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Abstract

Rudolf Emil Kalman (“R.E.K.”) passed away on July, 2nd, 2016. Among con-
temporary economists Kalman is mainly remembered for his filter, an algorithm
that allows recursive estimation of unobserved time varying variables in a sys-
tem. However, he has also a key part on the whole of recursive macroeconomic
theory as is notably expressed by Lars Ljungqvist’s and Thomas Sargent’s book
[Ljunqvist and Sargent, 2012]. Our paper is a contribution to show the links be-
tween Kalman’s works on filtering, linear quadratic optimal control, and system
theory. We also provide a model on cooperative advertising to show that Kalman’s
works on dynamics and control can be useful in macroeconomics as in microeco-
nomics, a domain where his contributions seem to be unfortunately less used.
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1 Introduction
Rudolf Emil Kalman (“R.E.K.”) passed away on July, 2nd, 2016. His name will remain
tied to the most famous Kalman filter, which, by the end of his life, he would himself
call “the KF”. (We will follow his lead here.)

This is a mathematical method, which can be implemented as a set of algorithms,
to estimate time varying variables from noisy and incomplete measurements, using a
(noisy) model of the underlying dynamics.1 Because it lets one estimate a variable
which is not directly measured, it has sometimes been “commercialized” by computer
scientists as a “software sensor”. It, and its extensions, are now widely used in a great
variety of domains, industrial and technological of course, but also in social, biological,
and earth sciences, health systems, etc. It is a fact that even persons who have never
heard of it have used it extensively, be it only in their GPS receivers.

But the point we want to make here is that the filter article [Kalman, 1960b] is
only one of the three major papers of R.E.K. in 1960. The other two are the great
article about Linear Quadratic optimal control [Kalman, 1960a] —a 1959 conference
communication—, and the system theory article [Kalman, 1960c], to be followed by
[Kalman, 1962] —dated January 1961 in the proceedings— and [Kalman, 1963]. To
control theoreticians, these were earth-shaking contributions, definitively transforming
control theory and linear system theory, well beyond filtering and prediction.2

Bolstered by the advent of the digital computer, these theories were extensively
put to use via the “Automatic Synthesis Program” in the Apollo lunar landing program
which started at the same time. Seldom has a brand new piece of theory been embraced
so quickly by the practitioners in such an important endeavour.3 But, as we will see, it
was also quickly used in economic and management sciences.

The paper is organized as follows : in the next section we present the system the-
ory and control before and after Kalman works. In Section 3, we present the linear
quadratic gaussian theory by introducing to the linear quadratic optimal control and its
duality with the Kalman filter. Then, in Section 4, we briefly discuss the applications
of linear quadratic gaussian theory in macroeconomics and develop a microeconomic
model on cooperative advertising. Section 5 ends the paper.

2 System theory

2.1 A paradigmatic change
2.1.1 State of the theory before 1960

To appreciate the importance of R.E.K.’s contribution to systems and control, one must
have a crude idea of what was the state of these fields before 1960. The theory was

1Dont say that it belongs to “estimation theory”, as R.E.K. strongly objected to that qualification, arguing
that this phrase had come to name a body of non-science. He later denied its being based upon probabilities,
and refused its definition as (only) an algorithm, because it is complete.

2Another pair of important articles on stability of linear dynamical systems also appeared in 1960:
[Kalman and Bertram, 1960a] [Kalman and Bertram, 1960b], complementing the other control articles.

3Another example, though, may be the KF’s predecessor: the Wiener filter, largely conceived in 1940 for
the anti-aircraft radar, and embargoed until 1949 for its military sensitivity.
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confined to linear time-invariant (LTI) systems, and essentially to so-called “monovari-
able” ones, i.e. where the signals considered were scalar.

A (linear) dynamical system is a device which is excited by a time varying signal,
the input, and simultaneously produces a time varying signal, the ouput. To the math-
ematicians, a linear system is therefore a linear operator, transforming a time function
called input into another time function called output. Because this happens in real time,
some properties are required: causality (the current output does not depend on future
inputs), and some others (relating notably to behaviour “at infinity”), and linearity and
time invariance to be amenable to the theory then available.

Mathematicians had developed an extremely elegant and powerful way of manipu-
lating such transformations, through the use of an esoteric mathematical transformation
of the signals : the Laplace transform, which led to the representation of the system
via a “transfer function” (a ratio of polynomials of a complex variable). An impor-
tant consideration is that it is straightforward to derive the transfer function from a
linear differential equation describing the system. It had, inter alia, the property of
transforming cascade of systems (the output of the first one becoming the input of the
second one) into simple products of their transfer functions, making possible the anal-
ysis of feedback systems, where the output is re-introduced as a component of the input
of the same system, a necessary ingredient of any servomechanism. It also led to the
Wiener filter, then the standard tool in signal processing.

These methods were intimately tied to the frequency response of the system: its
behaviour if excited by a sinusoidal signal. Engineers had developed both powerful
analytical and graphical tools and a deep understanding of the frequency content of
signals and its meaning for the analysis and control of LTI systems.

A clever trick of Wiener filtering was to consider a noisy signal to be “filtered”
(freed from its noisy content) as the output of a linear system excited by a noise with
adequate statistical properties. This was used by R.E.K. in the KF, so that he once told
one of the authors of this article: “Take the Kalman filter, which, as everybody knows,
was invented by Wiener. . . ”. This author would not have dared that quip.

2.1.2 Inovations of 1960

R.E.K. chooses to represent the transformation of inputs into outputs by the mediation
of an internal state of the system: in his case a vector of several real variables that
also vary with time according to a forced first order differential or difference equation.
Hence the name of an internal description of the system (the classical one becoming
external.) In that representation, the input acts on the dynamics of the state, and the
state instantly produces an output. Since the state itself is a vector, and all relations
considered are linear, matrices and linear algebra are at play. And this mathematical
apparatus lends naturally itself to the consideration of vector-valued inputs and outputs.
Moreover, if the matrices defining the system are time varying, the system is no longer
time invariant. If part of realization theory, the heart of linear system theory, still
concerns LTI systems, both filtering and what we want to stress here: control, can
naturally be extended to non-time invariant systems.

The notion of state of a system was known inprecisely as “a set of numbers from
which the entire future behavior of the plant may be determined provided that the future
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inputs of the plant are known” (quoted from [Kalman and Koepcke, 1958])4. Typically,
positions and velocities in a mechanical system, intensities in inductors and charges of
capacitors in an electrical system. The intimate link with first order differential equa-
tions was obviously recognized. But their almost exclusive use was in deriving from
them the transfer function of the (LTI) system, a straightforward process. The intimate
link with first order differential equations was obviously recognized. But their almost
exclusive use was in deriving from them the transfer function of the (LTI) system, a
straightforward process. The direct use of the differential (or difference) equations in
optimization was becoming more frequent in the late fifties under the influence of Bell-
man’s Dynamic Programming [Bellman, 1957]. R.E.K.’s bold move was to make it the
core definition of a linear system and to invesigate in depth its properties.

With the internal description, the extension to non-time invariant systems is pos-
sible because the tools developed dispense with the Laplace transform (the frequency
analysis). They manipulate the signals as time functions, hence also the name of time
domain analysis, as opposed to the frequency domain. For control theory, they delve
into calculus of variations, and for filtering into Markov processes.

The advent of the digital computer and of direct digital control also led R.E.K. and
later researchers to systematically develop a discrete-time theory along the continuous-
time one, at first as a theory of sampled data systems i.e. looking at a continuous-time
system at discrete instants of time. It turned out that the parallel was particularily
natural and elegant in the new theory.5

The transfer function of a time invariant system in internal form is obtained via
a simple algebraic formula. The converse: finding the internal representation of a
system given in external form, is a deeper question, involving a detailed analysis of the
mathematical nature of a linear system in internal form, the topic of realization theory.

2.2 Realization theory
The general theory of control systems was initiated by R.E.K. in [Kalman, 1960c].
But the real founding article, which we shall follow here, is [Kalman, 1962], actually
written in 1960 (or the journal article [Kalman, 1963]).

Definition 1 A realization of a linear (or affine) input-output transformation is a rep-
resentation in internal form as (1)(2) or (3)(4) below.

Let x ∈ Rn be the state of the system (n is called the dimension of the realization),
u ∈ Rm be the input, or control, and y ∈ Rp the output. To avoid some trivialities,
we assume that m ≤ n and p ≤ n. We use Newton’s notation for time derivatives:

4[Kalman, 1960c] adds the precision that it is the smallest such set. This was to be made precise later via
the (earlier) concept of Nerode equivalence class of formal languages and automata theory.

5It should be mentioned, though, that with an admirable prescience, Kolmogorov had developed in 1941,
independently from Wiener, a discrete-time version of the Wiener —or Wiener-Kolmogorov— filter.
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ẋ = dx/dt. A continuous-time system is of the form6

ẋ(t) = Fx(t) +Gu(t) , (1)
y(t) = Hx(t) , (2)

and in discrete time

x(t+ 1) = Fx(t) +Gu(t) , (3)
y(t) = Hx(t) . (4)

Notice that some would like to extend the output equation adding a term +Ju(t).
R.E.K. himself argued against in general system theory, with good arguments.7

For the sake of completeness, let us mention that if all three matrices F , G, and H
are constant, the system is LTI, and its transfer function is

H(s) = H(sI − F )−1G .

It follows from Cramer’s theorem that this is a matrix of (strictly proper) rational frac-
tions of s, with the characteristic polynomial of F as their common denominator, and
thus for poles its eigenvalues.

Even without referring to the transfer function, it is clear that the transformation
from input to output induced by these equations is not altered if we make a change
of basis in the state space, or equivalently if we use for new state ξ = Tx with T an
invertible matrix. The continuous-time sytem becomes

ξ̇ = TFT−1ξ + TGu ,

y = HT−1ξ .

Hence changing (H,F,G) into (HT−1, TFT−1, TG) is unessential, representing the
same system, with the same transfer function if it is time-invariant. This points to a
weakness of the new representation: it is non unique for the same input-output sys-
tem. And other non-uniqueness may show up, as the following trivial one, where we
introduce a higher dimensional vector, say z made of x and a vector ξ of arbitrary
dimension:

z =

(
x
ξ

)
, ż =

(
F 0
A B

)
z +

(
G
C

)
u

y = (H 0)z .

A, B and C are arbitrary matrices. They play no role, since ξ does not influence y,
neither directly nor via x. Therefore, realizations of different dimensions may represent
the same input-oupt system. In the case above, it is trivial, but assume that a change of
basis such as the previous one mixes x and ξ, and the excess dimension may be more
difficult to detect. Moreover, other cases may appear.

6Essentially all the current literature replaces (F,G,H) by (A,B,C). We keep R.E.K.’s notation as he
really meant it ! He noted a system as (H,F,G).

7Such a “feed-through” term is not dynamic, and consequently spoils the elegance of the algebraic theory.

4



The solution of this problem involves two fundamental concepts. The first is con-
trollability. A state is controllable if there exists a control function u(·) that drives the
system from this state as initial state to the origin. The system is said to be completely
controllable if every state is controllable. We will here cheat somewhat with history
by using instead reachability. A state is reachable if there exists a control function
that drives the system from the origin to that state. A system is completely reachable
if every state is reachable. The two concepts are equivalent for continuous-time sys-
tems, but not for discrete-time systems, unless the matrices F (t) are invertible for all
t. Hence a system is said completely reachable if the application u([t0, t1]) 7→ x(t1),
which is linear if x(t0) = 0, is onto for some t1 > t0.

The second fundamental concept is that of observability. A state x0 6= 0 is unob-
servable if the ouput of the “free” system, i.e. with u(·) = 0, intialized at that state,
is y([t0, t1]) = 0 for any t1 ≥ t0. The system is completely observable if no state
is unobservable. Hence the system is said completely observable if the application
x(t0) 7→ y([t0, t1]), which is linear if u(·) = 0, is one to one for some t1 > t0.

The article [Kalman, 1960a] also gives efficient criteria to check these properties.
In the case of time-invariant systems the Kalman criteria are in terms of the rank of
composite matrices:

Theorem 1

(F G) completely reachable⇔ rank[G FG F 2G . . . Fn−1G] = n ,

(H F ) completely observable⇔ rank




H
HF
HF 2

...
HFn−1




= n

The article also gives simple criteria for non time-invariant systems. They are less
algebraic, more analytic, but they share the following striking property (stated in two
equivalent forms below), called duality: (we use prime for transposed)

(F G) completely reachable⇔ (G′ F ′) completely observable

(H F ) completely observable⇔ (F ′ H ′) completely reachable

We will see that this duality reaches into optimal control and filtering. R.E.K. himself
gave a detailed analysis of the duality between the Wiener filter and the linear quadratic
regulator [Kalman, 1960c]8. But the whole extent of duality in the LQG theory to be
seen below remains difficult to explain, and even more in modernH∞-optimal control
(see [Başar and Bernhard, 1995]).

We use these concepts in realization theory with the help of the following formal
definition:

8Defining the observability of costates in the dual space of the state space. Duality clearly has to do with
the fact that a linear operator between linear spaces is onto if and only if its adjoint operator is one to one,
and it is one to one if and only if its adjoint operator is onto. As pointed out in [Kalman, 1960c], it is also
related to the known duality between the differential equations ẋ = Fx and ṗ = −F ′p or the difference
equations x(t+ 1) = Fx(t) and p(t) = F ′p(t+ 1) which leave the inner product p′x invariant.
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Definition 2 A realization completely reachable and completely observable is called
canonical.

The main theorem is as follows:

Theorem 2 A realization is minimal (has a state space of minimum dimension) if and
only if it is canonical. And then it is unique up to a change of basis in the state space.

The article [Kalman, 1962] further shows that the state space of any linear system in
internal form, even not time invariant (i.e. a system such as (1),(2) with matrices H ,
F , and G depending continuously on time) can be decomposed canonically as the di-
rect sum of four (variable if the system is not LTI) subspaces as in the left diagram of
figure 1 borrowed from [Kalman, 1962], or more classically in block diagram form as
in the right one borrowed from [Kalman, 1963] and reproduced in all textbooks since.
A, B, C, and D are the subspaces corresponding respectively to states reachable but
unobservable, reachable and observable, unreachable and unobservable, unreachable
but observable. Using a basis adapted to that decomposition yields a canonical decom-
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Figure 1: The canonical decomposition of a linear system in internal form

position of the system matrices that exhibits these properties as follows:

F =




FAA FAB FAC FAD
0 FBB 0 FBD
0 0 FCC FCD
0 0 0 FDD


 , G =




GA
GB
0
0


 ,

H = [ 0 HB 0 HD ].

The subspaces B, C, and D are not uniquely defined, but the decomposition of the
system matrices is, up to changes of basis within each of the four subspaces.

2.3 Compensator design: pole placement approach
The KF was the first observer9, originally in discrete time, i.e. a system of either form

x̂(t+1) = Fx̂(t) +Gu(t) +K[y(t)−Hx̂(t)] , (5)
˙̂x(t) = Fx̂(t) +Gu(t) +K[y(t)−Hx̂(t)] , (6)

9Called “observing system” in [Kalman, 1960c] which proposes an “optimal” one in terms of the number
of time steps necessary to exactly recover the state in a discrete time system. The term “observer” was coined
by [Luenberger, 1964], which extends the concept, in a less explicit form that lacks the simplicity displayed
here and the rather crucial stability argument invoked in paragraph A.2.
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providing an estimate x̂(t) of the state, optimal in the sense that it minimizes the ex-
pected squared L2 norm of the error signal x̃(t) = x(t) − x̂(t). The natural idea,
proposed as early as [Kalman, 1960c] for monovariable discrete-time systems, is to
associate such an observer with a control law

u(t) = −Cx̂(t) .

There remains to choose the gainsK andC. This can be done via the following results.
Writing the overall system in terms of (x, x̃) instead of (x, x̂), it is a simple matter

to prove the principle of separation of the dynamics ([Luenberger, 1964]):

Theorem 3 (Separation of dynamics) : The eigenvalues of the dynamic matrix of the
closed loop observer-controller are the union of the eigenvalues of F −GC —the
controller— and those of F−KH —the observer.

A later result [Wonham, 1967]10 is the following extension to multi-input systems of
the pole shifting theorem, known in 1960 (and used in [Luenberger, 1964]) for single
input systems:

Theorem 4 If the pair (F,G) is completely reachable, then given any monic n-th de-
gree polynomial p(z), there exists a matrix C such that the characteristic polynomial
of F −GC be p. Dually, if the pair (H,F ) is completely observable, the characteristic
polynomial of F −KH can be assigned to any desired one by the choice of K.

Hence a purely system theoretic argument in favor of the proposed control structure,
and a means of choosing C and K (see paragraph A.2 below).

A further important remark is that in the discrete-time case, hence also in the sam-
pled data problem of any digital control, the observer is a one step predictor: It gives
the estimate x̂(t+1) of x(t+1) with the data y(τ), τ ≤ t. Hence one has one time step
to compute the contol u(t+ 1) = −Cx̂(t+1), the gain C being pre-computed off line.

3 Linear Quadratic Gaussian (LQG) theory

3.1 Linear Quadratic (LQ) optimal control
The topic covered here is partially investigated in [Kalman, 1960c], but the definitive
article is [Kalman, 1960a]. We will essentially adopt its notation.

The introduction of [Kalman, 1960a] states, we quote: “This problem dates back,
in its modern form, to Wiener and Hall at about 1943.” It also quotes, although in rather
denigrating terms, [Newton Jr et al., 1957] as the state of the art at that time. Therefore
in its infinite horizon (optimal regulator) form, it was not new. But the solutions offered
were in terms comparable to those of the Wiener filter, i.e. frequency domain analysis
and spectral factorization, and did not easily lead to efficient algorithms, particularily
so for “multivariable” problems.11

10Other proofs were quickly given as comments of this article by [Heymann, 1968] and [Davison, 1968].
11Actually, a finite-horizon nonhogeneous scalar-control linear-quadratic optimization problem is solved

in [Merriam III, 1959], with the correct Riccati equation and the linear equations for the non homogeneous
terms, although difficult to recognize.
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3.1.1 Finite horizon problem

The new approach started with the investigation of a finite horizon optimal control
problem, i.e. not time invariant. It involves quadratic forms that we denote as follows:
for any positive definite or semi-definite `× ` matrix M and z a `-vector,

〈z,Mz〉 = z′Mz = ‖z‖2M .

The problem investigated is as follows12:

Linear quadratic optimal control problem Given the system (1)(2), with all system
matrices possibly (piecewise) continuous functions of time, and x(t0) = x0, and given
the symmetric n× n matrix A ≥ 0, and the symmetric (piecewise) continuous respec-
tively n× n and m×m matrix funtions, Q(t) ≥ 0 and R(t) > 0, find, if it exists, the
control law that minimizes the performance index

V (x0, t0, t1;u(·)) = ‖x(t1)‖2A +

∫ t1

t0

[
‖y(t)‖2Q(t) + ‖u(t)‖2R(t)

]
dt . (7)

Kalman’s approach to the problem followed Carathéodory’s.13 The solution is as fol-
lows. Define a symmetric matrix function P (t) as the solution, if it exists, of the matrix
Riccati equation (where all matrices are time dependent)

−Ṗ = PF + F ′P − PGR−1G′P +H ′QH , P (t1) = A . (8)

(By Cauchy’s theorem, there exists a solution on some open time interval (t2, t1). How-
ever existence of a solution over the time interval [t0, t1] is by no means guaranteed a
priori, as the solution might diverge to infinity before reaching down t0.)

The full theorem is as follows:

Theorem 5

1. The Riccati equation (8) has a solution P (t) ≥ 0 over [t0, t1] for every t0 < t1.

2. The solution of the linear quadratic optimal control problem is given in state
feedback form by

u(t) = −C(t)x(t) , C(t) = R(t)−1G′(t)P (t) , (9)

3. and the optimal value of the performance index is

V 0(x0, t0, t1) = ‖x0‖2P (t0) .

Important remark: The Riccati equation (8) and the optimal feedback gain (9) are
the duals of the KF’s Riccati equation and gain. (See section 3.2)

12In [Kalman, 1960a], the problem is first posed and investigated in a more general form.
13While [Kalman and Koepcke, 1958] and [Kalman, 1960c] explicitely use [Bellman, 1957] and (dis-

crete) dynamic programming, a strong incentive for using the state space representation, [Kalman, 1960a]
does not quote it for the continuous-time problem, using instead Carathéodory’s theory. Symmetrically,
[Bellman, 1957] does not refer to Carathéodory. Yet, continuous dynamic programming is essentially a re-
discovery of Carathéodory’s theory, Bellman’s return function being the control equivalent of Carathéodory’s
principal function.
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3.1.2 Optimal regulator (infinite horizon) problem

The challenge in this theory is to investigate the infinite horizon problem. For the sake
of simplicity, we only give here its LTI version, the only one amenable to the previous,
“classical” at that time, theory, and the most widely used. But [Kalman, 1960a] also
gives the solution for a non time-invariant problem.

Optimal regulator problem Given the time invariant linear system (1)(2) with initial
state x(0) = x0, positive definite p× p respectively m×m matrices Q and R, find, if
it exists, the control that minimizes the performance index

V (x0;u(·)) =

∫ ∞

0

[
‖y(t)‖2Q + ‖u(t)‖2R

]
dt .

This investigation requires the introduction of both controllability and observability.
Indeed, in its introduction, R.E.K. states “The principal contribution of the paper lies in
the introduction and exploitation of the concepts of controllability and observability”.
In retrospective, he might also have quoted the Riccati equation (8). We shall use here
its algebraic version, where all matrices are now constant:

PF + F ′P − PGR−1G′P +H ′QH = 0 . (10)

The full theorem is as follows:

Theorem 6

1. If the pair (F,G) is completely controllable,14 then

(a) the solution P (t) of the Riccati equation (8) has a limit P̄ as t → −∞,
which solves the algebraic Riccati equation (10),

(b) the solution of the optimal regulator problem in state feedback form is

u(t) = −Cx(t) , C = R−1G′P̄ , (11)

(c) and the optimal value of the performance index is

V 0(x0) = ‖x0‖2P̄ .

2. If furthermore the pair (H,F ) is completely observable,15 P̄ is positive definite
and the system governed by the law (11) is asymptotically stable.

Of course, the duality pointed out in the finite horizon problem holds here, making the
optimal regulator dual to the stationary KF, i.e. to a realization of the Wiener filter.

14Stabilizable i.e. ∃D : F −GD stable, suffices.
15For the stability result, detectable, i.e. ∃L : F − LH stable, suffices.
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3.1.3 Discrete-time case

Articles [Kalman, 1960b] and [Kalman, 1960c] provide the equivalent discrete-time
results16. The system is (3)(4), and the performance index is:

V (x0, t0, t1; {u(·)}) = ‖x(t1)‖2A +

t1−1∑

t=t0

[
‖y(t)‖2Q(t) + ‖u(t)‖2R(t)

]
. (12)

The Riccati differential equation is replaced by the so-called discrete Riccati equation
(the system matrices may all be time dependent) or its “algebraic” version (with all
system matrices constant) where P (t) = P (t+ 1) = P̄ :

P (t) = F ′P (t+1)F − F ′P (t+1)G(G′P (t+1)G+R)−1G′P (t+1)F +H ′QH,
P (t1) = A .

(13)
The optimal feedback control is

u(t) = −C(t)x(t) , C(t) = (G′P (t+ 1)G+R)−1G′P (t+ 1)F . (14)

Both the finite and infinite horizon results follow exactly as for the continuous-time
case, with the same controllability and observability conditions.

3.2 The Kalman Filter
For the sake of completeness, and to stress duality, we quickly review the famous KF,
[Kalman, 1960b] and [Kalman and Bucy, 1961]. Existence and stability properties for
both the finite horizon and infinite horizon cases are directly derived from those of the
dual LQ control problem.

3.2.1 Discrete-time

We start with the discrete-time problem, after [Kalman, 1960b].17 Let us consider a
discrete time linear system excited by white noise and a known control u(·):

x(t+ 1) = F (t)x(t) +G(t)u(t) +D(t)v(t) , x(t0) = x0 ,

y(t) = H(t)x(t) + w(t) ,

where (v(t), w(t)) is a gaussian random variable with zero mean and known covari-
ance, independent from all the (v(τ), w(τ)) for τ 6= t. In the simplest case, v(t) is
also independent from w(t), but this is not necessary for the theory to hold. A possible
non-zero cross correlation between them is dual to the presence of a cross term x′Su
in the quadratic performance index of LQ control, which we will not introduce here.
The noise is therefore characterized by its covariance matrix (with δt,τ the Kronecker
symbol):

E
(
v(t)
w(t)

)
(v′(τ) w′(τ)) =

(
V (t) 0

0 W (t)

)
δt,τ .

16First approached in [Kalman and Koepcke, 1958, Appendix], dealing with sampled data control of a
continuous-time system. But the treatment there is not completely satisfactory.

17[Kalman, 1960b] has no added noise in the measurement equation, nor control.
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The initial state is also given as a gaussian random variable of known distribution:

E(x(t0)) = x̂0 , E(x(t0)− x̂0)(x(t0)− x̂0)′ = Σ0 .

The problem is to compute the conditional mathematical expectation:

x̂(t) = E(x(t)|y(τ), τ < t) . (15)

The solution is of the form (5) initialized at x̂(t0) = x̂0, where the gain K is given
via the error covariance matrix Σ(t) = E(x(t) − x̂(t))(x(t) − x̂(t))′, solution of the
discrete Riccati equation (16) dual of (13), and by the formula (17) dual of (14):

Σ(t+ 1) = FΣ(t)F ′ − FΣ(t)H ′(HΣ(t)H ′ +W )−1HΣ(t)F ′ +DVD′ , (16)

K(t) = FΣ(t)H ′(HΣ(t)H ′ +W )−1 . (17)

The time invariant, infinite horizon case is the internal form of the Kolmogorov filter.

3.2.2 Continuous-time

Given a continuous-time system in internal form excited by both dynamic and mea-
surement “white noises” as above, but in continuous-time, with (in terms of the Dirac δ
as in [Kalman and Bucy, 1961], probabilists now have a different way of stating things)

E
(
v(t)
w(t)

)
(v′(τ) w′(τ)) =

(
V (t) 0

0 W (t)

)
δ(t− τ) ,

with W invertible18, the conditional expectation (15) sought is the solution of the
continuous-time observer (6) with the dual formulas from LQ control:

Σ̇ = FΣ + ΣF ′ − ΣH ′W−1HΣ +DVD′ , Σ(t0) = Σ0 .

and
K(t) = Σ(t)H ′W−1 .

The time invariant, infinite horizon case coincides with the internal representation of
the Wiener filter which, as the Kolmogorov filter, was given in external form.

3.3 The separation theorem
The control laws (9) or (11) or (14) assume that the state x(t) is exactly measured.
But the uderlying assumption of this whole theory is that only the output y(t) is mea-
sured. The natural idea, then, is to associate a KF with the optimal LQ in an “opti-
mum” observer controller u(t) = −Cx̂(t). This idea was proposed in the two 1960
papers [Kalman, 1960c] and [Kalman, 1960a]. In the latter, it is hinted that the duality
principle makes it legitimate to associate the KF estimate and the optimal LQ gain, an-
ticipating the separation theorem. But this was not quite sorted out at that time. What
follows somehow ties the loose ends of 1960 with later results.

18Otherwise, a linear combination of the state variables is exactly observed. The problem solution then
involves a Luenberger reduced observer
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One may recover optimality through the separation theorem initially proved in
[Joseph and Tou, 1961] in discrete-time19 20, and for a more general (non quadratic)
performance index and continous time by [Wonham, 1968]21. The continuous-time
problem is much more difficult. It turns out that part of the problem is. . . to precisely
state the problem. This involves continuous Brownian motions, Ito calculus, filtra-
tions22 and measurability. We will not attempt to state it in modern rigourous terms,
but be content with the engineering form of the early sixties. The aim is to have firm
grounds to devise a feed-back dynamic compensator. (See paragraph A.3 below.)

Linear Quadratic Gaussian (LQG) stochastic optimal control problem. Given a
linear system in internal form with additive gaussian white random disturbances in the
dynamics and output equations, find, if it exists, a control law where u(t) only depends
on past outputs y(τ), τ < t, that minimizes the mathematical expectation of a quadratic
performance index among all such control laws.

The answer is the separation and certainty equivalence theorem, true for the discrete-
time and continuous-time, finite horizon and stationary infinite horizon problems:

Theorem 7 The solution of the LQG stochastic optimal control problem exists and is
obtained by replacing the state x(t) by the KF estimate x̂(t) in the LQ deterministic
optimal control state feedback law.

4 Applications in economics

4.1 LQG theory in macroeconomics
Kalman is most often quoted in the economic science literature for the KF. The LQ
control theory is often quoted in macroeconomics, and in discrete time. It is also
the basis of more advanced (robust) methods used in recent macroeconomic litera-
ture such as [Hansen and Sargent, 2008]. The continuous time theory has also been
used in macroeconomics for a long time, although less often. Typical examples can
be found in [Petit, 1990] which writes, we quote: “quadratic objective functions have
been definitively adopted in economic policy analysis following Theils’s important con-
tributions [. . . ] (see [Theil, 1958], [Theil, 1964])”. As an example, the author solves
a 20-dimensional LQ optimal control problem for a model of the Italian economy with
three or four policy instruments. The procedure followed is typically quadratic synthe-
sis as described in more detail in the appendix.

As a matter of fact, macroeconomic theory can easily be thought of as a control
problem where the emphasis is on devising “good” policies, with satisfactory qualita-
tive behaviour of the generated trajectories, much more than on maximizing or mini-
mizing a specific performance index. This is the natural realm of quadratic synthesis,

19With no observation noise, as in [Kalman, 1960b], and, dually, no control cost.
20Early “certainty equivalence” results, in some particular cases with perfect state information, and without

the system theoretic formulation, appeared in the economic literature: [Simon, 1956] and [Theil, 1957].
21An early proof, more specific to the LQG case, was also due to [Faurre, 1968].
22We quote R.E.K. in a conference on applications of the KF in Hydrogeology, Hydraulics, and Water

Resources (1978): “There are three types of filters: (i) those which keep tea leaves from falling into the tea
cup, (ii) those we are talking about today, (iii) those which are so fancy that only topologists use them.”
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and explains the popularity that R.E.K.’s linear quadratic control theory has enjoyed in
that field.

Because these models can be very large (close to one hundred variables), computa-
tional issues become important. For continuous time models, specific algorithms have
been devised for the infinite horizon, stationary Riccati equation. Yet, it can remain a
numerically heavy burden, and moreover macroeconomic models are often meant to
give finite horizon specifications. As a consequence, authors are often content with
open-loop computations of isolated trajectories, while closed loop control is intimately
linked to fields of optimal trajectories as understood ever since Weierstrass. The stan-
dard tool is then Euler’s equation, an ordinary differential equation bearing upon the
2n-dimensional vector (x, λ), where in fact λ = Vx, usually introduced via Pontrya-
gin’s Maximum Principle [Pontryagin et al., 1962]. The resulting two point boundary
value problem requires an iterative procedure with several integrations of this linear
ODE in R2n, sparing us the complexities of the nonlinear Riccati equations with its big
matrix products and various numerical difficulties.23

As far as we know, the corresponding discrete time formulas are (almost ?) never
used. Yet, if the dynamic matrix F can be inverted once for all, then there is a very sim-
ple parallel theory again entirely in terms of linear equations. This could be worthwile
when the number of decision variables (policy instruments) is also very large, since the
discrete Riccati equation involves an inversion of a matrix of corresonding size at each
time step.

4.2 LQG in microeconomics
It seems that R.E.K.’s optimal LQ theory is less well known in microeconomics, proba-
bly because the apparent rigidity of the LQ formalism does not fit very well its models,
and where the relevent criterion may fail to be quadratic. Moreover, because the crite-
rion used is an economic payoff, one is confronted with a game problem rather than a
simple control problem. Yet, R.E.K.’s LQ control theory may be usefull as we shall try
to show in the next subsection.

In that subsection, we provide an example in microeconomics that extends the basic
LQ model of our subsection 3.1 on four counts:

1. A more general performace index with no x2 term and with cross terms state
times decision in the payoff. This only adds some terms in the Riccati equation.

2. Non homogeneous (first degree) terms in the payoff. This is dealt with by allow-
ing for a non homogeneous Bellman function, with terms of degree 1 and 0 in
x.

23An alternative way of considering these equations is Carathéodory’s canonical equations, that represent
the field of optimal trajectories as the projection on Rn of a n-dimensional linear subspace of the (infinite
dimensional) space of functions R → R2n. With this tool, n integrations of a 2n-dimensional linear
ODE let one recover any required optimal trajectory as a linear combination of these n trajectories. (See
[Bernhard, 1982] or [Weber, 2011].) This was taught by REK at Stanford University as early at least as the
academic year 1968–1969.
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3. Exponentially discounted payoff.24 This is dealt with by taking the Bellman
function as V (t, x) = exp(−ρt)W (t, x).

4. More significantly, seeking a Nash equilibrium rather than a mere maximizing
control. This is done by considering each player’s problem as an optimal con-
trol problem in the presence of the other players’ equilibrium strategies, thus
allowing for a Bellman (or rather Isaacs) function for each one.

Our example belongs to cooperative advertising, but unlike in the classical liter-
ature on that topic (see [Jørgesen and Zaccour, 2014]), the advertising expense is not
shared by a producer and a retailer, but by several competing producers who agree on
campaigning separately on a joint moto to promote their similar products. (Typically a
protected designation of origin such as “Comté” or “Champagne”.)

We will see that although the formula obtained look complicated, they are easy to
implement and allow for a numerical investigation of the role of the model’s parame-
ters.

4.3 A model in microeconomics
4.3.1 The “complete” model

The model Advertising is assumed to be aimed at increasing the goodwill for the
product, measured as a real positive time varying variable x(t) (which should be thought
of as an additive to the market price). There are n producers. The sum devoted by pro-
ducer i at time t to advertising on the joint trade mark is Si. But this expense has
a decreasing marginal efficiency, represented here by si =

√
Si. Moreover, a larger

circulation of the product also has a small positive effect on the goodwill (the market
size) through the buzz generated by the consumers who are de facto advertising agents:
a “must have” effect. (We will investigate in more detail the simpler case where this
effect is neglected.) In the absence of any advertising, the goodwill decays at a constant
relative rate f > 0. The goodwill dynamics are therefore

ẋ(t) = −fx(t) + g

n∑

k=1

sk(t) + h

n∑

k=1

qk(t) .

Producer i produces at a rate qi(t) at time t, at a production cost ciqi(t). We assume
that the market price p is linearly growing with x and decreasing with total production
as in a linear model:

p(t) = a+ x(t)− b
n∑

k=1

qk(t) . (18)

Let

a− ci = αi , nαi −
∑

j 6=i
αj = βi ,

n∑

i=1

αi =

n∑

i=1

βi = nᾱ .

24As is done in e.g. [Kalman, 1960c], but not in the continuous time [Kalman, 1960a].
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We use a discount factor ρ. Hence player i’s profit over an horizon T is

Πi =

∫ T

0

e−ρt
[
qi

(
αi + x(t)− b

n∑

k=1

qk(t)

)
− s2

i

]
dt .

The Hamilton-Jacobi-Carathéodory-Isaacs-Bellman equation We look for a Bell-
man (or rather Isaacs Value) function of the form Vi(t, x) = exp(−ρt)Wi(t, x) with
Wi a nonhomogeneous quadratic function of x. But we will find that the coefficient of
x2 is the same for all:

Wi(t, x) = P (t)x2 + 2Li(t)x+Mi(t) ,

Thus, the HJCIB equation reads

−Ẇi + ρWi = max
qi,si

{
2(Kx+ Li)

[
−fx(t) + g

n∑

k=1

sk(t) + h

n∑

k=1

qk

]

+ qi

(
αi + x(t)− b

n∑

k=1

qk(t)

)
− s2

i

}
.

We easily derive the equations for the maximizing policies s?i and q?i as

s?i = g(Kx+ Li) , (19)

bq?i = (Kx+ Li)h+
1

2

(
x+ αi − b

∑

j 6=i
q?j

)
.

As is expected from R.E.K.’s theory, this yields feedback strategies explicitely using the
goodwill x. Whether this elusive quantity may be directly measured is debatable. But
one may assume that the total output

∑
k qk of the producers may be observed. Then

the goodwill x may be recovered from equation (18) as x = p − a +
∑
k qk. A first

conclusion is that the advertising efforts of the producers increase with the goodwill,
to offset an increasing goodwill decay −ax. Let also

n∑

k=1

Lk = L , nLi −
∑

j 6=i
Lj = (n+ 1)Li − L = Λi .

The equations for q?i yield

q?i =
1

(n+ 1)b
[(2hK + 1)x+ 2hΛi + βi] .

Not surprisedly, equilibrium productions increase with the goodwill.
Placing these back in the Hamilton-Jacobi-Carathéodory-Isaacs equation and equat-

15



ing the coefficients of the various powers of x, we obtain

−K̇ + ρK =

[
(2n− 1)g2 +

4n2h2

(n+1)2b

]
K2 + 2

[
−f +

(n2 + 1)h

(n+1)2b

]
K +

1

(n+1)2b
.

−L̇i + ρLi =

[
−f + (n−1)g2K +

h

b

]
Li +

[(
g2 +

4nh2

(n+1)2b

)
K − 2h

(n+1)2b

]
L

+
hKαi
b
− 2nhP − 1

(n+1)2b
βi .

−Ṁi + ρMi =

[
g2(2L − Li) +

2hαi
b

]
Li +

(βi − 2hL)2

(n+1)2b
.

These differential equations are to be integrated backward from zero terminal condi-
tions at T , an easy task to carry out numerically even for a large n. Observe that the
equation for K is of Riccati type, but decoupled from the following ones. Once K is
computed, the equations for the Li are linear, and exp(−ρt)Mi(t) may be obtained as
a mere integral.

If the horizon is taken as infinite, then all coefficients K, Li and Mi are constant.
The differential equations are replaced by the algebraic equations obtained by setting
the derivatives equal to zero. In particular, we have
[
(2n− 1)g2 +

4n2h

(n+ 1)2b

]
K2− 2

[
f +

ρ

2
− (n2 + 1)h

(n+ 1)2b

]
K +

1

(n+ 1)2b
= 0 . (20)

Two positive solutions exist provided that ρ be large enough, the more so that h is
larger, because a larger h clearly allows the producers to sell more for the same price,
i.e. increase their return, ending in an infinite payoff if the discount factor is not large
enough. The smallest root is the solution sought. And Li can also be obtained in closed
form, via the use of L obtained by summing the equations for Li:

[
f + ρ− (2n−1)g2K − h4n2hK+n2+1

(n+1)2b

]
L =

(n2+1)hK + 1

(n+1)2b
nᾱ ,

and
[
f + ρ− (n−1)g2K− h

b

]
Li =

[(
g2+

4nh2

(n+1)2b

)
K − 2h

(n+1)2b

]
L+

hKαi
b
− 2nhK − 1

(n+1)2b
βi, (21)

(22)

and

ρMi =

[
g2(2L − Li) + 2

h

b
αi

]
Li +

(βi − 2hL)2

(n+ 1)2b
.

These formulas are unappealing. They are nevertheless very easy to implement numer-
ically, and thus make possible a numerical comparative statics as illustrated in the next
subsection. Actually, a complete proof requires that we check the stability of the dy-
namics when one producer deviates from its equilibrium strategy. We give more details
in a simpler case in subsection 4.3.3.
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4.3.2 Qualitative lessons

Notice first that, in investigating the infinite horizon problem, we must assume that

h

b
< f .

(Both have the dimension of a frequency, i.e. the inverse of a time.) It can be seen that
otherwise, low production costs producers can make an infinite profit by producing
large quantities; the price rise due to the goodwill effect overcoming the price decrease
due to the inverse demand equation.

Influence of production costs on equilibrium advertising We investigate first the
effect of a production cost differential on the advertising strategies of the producers.
To that effect, we consider the case of two players. Observe that, according to equa-
tion (19), the difference between the advertising strategies of the producers only comes
from Li. It follows from equation (21) that Li is increasing with αi = a− ci hence de-
creasing with ci. (Indeed, our numerical experiments show that 2nK is always smaller
than one, so that the term in βi = nαi−

∑
j 6=i αj acts in the same direction as the term

in αi.) The players with lower production costs will invest more in collective advertis-
ing, as they are set to profit more from larger sales. We provide in figure 2 a graph of
s?2/s

?
1 as a function of c2/c1 in the case f = 4, g = 1, h = 1, a = 2, b = 1, ρ = .1.

0,65 0,7 0,75 0,8 0,85 0,9 0,95 1 1,05
0

0,5

1

1,5

2

2,5

s*_2/s*_1

c_2/c_1

Figure 2: s?2/s
?
1 as a function of c2/c1 for f = 4, g = 1, h = 1, a = 2, b = 1, ρ = .1.

Influence of goodwill rate of decay We provide in figure 3 a graph of the influence of
the rate of goodwill decay on equilibrium advertising in the case of 8 identical players.
We observe a rapid decrease of the advertising effort as the decay rate f increases,
“explained” by a correlative decay of x. The true explanation is probably that, when
the decay rate f is too large, the effort of advertising is essentially lost by the decay.
A large advertising effort would be akin to pouring water in the Danaids’ proverbial
leaking bucket.
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Figure 3: s? and x as functions of f for n = 8, g = 1, h = 1, a = 2, b = 1, ρ = .1.

Asymptotic behaviour for large n An analytic consequence to be drawn from our
formulas is the infinite horizon behaviour as the number of producers gets large.

The smallest root of equation (20) behaves asymptotically as

K ∼ 1

2n2b(f + ρ
2 − h

b )
.

Also,

Li ∼
1

n2b(f + ρ− h
b )

[
h
b

2f + ρ− 2hb
αi + βi

]
,

which is also positive, and although more complicated, Mi can also be seen as going
to zero as 1/n2. Therefore, as could be expected for a Cournot-like oligopoly, the
individual profit decreases as 1/n2, and therefore the collective profit as 1/n when the
number of producers goes to infinity.

More significantly, while the total production goes to a finite value

n∑

k=0

q?k →
f

bf − hᾱ ,

the total brand advertising goes to zero as

n∑

k=1

s?k ∼
gf

nb(f − h
b )(f + ρ− h

b )
ᾱ ,

and the equilibrium goodwill

x→ h

bf − hᾱ ,

is kept nonzero by the “must have” effect only, since the advertising effort vanishes.
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4.3.3 A simplified model

We consider now the simplest possible case, and first of all that all players are identical,
and an infinite horizon. Moreover, we neglect the positive effect of the circulation of
the good on the market size, i.e. we set h = 0. Then the qi have no dynamic effect.
They can be chosen so as to maximize the running profit:

q?i = q? =
x+ α

(n+ 1)b
, Πi =

∫ ∞

0

e−ρt
[

(x+ α)2

(n+ 1)2b
− s2

i

]
dt.

Since all players are identical, all have the same Value function V (x) = Kx2 + 2Lx+
M . Hence equation (20) simplifies as

(2n− 1)g2K2 − (2f + ρ)K +
1

(n+ 1)2b
= 0 (23)

which has a solution if and only if

ρ ≥ 2g

n+ 1

√
2n− 1

b
− 2f .

Otherwise, the infinite time problem has no finite solution. The producers may obtain
an arbitrarily large payoff. When they exist, the two roots are then positive. It follows
from the analysis in [Kalman, 1960a] that we are interested in the limit as t→ −∞ of
the solution of the Riccati differential equation integrated from K(0) = 0. Hence it is
the smallest root of (23), i.e.:

K =
1

2(2n− 1)g2

(
2f + ρ−

√
(2f + ρ)2 − 4(2n− 1)g2

(n+ 1)2b

)
.

Determinig the equilibrium policies also requires that L be known (but not M ):

L =
α

(n+ 1)2b

[
f + ρ− (n− 1)g2K

]−1
.

To have the solution entirely proved, we must also check that exp(−ρt)x(t)2 decreases
exponentially as t → ∞, and that this is also true if some of the players play si = 0
instead of the equilibrium policy. Hence we must check first that

−f + ng2K <
ρ

2
,

hence that
K <

1

ng2

(
f +

ρ

2

)
.

However, we know that K is the smallest root of the polynomial (23), whose half sum
of roots is (f + ρ/2)/(2n − 1)g2 < (f + ρ/2)/ng2. Hence the above inequality is
proved. Now, if some of the players play si = 0, the coefficient of x in the ensuing
dynamics is even smaller, hence the equilibrium property is proved.
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4.3.4 Closing remarks

With this little example, our only objective has been to show

1. that REK’s standard LQ theory can easily be extended in various directions, and

2. that some microeconomic models may rather naturally lead to such problems.

The simplified problem above, in a one player version, was amenable to the pre-
kalmanian theory of [Newton Jr et al., 1957], although not easily. The game version
was already more problematic25. The case with h 6= 0 was in principle, provided that
one be able to perform a spectral factorisation for the two-input multivariable system.
But the simplest way to achieve that is via the Riccati equation resurrected by R.E.K.,
as shown by [Willems, 1971]. The finite horizon problems were completely beyond
the reach of that theory.

5 Going on
R.E.K.’s contributions of 1960-1961 were a powerful stimulus for system theory and
control research. Many researchers followed suit, both to get further theoretical ad-
vances (such as those hinted at in sections 3.3, 4.2.2 and much more), and to develop
algorithms concretely implementing those theoretical results.

Algebraic sytem theory attracted many researchers such as [Wonham, 1967] and re-
mained R.E.K.’s main research area, using sophisticated algebraic tools and ideas from
automata theory. (See, e.g. [Kalman, 1965, Kalman et al., 1969, Kalman, 1972]). The
linear quadratic theory of control and observation was deeply renewed by the theory
of H∞-optimal conrol, initiated by [Zames, 1981] in the frequency domain “exter-
nal” description, and later transfered in a Kalman-like time domain formulation (see
[Başar and Bernhard, 1995]), with a minimax, probability-free treatment of uncertain-
ties, where the same duality shows up, in a more complex setup, and a bit mysteriously.

The basic theory quickly found its way into all engineering control textbooks, and
more recently in economics textbooks such as [Weber, 2011]. The algorithms were
coded into publicly available software packages, and they have been used in a wide
range of application domains, well beyond the industrial and transportation systems of
the early times, encompassing all branches of engineering as well as natural and bio-
medical sciences. We have shortly discussed above its uses in economics, with a small
example in microeconomics exhibiting some of the easy extensions of the theory.
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A Applications in engineering
Control theory was developped as a science for engineers, the first applications were
obviously in that field, and these are still the main domain of application.

A.1 Linear and linearized control systems
Already in “pre-kalmanian” times, the LTI theory was put to use in a variety of physical
systems. Some had reasonable linear physical models, and when considered in steady
state, were time invariant. But most industrial systems such as transportation systems,
energy systems,. . . have a natural nonlinear model. The engineering practice, then, is
to define a desired or nominal output trajectory, and take as the output of the control
system the error signal, i.e. the difference between the actual and the desired outputs.
The objective of the control system is then to keep this error signal close to zero via
a dynamic compensator : a dynamic system whose input is the measured error signal,
and the output the control input of the to-be-controlled system. (Hence a feedback
system, as understood by Wiener.)

In order to achieve this goal, one builds a linear model as the linearization of the
nonlinear model for small deviations around the nominal trajectory. This can be done
either from an analytic nonlinear model linearized by a first order expansion, or from
experiments using further parts of the theory (such as the consieration of cross correla-
tions between input and output pseudo-random small deviations).

This being done, the aim of the control system is too keep the error variables,
approximated as the variables in the control model, close to zero in spite of disturbances
in the dynamics, measurement errors, lack of direct measurement of some important
variables, not to mention modelization errors and biasses.26

A.2 Observer-controller: algebraic approach
Keeping a steady state variable close to zero is achieved by forcing the system to be
sufficiently stable. In that process, consideration of the poles of the transfer function,
therefore the eigenvalues of the internal description of the overall system, is of the
essence, since, for continuous-time systems, their real parts, which must be negative
to insure stability, give a measure of the degree of stability while their imaginary parts

26These do not have the statistical characteristics of “noises”, and were at the inception of “robust control”
theories, and most noticeably for our purpose,H∞-optimal control by [Zames, 1981].
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yield a measure of the oscillatory character of the response of the system. (In discrete
time, their modulus must be less than one to insure stability.)

As mentioned in subsection 2.1.1, engineers had developed more sophisticated
tools than just the inspection of the poles of the transfer function. But these remain
of paramount importance. Hence the use of the separation of dynamics and pole shift-
ing theorems, choosing separately the poles of the observer and those of the controller.
A rule of thumb being that the observer must be an order of magnitude faster than the
controller. Trial and errors with the localization of the poles using simulation models
(both linearized and nonlinear if available) would allow one to construct an efficient
control device.

A.3 Quadratic synthesis
However, with the advancement of modelization science, largely driven by the advent
of the computational power of digital computers, the dimension of the models used
increased to a point where simple methods based on poles location were not practical.27

Moreover, some problems such as automatically landing an airplane, controlling
an industrial baking cycle by heating and cooling an oven, etc. are intrinsically finite
horizon, non LTI problems, with sometimes a great emphasis on terminal error control.
These problems are beyond the reach of algebraic methods.

Engineers may have a fairly precise idea of the origin and sizes of the disturbances
in the dynamics and error sources in the measurements, let alone modelization biasses.
This provides a sound basis for computing an observer gain via the KF.

Concerning the controller, one computes a control gain via a quadratic performance
index and the Kalman optimal gain. The process of trial and errors in tuning it is
performed on the weighting matrices of the performance index, and is made easy and
efficient through the interpretation of the gain as minimizing this performance index,
so that one knows how the different state and control variables will respond to a change
in the weighting matrices. This process, known as quadratic synthesis, is what made
the new theory so popular among engineers, to the point of being the main tool used in
designing the Apollo control systems.

27The rigid body dynamics of a landing airplane are decsribed by a 12th order system. Adding egines and
control surfaces dynamics, and in modern airliners flexible modes, leads way beyond that figure.
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