each winner of the bidding stage induces a sub-game, possesses these properties. In a second step,
we design these sub-games in order to construct a bidding mechanism implementing the sequential
surplus division rule. The main differences between our bidding mechanism and the existing ones
for solutions of (undirected graph) TU-games are twofold.

First, the direction of the edges are taken into account in the construction of the bidding
mechanism. The latter starts at the root of the tree. The root player bargains over the surplus of
cooperation between her and the coalitions formed by her respective sets of subordinates. At this
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end of this bargaining game, the root player obtains his final payoff in the bidding mechanism.
Then, the bidding mechanism continues its route on each branch of the tree: each successor of the
root player is involved in another bargaining game to share a surplus achieved when this successor
cooperates with her respective coalitions of subordinates in the rooted tree.

Second, each player, except the root, is involved in exactly two interrelated and local bargaining
games. Consider any player different from the root. This player first bargains with her unique
predecessor and the other successors of her predecessor, and then starts another bargaining game
with all her successors. In the first bargaining game, this player represents her subordinates so that
the payoff she obtains is a temporary payoff. In the second bargaining game, this player bargains
with her own successors (if any) over a surplus that takes into account the payoff she has obtained
in the first bargaining game. At the end of this second bargaining game, this player receives her
final payoff and leaves the bidding mechanism.

Each bargaining game contains a bidding stage and a bargaining stage. The bidding stage is
identical to the bidding stage designed by Pérez-Castrillo and Wettstein (2001), and the bargaining
stage is a “take it or leave it” procedure.

The rest of the article is organized as followed. Section 2 provides preliminaries on TU-games
and directed graph TU-games, and then introduces the sequential equal surplus division rule.
Contrary to Béal et al (2014), this rule is defined recursively. This formulation will help to see the
connection between this rule and our bidding mechanism that we also defined recursively. Section
3 singles out an abstract class of bidding mechanisms possesses a set of desirable properties. As
mentioned above, these properties are common to all specific bidding mechanisms inspired from
Perez-Castrillo and Wettstein (2001). These findings are then used in section 4 to design our
bidding mechanism that implements the sequential equal surplus division rule in environments
where the underlying TU-game is superadditive. Section 5 is devoted to the proof of this claim.

2 The cooperative situation and the allocation rule

2.1 Cooperative TU-games

Notations For a finite set A, the notation |A| stands for the number of elements of A. Weak set
inclusion is denoted by ⊆, whereas proper set inclusion is denoted by ⊂. For the ease of notation,
we often write the singleton {i} as i.

A cooperative game with transferable utility (henceforth called a TU-game) is a pair (N, v)
consisting of a finite player set N ⊆ N of size n and a coalition function v : 2N −→ R satisfying
v(∅) = 0. An element S of 2N is a coalition, and v(S) is the maximal worth that the members
of S can obtain by cooperating. Denote by C the set of all TU-games. A TU-game (N, v) is
superadditive if v(S ∪ T ) ≥ v(S) + v(T ) for any pair of disjoint coalitions S and T . For any two
TU-games (N, v) and (N,w) defined on the same player set N , and for any α ∈ R, the TU-game
(N,αv+w) ∈ C is defined as follows: for each S ⊆ N , (αv+w)(S) = αv(S) +w(S). For any non-
empty coalition T ⊆ N , the Dirac TU-game (N, δT ) ∈ C is defined as: δT (T ) = 1, and δT (S) = 0
for each other S ⊆ N .

In the TU-game (N, v), each player i ∈ N may receive a payoff zi ∈ R. A payoff vector
z = (zi)i∈N ∈ Rn lists a payoff zi for each i ∈ N . For any nonempty coalition S ∈ 2N the notation
zS stands for

∑
i∈S zi. An allocation rule Φ on the class of all TU-games C is a map that assigns

to each TU-game (N, v) ∈ C a payoff vector Φ(N, v) ∈ Rn.
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2.2 Digraph TU-games

In several social situations there is an underlying ordering of the players, which describes some
social, technical, or communicational structure. In this article, we assume that the social structure
is represented by a digraph on the player set representing some dominance relation between these
players.

Precisely, a digraph TU-game is a triple (N, v,D) where (N, v) ∈ C and (N,D) is a directed
graph. A directed graph or digraph is a pair (N,D), where N is a finite set of nodes (representing
the players) and D ⊆ N × N is a binary relation on N . An ordered pair of elements (i, j) ∈ D
represents a directed edge from i to j. We assume the digraph to be irreflexive, i.e., (i, i) 6∈ D for
all i ∈ N . Let Ei ⊆ D be the set of directed edges to which i ∈ N is incident, i.e., directed edges of
the form (i, j) ∈ D or (j, i) ∈ D. For any subset C ⊆ N , the subdigraph induced on (N,D) by C
is the pair (C,DC) where DC = {(i, j) ∈ D : i, j ∈ C}. For i ∈ N , the nodes in SD(i) = {j ∈ N :
(i, j) ∈ D} are called the successors of i, and the nodes in PD(i) = {j ∈ N : (j, i) ∈ D} are called
the predecessors of i in (N,D). A directed path from i to j in N is a sequence of distinct nodes
(i1, . . . , ip), p ≥ 2, such that i1 = i, iq+1 ∈ SD(iq) for q = 1, . . . , p − 1, and ip = j. The number
p− 1 is the length of the path. Given two nodes i, j ∈ N , j is a subordinate of i in (N,D) if there
is a directed path from i to j. The set of i’s subordinates is denoted by ŜD(i), and we will use the
notation ŜD[i] to represent the union of ŜD(i) and {i}. Note that for any i ∈ N , SD(i) ⊆ ŜD(i).
We refer to the players in P̂D(i) = {j ∈ N : i ∈ ŜD(j)} as the superiors of i in (N,D). We have
PD(i) ⊆ P̂D(i).

A digraph (N,D) is a rooted tree if each node in N except one node called the root and denoted
by r, has exactly one predecessor. If (N,D) is a tree rooted at r ∈ N , pD(i) refers to the unique
predecessor of i ∈ N \ r. The depth of a node i ∈ N in a rooted tree (N,D) is the length of the
unique directed path from r to i, with the convention that the depth of r is set to 0. The depth
of a rooted tree (N,D) is the depth of its deepest nodes. In a rooted tree (N,D), for each i ∈ N ,
note that the subdigraph (ŜD[i], DŜD[i]) induced on (N,D) by the subset of players ŜD[i] is itself

a rooted tree where the root is i, and (ŜD[r], DŜD[r]) coincides with (N,D). Denote by D the set
of rooted trees.

In this article, we restrict our attention to the digraph TU-games (N, v,D) such that (N, v) ∈ C
and (N,D) ∈ D. Denote this set of digraph TU-games by CD. An allocation rule Φ on CD is a
map that assigns to each digraph TU-game (N, v,D) ∈ CD a payoff vector Φ(N, v,D) ∈ Rn.

2.3 The sequential equal surplus division rule

Béal et al. (2014) introduce the sequential equal surplus division rule, denoted by Φe, on CD.
Before defining formally Φe, we need to introduce the following quantity for each player i ∈ N
involved in (N, v,D):

Si(N, v,D) = v(ŜD[i])− v({i})−
∑

j∈SD(i)

v(ŜD[j]),

which represents the surplus created by i and each coalition of subordinates ŜD[j], j ∈ SD(i), when
they decide to cooperate in the coalition ŜD[i]. Of course, Si(N, v,D) ≥ 0 when the underlying
TU-game (N, v) is superadditive.

For each (N, v,D) ∈ CD, Φe is defined recursively from the root r as follows:

1. For the root r ∈ N ,

Φe
r(N, v,D) = v({r}) +

Sr(N, v,D)

|SD[r]| .
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2. For each other i ∈ N \ {r},

Φe
i (N, v,D) = Φe

i (ŜD[j], vj , DŜD[j]),

where j is the unique successor of the root r of (N,D) such that i ∈ ŜD[j]. The TU-game
(ŜD[j], vj) is as follows:

∀S ⊆ ŜD[j], vj(S) = v(S) +
Sr(N, v,D)

|SD[r]| δŜD[j](S).

In other words, vj(S) is identical to v(S) for each S ⊂ ŜD[j] and vj(ŜD[j]) is the sum of v(ŜD[j])
and an equal share of the surplus Sr(N, v,D).

Example 1 Let N = {1, . . . , 4} be the player set, and let (N,D) be the rooted tree represented
in Figure 1. Let (N, v) be a TU-game such that v(S) = |S|2 for each S ⊆ N . For the root 1, we

4 3 1

2

Figure 1: The rooted tree (N,D).

have:
S1(N, v,D) = v(ŜD[1])− v({1})−

∑

j∈SD(1)

v(ŜD[j]) = 16− 1− 1− 4 = 10.

By point 1 of the definition of Φe applied to (N, v,D), we get:

Φe
1(N, v,D) = 1 +

10

3

=
13

3
.

Next, consider player 2. By point 2 of the definition of Φe applied to (N, v,D), we have to use the
digraph TU-game (ŜD[2], v2, DŜD[2]) = ({2}, v2, ∅), where

v2 = v +
S1(N, v,D)

3
δ{2}.

By point 2 of the definition of Φe applied to (N, v,D),

Φe
2(N, v,D) = Φe

2({2}, v2, ∅).

By point 1 of the definition of Φe applied to ({2}, v2, ∅),

Φe
2({2}, v2, ∅) = v2({2}) +

S2({2}, v2, ∅)
1

= v2({2}) + 0

= 1 +
10

3

=
13

3
.
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Next, consider player 3. By point 2 of the definition of Φe applied to (N, v,D), we have to use the
digraph TU-game (ŜD[3], v3, DŜD[2]) = ({3, 4}, v3, {(3, 4)}), where

v3 = v +
S1(N, v,D)

3
δ{3,4}.

By point 2 of the definition of Φe applied to (N, v,D),

Φe
3(N, v,D) = Φe

3({3, 4}, v3, {(3, 4)}), and also Φe
4(N, v,D) = Φe

4({3, 4}, v3, {(3, 4)}).

By point 1 of the definition of Φe applied to ({3, 4}, v3, {(3, 4)},

Φe
3({3, 4}, v3, {(3, 4)}) = v3({3}) +

S3({3, 4}, v3, {(3, 4)})
2

,

where

S3({3, 4}, v3, {(3, 4)}) = v3({3, 4})− v3(3)− v3(4)

= v({3, 4}) +
10

3
− v({3})− v({4})

=
16

3
.

Therefore, we obtain:

Φe
3(N, v,D) = Φe

3({3, 4}, v3, {(3, 4)})
= 1 +

16

3× 2

=
11

3
.

At last, consider player 4. We have to compute Φe
4({3, 4}, v3, {(3, 4)}). By point 2 of the definition

of Φe applied to ({3, 4}, v3, {(3, 4)}), we have Φe
4({3, 4}, v3, {(3, 4)}) = Φe

4({4}, (v3)4, ∅), where

(v3)4 = v3 +
S3({3, 4}, v3, {(3, 4)})

2
δ4

= v +
S3({3, 4}, v3, {(3, 4)})

2
δ4.

From this, we see that:

(v3)4({4}) = 1 +
8

3
.

By point 1 of definition of Φe applied to ({4}, (v3)4, ∅), we obtain:

Φe({4}, (v3)4, ∅) = 1 +
8

3
+

S4({4}, (v3)4, ∅)
1

= 1 +
8

3
+ 0

=
11

3
.

It follows that the payoff allocation vector induced by Φe on (N, v,D) is given by:

Φe(N, v,D) =

(
13

3
,
13

3
,
11

3
,
11

3

)
.

�
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To close this section, we will use the fact that Φe satisfies the axiom of (strict) aggregate
mononoticity (Meggido, 1974) on CD saying that the allocation of each player strictly increases
when the worth of the grand coalition N increases while the worth of the other coalitions remains
fixed. This axiom is well-known in problems of fair division. Formally, for each constant c > 0, it
holds that:

∀i ∈ N, Φe
i (N, v + cδN , D) > Φe

i (N, v,D). (1)

To verify that Φe indeed satisfies this axiom on CD, it suffices to note that Sr(N, v,D) < Sr(N, v+
cδN , D) and to apply the recursive definition for Φe.

3 A general class of bidding mechanisms

Since the seminal article by Pérez-Castrillo and Wettstein (2001), several mechanism including
a bidding stage followed by a proposal stage and an acceptance stage have been constructed to
determine how the surplus generated by cooperation is to be shared in environments with trans-
ferable utility (see, e.g., Ju, Wettstein, 2009, Ju, 2012, Brink van den et al., 2013). It turns out
that all these bidding mechanisms exhibit the same interesting properties that we will use later in
this article. Here, we collect these properties for more abstract or disembodied bidding mechanisms.

Mechanism (A) Assume that the player set is S ⊆ N , s ≥ 2.

Stage 1: Each player i ∈ S makes s− 1 bids bij ∈ R to each other player j ∈ S \ {i}. For each
i ∈ S, define the net bid of player i by

Bi =
∑

j∈S\{i}
bij −

∑

j∈S\{i}
bji .

Define by ΩS the subset of players with the highest net bid. Pick any player is at random from ΩS .

Stage 2: Player is induces some (sequential) non-cooperative game Gis on the player set S;
the payoffs received in Gis are denoted by (gisj )j∈S .

The rewards (risj )j∈S resulting from Stage 1 and Stage 2 are given by:

risj =

{
gisj + bisj if j ∈ S \ {is},
gisis −

∑
l∈S\{is} b

is
l if j = is.

The final payoff mj received by each player j ∈ S in Mechanism (A) is computed by taking the
average of the rewards risj over ΩS , i.e.

∀j ∈ S, mj =

∑
is∈ΩS

risj
|ΩS |

.

�

Proposition 1 Consider Mechanism (A) and assume that on each SPE of Gis , is ∈ ΩS , of Stage
2, the payoff vector is the same and equal to (ĝisj )j∈S . Then, at each SPE of Mechanism (A), i.e.
including Stage 1 and Stage 2, it holds that:

1. For each j ∈ S, player j’s net bid is such that B̂j = 0, which implies that ΩS = S.

7



2. The rewards (r̂isj )j∈S induced by (ĝisj )j∈S , is ∈ ΩS , and the bids do not depend on the identity
of the proposer:

∀is, i′s ∈ ΩS ,∀j ∈ S, r̂isj = r̂
i′s
j .

3. For each j ∈ S, the induced expected payoff m̂j is equal to:

m̂j =

∑
k∈S ĝ

k
j

|S| .

4. For each pair of distinct players i, j ∈ S, the bid b̂ij of i to j is equal to:

b̂ij =

∑
k∈S ĝ

k
j

|S| − ĝij .

The proof of Proposition 1 is relegated to the Appendix. The next proposition indicates the
existence of such a SPE for Mechanism (A) is also ensured under the hypothesis of the statement
of Proposition 1.

Proposition 2 Under the hypothesis of Proposition 1, there exists a SPE for Mechanism (A) such
that the bid of each player i to each player j ∈ S \ {i} is given by b̂ij as in point 4 of Proposition 1.

Proof. Assume that at Stage 2 each player plays his or her equilibrium strategy in each Gis ,
is ∈ ΩS . Then, it suffices to verify that at Stage 1 of the Mechanism (A), no player has a strict
interest to deviate unilaterally from {b̂ij}j∈S\{i}. Pick any i ∈ S and any set of bids {bij}j∈S\{i}
distinct from {b̂ij}j∈S\{i}. Two cases arise.
Case (a) Assume that: ∑

j∈S\{i}
bij >

∑

j∈S\{i}
b̂ij .

By point 1 of Proposition 1, player i becomes the unique proposer. His or her final payoff in
Mechanism (A) becomes:

ĝii −
∑

j∈S\{i}
bij < ĝii −

∑

j∈S\{i}
b̂ij = r̂ii = m̂i,

where the last equality follows from point 2 of Proposition 1 and the definition of the expected
payoff m̂i.

Case (b) Assume that: ∑

j∈S\{i}
bij ≤

∑

j∈S\{i}
b̂ij .

Because the set {bij}j∈S\{i} is distinct from the set {b̂ij}j∈S\{i}, there is at least one j ∈ S \ {i}
such that bij < b̂ij , so that B(j) > B(i). This implies that player i is not a member of ΩS anymore.
But this fact does not affect i’s reward in Gis , is ∈ ΩS . Indeed, pick any possible proposer is
(necessarily different from i), and denote by risi player i’s reward in Gis when he or she plays
{bij}j∈S\{i} at Stage 1:

risi = ĝisi − b̂isi = ĝisi −
(∑

k∈S ĝ
k
j

|S| − ĝisi
)

= m̂i,

where the second equality follows from point 4 of Proposition 1 and the last equality follows from
point 3 of Proposition 1.

By combining cases (a) and (b), the proof is complete. �
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4 A bidding mechanism for implementing Φe

In order to construct a mechanism which implements Φe, we need to specify Stage 2 in Mechanism
(A), from now on denoted by (Ae). Given a digraph TU-game (N, v,D) ∈ CD and the root r ∈ N ,
we proceed as follows.

Mechanism (Ae) The player set is SD[r].

Stage 1: this stage corresponds to stage 1 in Mechanism A applied to player set SD[r].

Stage 2: Player is induces a non-cooperative game Gis on the player set SD[r]. The game Gis

consists in two stages.
Stage 2.1: Player is makes an offer xisj ∈ R to each other player j ∈ SD[r] \ {is}.
Stage 2.2: The players in SD[r] \ {is} observe the offer xisj and, sequentially, either accept

or reject the offer. If each of these players accepts the offer, then the game ends and the payoffs
are given by:

∀j ∈ SD[r] \ {is}, gisj = xisj , and gisis = Sr(N, v,D)−
∑

j∈SD[r]\{is}
xisj .

If at least one player in SD[r] \ {is} rejects the offer, then:

∀j ∈ SD[r], gisj = 0.

The rewards (risj )j∈SD[r] resulting from Stage 1 and Stage 2, and the final expected payoffs
(mj)j∈SD[r] are defined as in Mechanism (A). �

Three remarks are in order.

Remark 1 At Stage 2 of Mechanism (Ae), the non-cooperative game Gis is a “take it or leave
it” game where the collective acceptation of an offer made by is requires unanimity. The game
Gis admits several SPE. Nevertheless, on each of these equilibria the proposer is makes the offer
xisj = 0 to each j ∈ SD[r] \ {is}, and each player j ∈ SD[r] \ {is} accepts this offer. Out of the
equilibrium path, several action profiles are possible. It follows that the equilibrium payoffs of Gis

are such that: ĝisis = Sr(N, v,D) and, for each j ∈ SD[r] \ {is}, ĝisj = 0.

Remark 2 By Remark 1, each Gis , is ∈ ΩSD[r], satisfies the hypothesis of the statement of
Proposition 1. Therefore, by applying point 3 of Proposition 1 to Mechanism (Ae), we obtain that
at each SPE of Mechanism (Ae), the expected payoff of each involved player is:

Sr(N, v,D)

|SD[r]| .

Furthermore, such a SPE exists by Proposition 2.
Remark 3 Mechanism (Ae) applied on (N, v,D) is defined only for the player set SD[r]. The

reason lies on the fact that Mechanism (B) that we will construct below for implementing Φe has
a recursive structure: Mechanism (B) first calls Mechanism (Ae) and then calls Mechanism (B) in
a self-similar way but applied to digraph TU-games constructed from the outcome of Mechanism
(Ae) and (N, v,D).

Mechanism (B) Let (N, v,D) ∈ CD.
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1. If N = {i}, then player i’s payoff in Mechanism (B) is v({i}).

2. Otherwise, pick the root r of the rooted tree (N,D).

(a) Members of SD[r] are involved in Mechanism (Ae) applied to (N, v,D). Players in
SD[r] other than r receive the expected payoffs (mj)j∈SD(r) obtained in Mechanism
(Ae) applied to (N, v,D), while player r receives his or her final payoff mr + v({r}) in
Mechanism (B).

(b) Each i ∈ N \ {r} is involved in Mechanism (B) applied to the digraph TU-game
(ŜD[j], ṽj , DSD[j]) where j is the unique successor of the root r of (N,D) such that

i ∈ ŜD[j], and ṽj is such that:

∀S ⊆ ŜD[j], ṽj(S) = v(S) +mjδŜD[j](S).

(c) The final payoff obtained by i in Mechanism (B) applied to (N, v,D) coincides with the
final payoff he or she obtains in Mechanism (B) applied to (ŜD[j], ṽj , DSD[j]).

Example 2 Consider the digraph TU-game (N, v,D), where the rooted tree is represented in
Figure 1. Mechanism (B) applied to (N, v,D) runs as follows. Because N is not a singleton, go to
point 2 in Mechanism (B).

Point 2(a) indicates that players in SD[1] = {1, 2, 3} are involved in Mechanism (Ae) applied
to (N, v,D). In (Ae), players 2 and 3 receive payoffs m2 and m3, respectively. The root 1 receives
his final payoff in Mechanism (B) applied to (N, v,D), which is equal to his stand-alone worth
v({1}) plus his expected payoff m1 obtained in Mechanism (Ae).

Next, go to point 2(b). At this step, Mechanism (B) indicates that player 2 is involved in
Mechanism (B) applied to the digraph TU-game ({2}, ṽ2, ∅), where ṽ2({2}) = v({2}) + m2. By
point 1 of Mechanism (B), the final payoff of player 2 is v({2}) +m2. Because player 2 obtains his
final payoff in Mechanism (B) applied to ({2}, ṽ2, ∅), go to point 3 of Mechanism (B). It indicates
that ṽ({2}) is also the final payoff of player 2 in Mechanism (B) applied to (N, v,D).

By point (2b), players 3 and 4 are both involved in Mechanism (B) applied to (SD[3], ṽ3, DSD[3]),
where

∀S ∈ SD[3], ṽ3(S) = v(S) +m3δSD[3]
.

Because SD[3] is not a singleton, go to point 2(a) of Mechanism (B). By point 2(a) of Mechanism B
applied to (SD[3], ṽ3, DSD[3]), the root 3 of (SD[3], DSD[3]) and his unique successor 4 play Mechanism
(Ae) applied to (SD[3], ṽ3, DSD[3]). Player 4 receives his expected payoff m4 obtained in Mechanism
(Ae) applied to (SD[3], ṽ3, DSD[3]). Player 3 receives his final payoff m′3 + ṽ3({3}) in Mechanism (B)
applied to (SD[3], ṽ3DSD[3]), where m′3 represents his expected payoff obtained in Mechanism (Ae)
applied to (SD[3], ṽ3, DSD[3]). Note that ṽ3({3}) = v({3}) so that his final payoff in Mechanism (B)
applied to (SD[3], ṽ3, DSD[3]) is m′3+ṽ3({3}). Because player 3 obtains his final payoff in Mechanism
(B) applied to (SD[3], ṽ3, DSD[3]), go to point 3 of Mechanism (B). It indicates that m′3 + ṽ3({3})
is also his final payoff in Mechanism (B) applied to (N, v,D).

Next, go to point 2(b). At this step, Mechanism (B) applied to (SD[3], ṽ3, DSD[3]) indicates

that player 4 is involved in Mechanism (B) applied to the digraph TU-game ({4}, (̃ṽ3)4, ∅), where

(̃ṽ3)4({4}) = ṽ3({4}) +m4 = v({4}) +m4.

By point 1 of Mechanism (B), the final payoff of player will be equal to v({4})+m4. Because player

4 obtains his final payoff in Mechanism (B) applied to ({4}, (̃ṽ3)4, ∅), go to point 3 of Mechanism
(B). It indicates that v({4}) +m4 is also the final payoff of player 4 in Mechanism (B) applied to
(N, v,D). Mechanism (B) applied to (N, v,D) ends. �
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5 Main result

We will show that for any (N, v,D) ∈ CD such that (N, v) is superadditive, the outcome of the
subgame perfect equilibria (SPE) of Mechanism (B) applied to (N, v,D) coincide with the payoff
vector Φe(N, v,D) as described in section 2.3.

Proposition 3 Mechanism (B) implements the sequential equal surplus division payoff vector
Φe(N, v,D) of a superadditive digraph TU-game (N, v,D) ∈ CD in SPE.

Proof. We proceed in two steps.
Step (a): Uniqueness of the equilibrium payoffs. We first show that if Mechanism (B) admits a
SPE, then on each SPE the final payoffs of the players coincide with Φe. Pick any superadditive
digraph TU-game (N, v,D) ∈ CD, and assume that a SPE in played in Mechanism (B). We proceed
by induction on the depth p of the tree (N,D).

Initial step If p = 0, the digraph TU-game has only one player, say i, so that the associated
digraph is empty. By Mechanism (B), this player gets v({i}), which coincides with Φe

i ({i}, v, ∅) by
definition of Φe.
Induction hypothesis Fix p ≥ 0, and assume that the claim is true for any depth p′ ≤ p.
Before proceeding to the induction step, we need the following lemma which uses the induction
hypothesis.

Lemma 1 Under the induction hypothesis, assume that a SPE is played in Mechanism (B) applied
to (N, v,D) ∈ CD. Then, the corresponding equilibrium strategies induce a SPE in Mechanism
(Ae).

Proof. Pick any (N, v,D) ∈ CD. Assume that a SPE is played in Mechanism (B), and denote by
ui the corresponding final payoff of player i ∈ N . Consider Mechanism (Ae) applied on (N, v,D)
and where the player set is SD[r]. Assume by contradiction that there exists a player i ∈ SD[r]
who has an incentive to deviate unilaterally from his or her (induced) equilibrium strategy. Denote
by mj his expected final payoff in Mechanism (Ae) when he plays his or her equilibrium strategy
in Mechanism (B), and denote by m̂j his or her expected final payoff in Mechanism (Ae) when he
or she has chosen to deviate from his or her equilibrium strategy in Mechanism (Ae). There are
two cases: either m̂j > mj or m̂j < mj . We deal with the first case, the second one is similar and
so left to the reader.

Assume that m̂j > mj . We distinguish two cases.
Case (a) Assume that j = r. Since m̂r > mr, by definition of Mechanism (B), we obtain:

ur = v({r}) +mr < v({r}) + m̂r,

which contradicts that players play a SPE in Mechanism (B).
Case (b) Assume that j ∈ SD(r). Then, by point (c) of Mechanism (B), j’s final payoff uj in

Mechanism (B) applied to (N, v,D) coincides with the final payoff he or she obtains in Mechanism
(B) applied to (ŜD[j], ṽj , DSD[j]). Note that the depth of (ŜD[j], DSD[j]) is inferior of equal to p.
By the induction hypothesis, we obtain:

uj = Φe
j(SD[j], v +mjδŜD[j], DSD[j]), and ûj = Φe

j(SD[j], v + m̂jδŜD[j], DSD[j])

where ûj denotes j’s final payoff in Mechanism (B) whe he or she deviates from his equilibrium
strategy in Mechanism (Ae). By the fact that mj < m̂j and strict aggregate monotonocity of Φe,
we obtain uj < ûj , which, once again, contradicts that players play a SPE in Mechanism (B). �
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We now have the material for the induction step.
Induction step Take an instance (N, v,D) ∈ CD such that the depth of the tree (N,D) is

p+1, and assume that the players play a SPE of Mechanism (B). Then, by Lemma 1, the strategies
induce a SPE in Mechanism (Ae). In particular, the root r obtains v({r}) + m̂r. By Remarks 1
and 2,

m̂r =
Sr(N, v,D)

|SD[r]| . (2)

So, at the SPE, r’s final payoff coincides with Φe
r(N, v,D). Regarding each other player i ∈ N \{r},

his of her final payoff in Mechanism (B) is by definition the final payoff he or she obtains in
Mechanism (B) applied to (ŜD[j], ṽj , DSD[j]), where j is the unique successor of the root r of

(N,D) such that i ∈ ŜD[j]. By definition of j, the depth of (ŜD[j], DSD[j]) is inferior or equal to

p. By the induction hypothesis, i’s final payoff in Mechanism (B) is equal to Φe
i (ŜD[j], ṽj , DSD[j]),

where
∀S ⊆ ŜD[j], ṽj(S) = v(S) + m̂jδŜD[j](S),

where m̂j is the expected payoff obtained in Mechanism (Ae) applied to (N, v,D). Once again, by
Remarks and 1 and 2, we know that:

∀j ∈ SD(r), m̂j =
Sr(N, v,D)

|SD[r]| .

Conclude that ṽj = vj (see the definition of Φe
i in section 2.3), and so:

Φe
i (ŜD[j], ṽj , DSD[j]) = Φe

i (ŜD[j], vj , DSD[j]).

At last, by definition of Φe
i (N, v,D), we obtain that:

Φe
i (ŜD[j], vj , DSD[j]) = Φe

i (N, v,D).

Therefore, i’s final payoff in Mechanism (B) coincides with Φe
i (N, v,D) at a SPE. This completes

the proof of Step (a).
Step (b) Existence of a SPE. We show that Mechanism (B) admits a SPE. Once again, we

proceed by induction of the depth of (N,D) of a digraph TU-game (N, v,D) ∈ CD.
Initial step If p = 0, then the results holds trivially.
Induction hypothesis Assume that Mechanism (B) admits a SPE for each (N, v,D) ∈ CD

such that the depth of (N,D) is at most equal to p.
Induction step Assume that the depth of the tree of the chosen digraph TU-game is equal

to p + 1. Consider any SPE profile in Mechanism (Ae). By Remarks 1 and 2 such a profile
exists and the induced digraph TU-games (SD[j], v + m̃jδŜD[j], DSD[j]), j ∈ SD[r], are such that

v + m̃jδŜD[j] = vj for each j ∈ SD[r]. The depth of each tree (SD[j], DSD[j]) is at most p. By the

induction hypothesis, there is a SPE for Mechanism (B) applied to (SD[j], vj , DSD[j]). By definition
of a SPE, no player has an incentive to deviate in Mechanism (B) applied to (SD[j], vj , DSD[j]).
Next, assume that a player j ∈ SD[r] contemplates the possibility to deviate in Mechanism (Ae)
given the choice of the equilibrium strategies in Mechanism (B) applied to each (SD[j], vj , DSD[j]),
j ∈ SD[r]. Clearly, he or she cannot increase his or her expected payoff in Mechanism (Ae), which
is equal to

Sr(N, v,D)

|SD[r]| ,

and so, has no possibility to increase his final payoff in Mechanism (B) applied to (N, v,D). This
completes the proof of Step (b).

By combining Step (a) and Step (b), we obtain that Mechanism (B) implements in SPE the
Sequential Surplus Division Rule for each superadditive rooted tree TU-game. �
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6 Appendix: Proof of Proposition 1

Consider the Mechanism (A) and assume that on each SPE of Gis , is ∈ ΩS of Stage 2, the payoff
vector is the same and equal to (ĝisj )j∈S .

Point 1. By definition of the net bid:
∑

i∈S
B̂i = 0.

Therefore, it is sufficient to prove that for each pair of distinct players i, j ∈ S, B̂i = B̂j on each
SPE of the Mechanism (A). Consider any SPE of the Mechanism (A). We proceed by contradiction
by assuming that the assertion is false. This implies that |ΩS | < |S|. Pick any player is ∈ ΩS and
any player js−ωs in the set

arg max
l∈S\ΩS

{B̂l}.

Focus the attention on the reward r̂isis . Two exclusive cases arise.
Case (a). Assume first that this reward is strictly inferior to the expected payoff:

r̂isis < m̂is =
∑

l∈ΩS

r̂lis
|ΩS |

. (3)

Then, player is can strictly improve his/her expected payoff by unilaterally changing his/her set of
bids. Indeed, choose any positive ε < B̂is − B̂js−ωs , which is possible by assumption, and consider
the following new set of bids for is:

(i) b̃i
s

js−ωs
= b̂i

s

js−ωs
− ε;

(ii) b̃i
s

j = b̂i
s

j for each other j ∈ S \ {js−ωs}.
We obtain:
(iii) B̃is = B̂is − ε;
(iv) B̃js−ωs = B̂js−ωs + ε;
(v) B̃j = B̂j for each other j ∈ S \ {is, js−ωs}.
(vi) Player is is not the proposer anymore, and the set of potential proposers becomes ΩS \{is}.
It follows that is’s expected payoff, denoted by m̃is , is as follows:

m̃is =
∑

l∈ΩS\{is}

r̂lis
|ΩS | − 1

. (4)

From inequality (3), we deduce that:

(|ΩS | − 1)r̂isis <
∑

l∈ΩS\{is}
r̂lis ⇐⇒ r̂isis <

∑

l∈ΩS\{is}

r̂lis
|ΩS | − 1

= m̃is .

Therefore, by (4), we obtain:

m̃is =

( |ΩS | − 1

ΩS

)
m̃is +

1

|ΩS |
m̃is >

∑

l∈ΩS\{is}

r̂lis
|ΩS |

+
r̂isis
|ΩS |

= m̂is ,

which contradicts that m̂is is is’s equilibrium expected payoff.
Case (b). From case (a), one can assume that:

r̂isis ≥ m̂is =
∑

l∈ΩS

r̂lis
|ΩS |

. (5)
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As in case (a), one can show that player is can strictly improve his/her expected payoff by uni-
laterally changing his/her set of bids. Indeed, consider the following set of bids for is: for any
positive ε such that 2|ΩS |ε < B̂is − B̂js−ωs ,

(i) b̃i
s

js−ωs
= b̂i

s

js−ωs
− (2|ΩS | − 1)ε;

(ii) b̃i
s

j = b̂i
s

j + 2ε for each j ∈ ΩS \ {is};
(iii) b̃i

s

j = b̂i
s

j for each j ∈ S \ (ΩS ∪ {js−ωs}).
We obtain:
(iv) B̃is = B̂is − ε;
(v) B̃js−ωs = B̂js−ωs + (2|ΩS | − 1)ε;
(vi) B̃j = B̂j − 2ε for each j ∈ ΩS \ {is};
(vii) B̃j = B̂j for each j ∈ S \ (ΩS ∪ {js−ωs}).
(viii) Player is becomes the unique proposer.
Equipped with this new set of bids, is’s final payoff becomes:

ĝisis −
∑

l∈S\{is}
b̃isl = ĝisis−

( ∑

l∈S\{is}
b̂isl − ε

)
= r̂isis + ε > r̂isis ≥ m̂is ,

which contradicts that m̂is is is’s equilibrium payoff.
From case (a) and case (b), we conclude that ΩS < S is impossible at the equilibrium. There-

fore, ΩS = S and so B̂i = 0 for each i ∈ S.

Point 2 Pick any j ∈ S. Assume that there exist is and i′s in ΩS such that r̂isj > r̂
i′s
j . Without loss

of generality, assume that is is such that r̂isj > r̂
i′s
j for each other i′s ∈ ΩS \ {is}. Two cases arise.

Case (a) Assume that is 6= j. Then, j can strictly improve his/her expected payoff by unilater-
ally changing his/her set of bids. Indeed, consider the following set of bids for j: for any positive
ε,

(i) b̃jis = b̂jis − ε;
(ii) b̃ji = b̂ji for each i ∈ S \ {is}.
We have:
(iii) B̃j = B̂j − ε;
(iv) B̃is = B̂is + ε;
(v) B̃i = B̂i for each other i ∈ S \ {is, j};
(vi) Player is becomes the unique proposer.
Under this scenario and for sufficiently small ε, player’s j final payoff becomes r̂isj − ε > m̂j ,

which contradicts that m̂j is the equilibrium payoff.
Case (b). The previous case forces is = j. Then, j can strictly improve his/her expected payoff

by unilaterally changing his/her set of bids. Indeed, consider the following set of bids for j: for
any positive ε,

(i) b̃ji = b̂ji + ε for each i ∈ S \ {j},
from which we obtain:
(iii) B̃j = B̂j + (|S| − 1)ε;
(iv) B̃i = B̂i − ε;
(v) Player j becomes the unique proposer.
Under this scenario, player j’s final payoff is r̂jj − (|S|−1)ε. For a sufficiently small ε, this final

payoff is strictly greater than m̂j .
By combining case (a) and case (b), we deduce that the initial assumption is impossible at the

equilibrium. Therefore, the desired result follows: for is, i
′
s ∈ ΩS , it holds that risj = r

i′s
j .

Point 3 Pick any j ∈ S. From Point 1 and Point 2, we have:
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m̂j |S| =
∑

k∈S
r̂kj =

∑

k∈S
ĝkj + B̂i =

∑

k∈S
ĝkj =⇒ m̂j =

∑
k∈S ĝ

k
j

|S| .

Point 4 From Point 1, ΩS = S. Thus, for i, j ∈ S, we obtain by using Point 2 and Point 3,

ĝji + b̂ji = r̂ji = m̂i =

∑
k∈S ĝ

k
i

|S| =⇒ b̂ji =

∑
k∈S ĝ

k
i

|S| − ĝji ,

as asserted.

References

[1] Ambec, S., Sprumont, Y., 2002. Sharing a river, Journal of Economic Theory 107:453–462.
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