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bUniversité de Saint-Etienne, CNRS UMR 5824 GATE Lyon Saint-Etienne, France

Abstract

We introduce the class of tree TU-games augmented by a total order over the links which reflects the
formation process of the tree. We first characterize a new allocation rule for this class of cooperative
games by means of three axioms: Standardness, Top-consistency and Link Amalgamation. Then,
we provide a bargaining foundation for this allocation rule by designing a mechanism, including a
bidding stage followed by a bargaining stage, which supports this allocation rule in subgame Nash
equilibrium provided that the underlying game is superadditive.
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1. Introduction

An abundant and growing literature examines the influence of economical, hierarchical or com-
municational structures on the payoff allocation in cooperative game theory. In a seminal contri-
bution, Myerson (1977) enriches the classical model of a cooperative game with transferable utility
by an undirected graph which is interpreted as the bilateral communication possibilities among the
players. The so-called Myerson value assigns to each player her Shapley value in a game in which
only the worth of the coalitions connected through the graph are taken into account, emphasizing
the influence of the links in the graph. Ever since, other allocation rules have been successfully
introduced and studied, including the Position value (Meessen, 1988, Borm, Owen and Tijs, 1992)
and the Average tree solution (Herings, van der Laan and Talman, 2008).

In each of these works, the decision maker who must determine the payoff allocation has no
information about the history of the graph associated with the players. In other words, it is not
known whether a link of the graph is recent or was formed much earlier, even if the date of creation
of a link can be important in the way the players are paid. For instance, the two players who
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initiated the formation of the graph by setting the very first link might be rewarded for that.
There are several real situations in which such information is (publicly) available. If the players
are cities and the links in the graph represent motorway connections, then it is easy to know the
construction dates. If the players are countries and the links in the graph represent bilateral trade
agreements, then the dates on which these agreements were signed is also known. If the players
are Facebook members and a link exists in the graph if two members are friends on the social
network, then Facebook lists friend request dates. In all examples, the oldest links probably reflect
stronger affinities between the corresponding players. Finally, the links created fifty years ago by
the founding members of the European Union are probably very important to determine today’s
distribution of power among the current members.

In this article, we further enrich Myerson’s model by adding information about the formation of
the graph. More specifically, we model that by a total order over the link set in which the greatest
element is the most recent link added to construct the graph. The four-tuple given by a player set,
a characteristic function, a graph and a total order over the link set is called an ordered tree TU-
game. We restrict ourselves to the case where the graph is a tree, i.e. it is minimally connected in
the sense that it is connected and contains no cycle. There is no equivalent model in the literature,
to the best of our knowledge. The works by Demange (2004) and Khmelnitskaya (2010) may be
seen as exceptions if the hierarchical structure (a rooted tree in both cases) associated with the
cooperative game is interpreted as the sequence by which the graph has formed. The total order
over the link set that we consider allows for much more flexibility in modeling the graph formation.

Our contribution is twofold.
In a first step, we introduce three axioms for an allocation rule on the class of ordered tree TU-

games: Standardness, Top-consistency and Link amalgamation. Standardness is a classical axiom
introduced in Hart and Mas-Colell (1989), which requires that in the two-player case, each one
receives her stand-one worth plus an equal share of the surplus resulting from cooperation. Many
allocation rules satisfy this axiom. Top-consistency implements a variant of the popular consistency
principle (see Thomson, 2013). It is an invariance axiom with respect to a restricted ordered-tree
TU-game defined over the set of players contained in one of the two components existing before
the addition of the top link (the link eventually added). The worth of this component is computed
by assuming that the players outside the component leave the game with their payoffs. The worth
of each sub-coalition of the component is not affected. The tree and the order in this restricted
situation are defined as the restriction of the original tree and order. Top-consistency demands
that the payoffs of the remaining players are invariant to this restriction. Link Amalgamation is
also an invariance axiom that follows the tradition of the axioms of amalgamation initiated by
Lehrer (1988). Consider an operation of link contraction which removes a link from the tree while
simultaneously amalgamating its two incident players. As an example, imagine that two adjacent
municipalities merge as is frequently the case on French territory. The coalition function is altered
accordingly: the worth a coalition not containing the amalgamated player is not affected; otherwise
it is equal to the worth of the corresponding coalition containing the two amalgamated agents. Link
amalgamation imposes that the payoffs of the players incident to a link built after the contracted
link are not affected by these operations of amalgamation and contraction.

It turns out that the combination of these three axioms yields a unique efficient allocation rule,
for which we provide a natural expression constructed recursively by following the order over the
links. This allocation rule relies on the following intuitive principle. Imagine that the links of the
graph are severed one by one according to the total order. After the cut of a link, each of the
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two newly created components receives its worth plus half of the surplus generated by their former
union. This payoff is only temporary if the current graph still contains links, and becomes the
final payoff of the component when the graph is empty after successive applications of the above
standard principle. Since an empty graph contains as many (singleton) components as the number
of players, we obtain a final payoff for each player.

In a second step, we provide a bargaining foundation of the allocation rule characterized in the
part of the article by designing a bidding mechanism. First, the order of the links is taken into
account in the construction of the bidding mechanism. The latter starts with the top link. Both
players incident to this links play in a bidding stage and, in a second stage, bargain over the surplus
of cooperation. At this end of the bargaining stage, both players obtain an intermediary payoff.
Then, the mechanism continues its route on both components that the top link connects, and so
on until there is no link to consider. We show that this bidding mechanism supports the above-
mentioned allocation rule in subgame perfect equilibrium (SPE) when the underlying TU-game is
superadditive.

This result is in line with the Nash program, which intends to bridge the gap between coop-
erative and noncooperative game theory. This research agenda has been recently influenced much
by the work of Pérez-Castrillo and Wettstein (2001), where the Shapley value (Shapley, 1953)
for TU-games is “implemented” through a mechanism consisting of a bidding stage followed by a
proposal stage. Follow-up this seminal article, Ju and Wettstein (2009) and Béal et al. (2017c)
provide a class of bidding mechanisms for implementing and comparing several allocation rules
for TU-games. Each of these bidding mechanisms is modeled through a non-cooperative extensive
form game. The outcome of each SPE of this game coincides with the allocation of a payoff among a
set of players that a solution concept for TU-games recommends. Our bidding mechanism belongs
to this category.

The rest of the article is organized as follows. Section 2 gives the basic definitions. In section
3, we introduce the axioms and proceed to the axiomatic study. Section 4 presents the bidding
mechanism and shows that it supports our allocation rule in SPE. Section 5 concludes.

2. Preliminaries

2.1. TU-games

Throughout this article, the cardinality of a finite set S will be denoted by the lower case s,
the collection of all subsets of S will be denoted by 2S , and, for notational convenience, we will
write singleton {i} as i.

Let N be the universe of potential players and let N ⊆ N be a finite set of n players. Each
subset S of N is called a coalition while N is called the grand coalition. A cooperative game with
transferable utility or simply a TU-game on the player set N is a coalition function v : 2N −→ R
such that v(∅) = 0. For each coalition S ⊆ N , v(S) describes the worth of the coalition S when its
members cooperate.

A TU-game is superadditive if, for each pair of coalitions {S, T} ⊆ 2N such that S ∩ T = ∅, it
holds that v(S ∪ T ) ≥ v(S) + v(T ).

2.2. Ordered Tree TU-games

A (simple) graph is a pair (N,L), where N ⊆ N = {1, 2 . . .} is a finite set of n nodes, representing
a set of players, and L is a set of links. Each link is formed by a set of two distinct nodes associated
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with it, which are called its endpoints. A link with i ∈ N and j ∈ N \ i as endpoints is denoted by
ij. For each i ∈ N , the set N(i) defined as {j ∈ N \ i : ij ∈ L} is the set of neighbors of i in (N,L).
A (simple) path from i ∈ N to j ∈ N \ i in (N,L) is a sequence of distinct players (i1, . . . , ir)
such that r ≥ 2, i1 = i, ikik+1 ∈ L for k = 1, . . . , r − 1, and ir = j. A tree is a graph (N,L) where
either N contains only one element or such that for any two distinct players i, j ∈ N , there exists
a unique path (i1, i2, . . . , ir) from i1 = i to ir = j. In a tree, the cardinality ` of the set of links L
is equal to n− 1.

A TU-game on a tree with ordered links or simply an ordered tree TU-game is a quadruple
(N, v, L,�) such that (N, v) is a TU-game, (N,L) is a tree and (L,�) is a total order. The
interpretation is that links enter one-by-one to form L according to �, where the greatest or top
(lowest or bottom, respectively) element of (L,�) represents the last (first, respectively) link added.
The strict part of � is denoted by ≺. Note that (L,�) is significant only when the tree (N,L)
contains at least two links, i.e. n ≥ 3. Denote by G the class of all ordered tree TU-games of the
form (N, v, L,�).

Sometimes, we will use the following decomposition of G: for each n ∈ N, let Gn be the subclass
of G formed by the ordered tree TU-games (N, v, L,�) ∈ G containing exactly n players. We have:

G =
⋃

n∈N
Gn.

2.3. Allocation rules

In an ordered tree TU-game (N, v, L,�) ∈ G, each player i ∈ N may receive a payoff xi ∈ R.
A payoff vector x = (xi)i∈N ∈ Rn lists a payoff xi ∈ R for each i ∈ N . For any nonempty
coalition S ∈ 2N , the notation xS stands for

∑
i∈S xi. An allocation rule Φ on G is a mapping

Φ : G −→ ∪n∈NRn which uniquely determines, for each n ∈ N and each (N, v, L,�) ∈ Gn, a payoff
vector Φ(N, v, L,�) ∈ Rn.

3. Standardness, Link amalgamation and Top-consistency

In this section, we introduce four axioms for a solution Φ on G and then proceed to an axiomatic
study. The first two axioms are standard in the literature.

Efficiency An allocation rule Φ on G is efficient if, for each (N, v, L,�) ∈ G, it holds that:

ΦN (N, v, L,�) = v(N).

Standardness An allocation rule Φ on G is standard if, for each (N, v, L,�) ∈ G containing two
players, say N = {i, j}, it holds that:

Φi(N, v, L,�) = v(i) +
v(N)− v(i)− v(j)

2
and Φj(N, v, L,�) = v(j) +

v(N)− v(i)− v(j)

2
.

Note that Standardness implies Efficiency for the subclass of ordered tree TU-games containing
two players.

The third axiom belongs to the family of axioms that incorporate an amalgamation principle.
Such an axiom says something about the changes in payoffs when two players are amalgamated
to act as if they were a single player. Precisely, our axiom indicates that if two neighbors are
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amalgamated and the link joining them contracted, then the payoff of each player incident to a
link entering after the contracted link is unchanged. Formally, pick any (N, v, L,�) ∈ G containing
at least three players, and any link ij ∈ L. Define the ordered tree TU-game (N ij , vij , Lij ,�ij) ∈ G
resulting from the amalgamation of the two neighbors i and j and the contraction of the link ij as
follows:

1. The player set is N ij = (N \ {i, j})∪{ij}. Because i and j collude and act as a single entity,
they are amalgamated into a new single entity ij;

2. The coalition function vij : 2N
ij −→ R takes into account the fact that ij results from the

amalgamation of two neighbors who act as a single entity:

vij(S) =





v((S ∪ {i, j}) \ ij) if ij ∈ S,

v(S) if ij 6∈ S.

3. The set of links is modified accordingly. Because ij is a new single entity, the link ij is
contracted:

Lij =
(
L \

{
pq ∈ L : {p, q} ∩ {i, j} 6= ∅

})
∪
{
ijq : iq ∈ L or jq ∈ L, q ∈ N \ {i, j}

}
.

4. Because (N,L) is a tree, for each p ∈ N \{i, j}, ij ∈ L and ip ∈ L, we have jp 6∈ L. It follows
that there is a bijective function o : L \ ij −→ Lij defined as follows:

o(pq) =





pq if {i, j} ∩ {p, q} = ∅,

ijq if p = i and q ∈ N(i),

ijq if p = j and q ∈ N(j).

The total order (Lij ,�ij), induced by (L,�), ij ∈ L and the function o, is as follows:

∀pq, uz ∈ L \ ij, o(pq) �ij o(uz) :⇐⇒ pq � uz,

which means that the order in which links have been created is preserved.

Link amalgamation An allocation rule Φ on G satisfies the axiom of Link amalgamation if, for
each (N, v, L,�) ∈ G, each pair of neighbors {i, j} ⊆ N and each p ∈ N \ {i, j} where there is
ikik+1 ∈ L such that ij ≺ ikik+1 on the unique path (i1, i2, . . . , ir) from i1 = p to ir = i in (N,L),
it holds that:

Φp(N
ij , vij , Lij ,�ij) = Φp(N, v, L,�).

Note that the axiom of Link amalgamation applies in ordered tree TU-games containing at
least three players.

The last axiom incorporates a consistency principle. Informally, a consistency principle states
the following. Fix an allocation rule for a class of cooperative games, consider an element of this
class of cooperative games as well as the payoff vector chosen by the allocation rule for this game.
Assume that a coalition of agents are paid according this vector and leave the game. Then, the
remaining players examine the possibility to renegotiate the payoff allocation between them. Such a
situation may be described by a reduced game on the remaining players in which the worth of each
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coalition needs to be re-evaluated. The solution is consistent if, for this reduced game, the payoffs
distributed by the allocation rule coincide with the payoffs allocated in the original game. As
underlined by Aumann (2008) and Thomson (2013), the consistency principle has been examined
in the context of a great variety of concrete problems of resource allocation. In one form or another,
it is common to almost all solutions and often plays a key role in axiomatic characterizations of
the solutions. In the context of ordered tree TU-games, we design a consistency axiom which takes
into account the order in which links are added.

Pick any (N, v, L,�) ∈ G and the top link of (N,�), say the link ij ∈ L. Define CN
i as the

set of players, including i, such that the unique path connecting them to i does not contain j ;
define CN

j in a similar way. Note that {CN
i , CN

j } forms a partition of N . Fix a payoff vector
x = (xi)i∈N ∈ Rn. Assume that the payoffs have been distributed according to the payoff vector
x and that the members of CN

j leave the game with their component of the vector x. Let us

re-evaluate the situation of the members of CN
i at this point. To do this, we define the reduced

game (Ni,x, vi,x, Li,x,�i,x) ∈ G they face as follows:

1. The player set Ni,x = CN
i ;

2. The coalition function vi,x : 2Ni,x −→ R takes into account that the players in CN
j are already

paid according to x:

vi,x(S) =

{
v(N)− xCN

j
if S = Ni,x,

v(S) if S ⊂ Ni,x.

The TU-game (Ni,x, vi,x) is sometimes called the projected reduced game (see, for instance,
Funaki and Yamato, 2001).

3. The tree (Ni,x, Li,x) is the subtree induced by N i,x on (N,L), i.e.

Li,x =
{
pq ∈ L : p, q ∈ CN

i

}
.

4. The total order (Li,x,�i,x) is the restriction of (L,�) to Li,x.

Therefore, vi,x(Ni,x) is the total worth left for the remaining players Ni,x = Ci,x who interact
according to (Ni,x, vi,x, Li,x,�i,x); this worth is the only parameter which depends on values xp,
p ∈ CN

j . Fix an allocation rule Φ on G. For the sake of notation, we will denote the reduced game
(Ni,Φ(N,v,L,�), vi,Φ(N,v,L,�), Li,Φ(N,v,L,�),�i,Φ(N,v,L,�)) by (Ni,Φ, vi,Φ, Li,Φ,�i,Φ).

Top consistency An allocation rule Φ on G is Top consistent if, for any (N, v, L �) ∈ G, where
ij ∈ L denotes the top link of (N,�), it holds that:

∀p ∈ Ni,Φ, Φp(Ni,Φ, vi,Φ, Li,Φ,�i,Φ) = Φp(N, v, L,�).

The first result of this section establishes that the combination of Standardness and Top-
consistency implies Efficiency.

Proposition 1 Let Φ be an allocation rule on G which satisfies Standardness and Top consistency.
Then, Φ satisfies Efficiency.

Proof. Consider any (N, v, L,�) ∈ G. We distinguish two cases according to the number of
elements in N .
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Case 1 Assume that N contains only one elements, say N = {i}, which implies that L = ∅, and so
(L,�) is void. From ({i}, v, ∅, ∅), construct the ordered tree TU-games ({i, j}, w, {ij},�), where
w(i) = v(i), w(j) = 0 and w({i, j}) = v(i). Because there is only one link ij, we have ij � ij.
Applying Standardness, we have:

Φi({i, j}, w, {ij},�) = v(i) and Φj({i, j}, w, {ij},�) = 0 (1)

By Top consistency, we have:

Φi({i, j}i,Φ, wi,Φ, {ij}i,Φ,�i,Φ) = Φi({i, j}, w, {ij},�), (2)

where {i, j}i,Φ = {i},

wi,Φ({i}) = w({i, j})− Φj({i, j}, w, {ij},�) = v(i)− 0 = v(i),

and �i,Φ is void. Therefore, ({i, j}i,Φ, wi,Φ, {ij}i,Φ,�i,Φ) = ({i}, v, ∅, ∅) and so:

Φi({i, j}i,Φ, wi,Φ, {ij}i,Φ,�i,Φ) = Φi({i}, v, ∅, ∅) (3)

By (1), (2) and (3), we conclude that:

Φi({i}, v, ∅, ∅) = v(i),

as desired.
Case 2 Assume that N contains at least two players. We proceed by induction on the number
n ≥ 2 of players.
Initial step Consider any (N, v, L,�) ∈ G2. The result follows by Standardness.
Induction hypothesis Assume that Φ is Efficient for each (N, v, L,�) ∈ Gn, 2 ≤ n ≤ r, r ≥ 2.
Induction step Consider any (N, v, L,�) ∈ Gr+1. Let ij ∈ L be the top link of (L,�). By Top
consistency, we have:

∀p ∈ CN
i , Φp(N, v, L,�) = Φp(Ni,Φ, vi,Φ, Li,Φ,�i,Φ) (4)

Because cNi ≤ r we can apply the induction hypothesis to obtain:

ΦCN
i

(Ni,Φ, vi,Φ, Li,Φ,�i,Φ) = vi,Φ(CN
i )

= v(N)− ΦCN
j

(N, v, L,�),

where the second equality follows from the definition of (Ni,Φ, vi,Φ). Combining the above equality
with equation (4), we obtain:

ΦCN
i

(Ni,Φ, vi,Φ, Li,Φ,�i,Φ) = ΦCN
i

(N, v, L,�)

= v(N)− ΦCN
j

(N, v, L,�).

Because {CN
i , CN

j } forms a partition of N , we conclude that ΦN (N, v, L,�) = v(N), as desired.
This completes the proof of Proposition 1. �

The following proposition establishes that there is at most allocation rule on G which satisfies
Standardness, Link amalgamation, and Top consistency.
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Proposition 2 There exists at most one allocation rule Φ on G which satisfies Standardness, Link
amalgamation, and Top consistency.

Proof. Consider any allocation rule Φ on G which satisfies Standardness, Link amalgamation and
Top consistency. To show: Φ is uniquely determined on G. The proof is done by induction on the
number of players in (N, v, L,�) ∈ G.
Initial step If (N, v, L,�) ∈ G1, the result holds by Proposition 1. If (N, v, L,�) ∈ G2, the result
holds by Standardness.
Induction hypothesis Assume that Φ is uniquely determined for each subclass Gn, 1 ≤ n ≤ r,
where r ≥ 2.
Induction step Consider any (N, v, L �) ∈ Gr+1. Let ij ∈ L be the bottom link of (L,�). Pick
any p ∈ N \{i, j}, which is possible since r ≥ 3. Assume that the neighbors i and j collude and act
as a single entity ij. The player set N ij contains exactly r players. By the induction hypothesis,
Φp(N

ij , vij , Lij ,�ij) is uniquely determined. Because ij is the first link to be created, we conclude
by Link amalgamation that:

∀p ∈ N \ {i, j}, Φp(N, v, L,�) = Φp(N
ij , vij , Lij ,�ij),

which proves that, for each p ∈ N \ {i, j}, Φp(N, v, L,�) is uniquely determined. It remains to
show that Φi(N, v, L,�) and Φj(N, v, L,�) are uniquely determined. To this end, consider the top
link uz of (N,�). Because r ≥ 3, it is the case that uz 6= ij. It follows that either {i, j} ⊆ CN

u or
{i, j} ⊆ CN

z . Assume, without loss of generality, that {i, j} ⊆ CN
u . From above, we know that, for

each p ∈ CN
z ⊆ N \ {i, j}, Φp(N, v, L,�) is uniquely determined. Therefore, the worth vu,Φ(Nu,Φ)

of the coalition Nu,Φ,
vu,Φ(Nu,Φ) = v(N)− ΦCN

z
(N, v, L,�),

is well-defined, so is the reduced game (Nu,Φ, vu,Φ, Lu,Φ,�u,Φ). The player set Nu,Φ = CN
u contains

at most r players. Thus, we can apply the induction hypothesis to conclude that:

∀p ∈ Cp
u, Φp(Nu,Φ, vu,Φ, Lu,Φ,�u,Φ)

is uniquely determined. In particular, Φi(Nu,Φ, vu,Φ, Lu,Φ,�u,Φ) and Φj(Nu,Φ, vu,Φ, Lu,Φ,�u,Φ) are
uniquely determined. From Top consistency, it holds that:

Φi(N, v, L,�) = Φi(Nu,Φ, vu,Φ, Lu,Φ,�u,Φ) and Φj(N, v, L,�) = Φj(Nu,Φ, vu,Φ, Lu,Φ,�u,Φ),

which ensures that Φi(N, v, L,�) and Φj(N, v, L,�) are uniquely determined. This completes the
induction step.

Conclude that Φ is uniquely determined on G. �

Notice that in the proof of Proposition 2, we only amalgamate the two endpoints of the bottom
link. Therefore, we can weaken the axiom of Link amalgamation by considering only the bottom
link. This results in the following axiom.

Bottom link amalgamation An allocation rule Φ on G satisfies the axiom of Bottom link
amalgamation if, for each (N, v, L,�) ∈ G and p ∈ N \{i, j} where ij ∈ L denotes the bottom link
of (L,�), it holds that:

∀p ∈ N \ {i, j}, Φp(N
ij , vij , Lij ,�ij) = Φp(N, v, L,�).
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Proposition 3 There exists at most one allocation rule Φ on G which satisfies Standardness,
Bottom link amalgamation, and Top consistency.

Remark Bottom link amalgamation and Link amalgamation are in line with other axioms of
amalgamation, collusion or merging initiated by Lehrer (1988) for TU-games. There is however
a difference. Our axioms do not compare the payoff of the amalgamated agent with the sum of
the payoffs of its constituents in the original situation. For instance, many characterizations of
the Banzhaf value (1965) for TU-games, the Banzhaf graph value for graph TU-games (Alonso-
Meijide, Fiestras-Janeiro 2006) and the Banzhaf-Owen graph value for graph TU-games with a
priori unions (Alonso-Meijide et al. 2009) use a principle of neutrality meaning that the sum of
the payoffs of two players/neighbors does not change if these two players/neighbors merge into
a single player. In this sense, two players/neighbors never benefit from acting as one entity. In
contrast, Link amalgamation and Bottom link amalgamation indicate that if two neighbors are
amalgamated into one player, then the payoffs of certain other agents are invariant. This principle
of invariance is inspired from the axiom of Amalgamation in Béal et al (2015) for rooted tree TU-
games and the axiom of Invariance with respect to cone amalgamation in Béal et al. (2017a) for
tree TU-games. The main difference between Link amalgamation and these axioms is that in Link
amalgamation all pairs of neighbors, except those involved in the top link, are allowed to collude,
whereas in Amalgamation and Invariance with respect to cone amalgamation only particular sets of
players can collude (the set of subordinates of a player and the so-called cone a tree, respectively).
Nevertheless, combining Bottom link amalgamation with Efficiency allows to restore the above-
mentioned principle of neutrality. Precisely, assume that an allocation rule Φ on G satisfies Bottom
link amalgamation and Efficiency. Then, we have:

Φi(N, v, L �) + Φj(N, v, L �) = Φij(N
ij , vij , Lij �ij).

To see this, consider the bottom link ij ∈ L and the associated game (N ij , vij , Lij �ij). On the
one hand, by Bottom link amalgamation, we have:

∀p ∈ N \ {i, j}, Φp(N
ij , vij , Lij ,�ij) = Φp(N, v, L,�).

On the other hand, by Efficiency, we have:

∑

p∈N\{i,j}
Φp(N

ij , vij , Lij ,�ij) + Φij(N
ij , vij , Lij �ij) = vij(N ij)

and ∑

p∈N\{i,j}
Φp(N, v, L �) + Φi(N, v, L �) + Φj(N, v, L �) = v(N).

Because vij(N ij) = v(N), we get:

Φi(N, v, L �) + Φj(N, v, L �) = Φij(N
ij , vij , Lij �ij).

It is also worth mentioning the work by van den Brink (2012) who considers the possibility that
two neighbors collude in a tree TU-game. The main difference with our operation of amalgamation
is that that the operation of collusion envisaged by van den Brink leaves the player set and the
link set unchanged. �
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Having proved that Standardness, (Bottom) Link amalgamation, and Top consistency deter-
mine at most one allocation rule on G, we are now going to prove that such an allocation rule
exists and provide a closed form expression for it. To this end, we need a definition. From any
(N, v, L,�) ∈ G containing at least two agents, we create an associated ordered tree TU-games
(Ni, vi, Li,�i) ∈ G, where i ∈ N is one of the two endpoints of the top link of (N,�), as follows:

1. The player set Ni = CN
i ;

2. The coalition function vi : 2Ni −→ R is such that:

vi(S) =





v(CN
i ) +

v(N)− v(CN
i )− v(CN

j )
2 if S = Ni,

v(S) if S ⊂ Ni;

3. The tree (Ni, Li) is the subtree induced by N i on (N,L), i.e.

Li =
{
pq ∈ L : p, q ∈ CN

i

}
;

4. The total order (Li,�i) is the restriction of (L,�) to Li.

On the class of ordered tree TU-games G, define recursively the allocation rule Φe as follows:

(a) For any (N, v, L,�) ∈ G such that N = {i}, i ∈ N, Φe
i (N, v, L,�) = v(N);

(b) For any (N, v, L,�) ∈ G such that n ≥ 2,

∀p ∈ CN
i , Φe

p(N, v, L,�) = Φe
p(Ni, vi, Li,�i),

where i ∈ N is one of the two endpoints of the top link of (N,�).

The following example illustrates the computation of Φe.

Example 1 Let the ordered tree TU-game (N, v, L,�) be given by N = {1, 2, 3, 4, 5}, for each
i ∈ N , v(i) = i, for each other nonempty coalition S ∈ 2N , v(S) = s2, L = {12, 23, 34, 25} and
12 � 25 � 34 � 23. Figure 1 describes the formation process of the tree from left to right. Thus,

2 1

54

3 2

5

1

4

3 2

5

13

4

3 2 1

54

Figure 1: Formation process of (N,L) according to �.

the top link is 23 and so CN
2 = {1, 2, 5}, CN

3 = {3, 4}. By point (b) of the definition of Φe we have:

∀i ∈ {1, 2, 5} Φe
i (N, v, L,�) = Φe

i (N2, v2, L2,�2),
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and
∀i ∈ {3, 4}, Φe

i (N, v, L,�) = Φe
i (N3, v3, L3,�3).

First, let us compute (N2, v2, L2,�2). We have N2 = CN
2 , v2(S) = v(S) for each nonempty coalition

S of size one or two, and

v2(N2) = 9 +
25− 9− 4

2
= 15.

In (N2, v2, L2,�2), the top link is 25 so that CN2
2 = {1, 2}, CN2

5 = {5}. By point (b) of the
definition of Φe we have,

∀i ∈ {1, 2}, Φe
i (N2, v2, L2,�2) = Φe

i ((N2)2, (v2)2, (L2)2, (�2)2)

and
Φe

5(N2, v2, L2,�2) = Φe
5((N2)5, (v2)5, (L2)5, (�2)5).

Note that ((N2)5, (v2)5, (L2)5, (�2)5) contains only one player, i.e. player 5, so that by point (a) of
the definition of Φe, we obtain:

Φe
5((N2)5, (v2)5, (L2)5, (�2)5) = (v2)5(5)

= v2(5) +
v2(N2)− v((N2)2)− v((N2)5)

2

= 5 +
15− 4− 5

2
= 8.

Therefore, we obtain:

Φe
5(N, v, L,�) = Φe

5(N2, v2, L2,�2) = Φe
5((N2)5, (v2)5, (L2)5, (�2)5) = 8.

Regarding the ordered tree TU-game ((N2)2, (v2)2, (L2)2, (�2)2), we have (N2)2 = CN2
2 = {1, 2},

(v2)2(S) = v(S) for each nonempty coalition S of size one, and

(v2)2((N2)2) = 4 +
15− 4− 5

2
= 7.

We also have (L2)2 = {12} and so 12(�2)212. By point (b) of definition of Φe,

∀i ∈ {1, 2}, Φe
i ((N2)2, (v2)2, (L2)2, (�2)2) = Φe

i (((N2)2)i, ((v2)2)i, ((L2)2)i, ((�2)2)i).

For each i ∈ {1, 2}, (((N2)2)i, ((v2)2)i, ((L2)2)i, ((�2)2)i) contains only player i. By applying point
(a) of the definition of Φe, we have:

∀i ∈ {1, 2}, Φe
i ((N2)2, (v2)2, (L2)2, (�2)2) = ((v2)2)i(i)

= i +
7− 1− 2

2
= i + 2.

We are able to conclude that:

Φe
1(N, v, L,�) = 3 and Φe

2(N, v, L,�) = 4.
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Proceeding in a similar way from the ordered tee TU-game (N3, v3, L3,�3), we obtain the following
payoffs:

Φe
3(N, v, L,�) =

9

2
and Φe

4(N, v, L,�) =
11

2
.

To sum up:

Φe(N, v, L �) =

(
3, 4,

9

2
,
11

2
, 8

)
.

�

Proposition 4 The allocation rule Φe satisfies Standardness, Link amalgamation and Consistency
on G.

Proof. Consider the allocation rule Φe on G.
Standardness Pick any (N, v, L �) ∈ G containing two players, say N = {i, j}. We have:
CN
i = {i}, CN

j = {j}, and

vi(S) =





v(i) +
v(N)− v(i)− v(j)

2 if S = {i},

0 if S = ∅.

On the one hand, because (Ni, vi, Li �i) ∈ G contains only one player, by point (a) of the definition
of Φe, we obtain:

Φe
i (Ni, vi, Li �i) = v(i) +

v(N)− v(i)− v(j)

2
.

On the other hand, by point (b) of the definition of Φe, we get:

Φe
i (N, v, L,�) = Φe

i (Ni, vi, Li,�i),

and so

Φe
i (N, v, L,�) = v(i) +

v(N)− v(i)− v(j)

2
,

as desired. Proceeding in the same way for player j, we conclude that Φe satisfies Standardness.
Link amalgamation In case the player set contains one or two elements, there is nothing to prove.
For the other cases, we prove that Φe satisfies Link amalgamation by induction on the number of
players in an ordered tree TU-game.
Initial step Consider any (N, v, L �) ∈ G containing three players, say N = {1, 2, 3}, and assume,
without loss of generality, that L = {12, 23} where 12 � 23. By definition, the axiom of Link
amalgamation does not apply when the two neighbors involve in the top link collude. So, assume
that neighbors 1 and 2 collude to form a single entity 12 so that N12 = {12, 3}, L12 = {123},
123 �12 123 and v12(123) = v(N), v12(3) = v(3) and v12(12) = v({1, 2}). Because the link 12 lies
on the unique path going from 3 to 1, Link amalgamation holds if and only if:

Φe
3(N, v, L �) = Φe

3(N12, v12, L12,�12).

On the other hand, since N3 = {3}, by point (b) of the definition of Φe, we have:

Φe
3(N, v, L �) = Φe

3(N3, v3, L3,�3),

12



and

v3(S) =





v(3) +
v(N)− v(3)− v({1, 2})

2 if S = {3},

0 if S = ∅.
Because (N3, v3, L3,�3) ∈ G contains only one player, by point (a) of the definition of Φe, we have:

Φe
3(N3, v3, L3,�3) = v(3) +

v(N)− v(3)− v({1, 2})
2

.

On the other hand, by Standardness of Φe (see the previous point), we have:

Φe
3(N12, v12, L12,�12) = v12(3) +

v12(N12)− v12(3)− v12(12)

2

= v(3) +
v(N)− v(3)− v({1, 2})

2
= Φe

3(N3, v3, L3,�3).

Therefore, we get:

Φe
3(N, v, L �) = Φe

3(N3, v3, L3,�3) = Φe
3(N12, v12, L12,�12),

as desired.
Induction hypothesis Assume that Φe satisfies Link amalgamation for each subclass Gn, 3 ≤ n ≤ r,
where r ≥ 3.
Induction step Consider any (N, v, L �) ∈ Gr+1 and denote by uz ∈ L the top link of (N,�). Pick
any link ij ∈ L \ {uz}, and assume that neighbors i and j decide to collude to form a single entity
ij. Pick any p ∈ N ij such that there is ikik+1 ∈ L where ij ≺ ikik+1 and ikik+1 lies on the unique
path from p to i in (N,L). To show: Φe

p(N, v, L �) = Φe
p(N

ij , vij , Lij ,�ij). Assume, without loss

of generality, that p ∈ CN
u . By definition of Φe, we have:

Φe
p(N, v, L �) = Φp(Nu, vu, Lu �u) and Φe

p(N
ij , vij , Lij �ij) = Φe

p((N
ij)u, (v

ij)u, (L
ij)u, (�ij)u)

(5)
We distinguish two exclusive cases.
Case 1 The top link uz ∈ L does not lies on the unique path from p to i. In such a case, all the
players lying on this path belong to CN

u . In particular, p, i, j ∈ CN
u . The ordered tree TU-game

(Nu, vu, Lu �u) contains at least three players and at most r ≥ 4 players. Because all the players
on the unique path from p to i in (N,L) still belong to CN

u , it remains true that there is ikik+1 ∈ Lu

where ij ≺u ikik+1 and ikik+1 lies on the unique path from p to i in the subtree (Nu, Lu). Thus,
we can apply the induction hypothesis to obtain:

Φe
p(Nu, vu, Lu �u) = Φe

p((Nu)ij , (vu)ij , (Lu)ij , (�u)ij) (6)

It is not difficult to verify that ((Nu)ij , (vu)ij , (Lu)ij , (�u)ij) = ((N ij)u, (v
ij)u, (L

ij)u, (�ij)u) so
that equality (6) becomes:

Φe
p(Nu, vu, Lu �u) = Φe

p((N
ij)u, (v

ij)u, (L
ij)u, (�ij)u). (7)

Combining (5) with (7), we obtain the desired equality:

Φe
p(N, v, L �) = Φe

p(N
ij , vij , Lij �ij).
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Case 2 The top link uz ∈ L lies on the unique path from p to i. By assumption p ∈ CN
u , and so

i ∈ CN
z . In such a case, it is obvious that ((N ij)u, (v

ij)u, (L
ij)u, (�ij)u) = (Nu, vu, Lu �u), so that,

by (5), we directly obtain the desired equality.
This completes the induction step. So, conclude that Φe satisfies Link amalgamation.

Top consistency To show: for each (N, v, L,�) ∈ G where ij ∈ L denotes the top link of (N,�),
it holds that

∀p ∈ Ni,Φ, Φe
p(Ni,Φe , vi,Φe , Li,Φe ,�i,Φe) = Φe

p(N, v, L,�).

To show these equalities, it is useful to prove first that Φe is Efficient. This statement is true
for ordered tree TU-games in G1 ∪ G2 by point (a) of the definition of Φe and by the fact that
Φe satisfies Standardness. To complete the proof, assume the statement holds for all ordered tree
TU-games in Gk where 1 ≤ k ≤ r and r ≥ 3. Pick any (N, v, L,�) ∈ Gr+1 where ij ∈ L stands for
the top link. By definition of Φe, we have:
∑

p∈CN
i

Φe
p(N, v, L �) =

∑

p∈CN
i

Φp(Ni, vi, Li �i) and
∑

p∈CN
j

Φe
p(N, v, L �) =

∑

p∈CN
j

Φp(Nj , vj , Lj �j).

Because the cardinality of the sets Ni = CN
i and Nj = CN

j is equal at most to r, the induction
hypothesis applies:

∑

p∈CN
i

Φp(Ni, vi, Li �i) = vi(Ni) and
∑

p∈CN
j

Φp(Nj , vj , Lj �j) = vj(Nj),

where

vi(Ni) = v(CN
i ) +

v(N)− v(CN
i )− v(CN

j )

2
and vj(Nj) = v(CN

j ) +
v(N)− v(CN

i )− v(CN
j )

2
.

Because {CN
i , CN

j } forms a partition of N , we get

∑

p∈N
Φe
p(N, v, L �) =

∑

p∈CN
i

Φe
p(N, v, L �) +

∑

p∈CN
j

Φp(Ni, vi, Li �i) = vi(Ni) + vj(Nj) = v(N),

from which we conclude that Φe is Efficient. Next, from Efficiency of Φe, we deduce that:

∑

p∈CN
j

Φp(Ni, vi, Li �i) = v(CN
j ) +

v(N)− v(CN
i )− v(CN

j )

2
.

From this, we get that (Ni,Φe , vi,Φe) is such that Ni,Φe = Ni = CN
i , and

vi,Φe(S) =





v(N)− v(CN
j )− v(N)− v(CN

i )− v(CN
j )

2 if S = CN
i ,

v(S) if S ⊂ CN
i ,

so that (Ni, vi) = (Ni,Φe , vi,Φe). Because Li,Φe and �i,Φe do not depend on Φe, it is immediate to
verify that Li,Φe = Li and �i,Φe=�i. Therefore, (Ni, vi, Li,�i) = (Ni,Φe , vi,Φe , Li,Φe ,�i,Φe), and so
by definition of Φe we get:

∀p ∈ Ni,Φe , Φe
p(N, v, L,�) = Φe

p(Ni, vi, Li,�i) = Φe
p(Ni,Φe , vi,Φe , Li,Φe ,�i,Φe),

which proves that Φe satisfies Top consistency. �
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The next corollary follows immediately from Proposition 2 (or Proposition 3) and Proposition
4.

Corollary 1 The allocation rule Φe is the only allocation rule on G that satisfies Standardness,
(Bottom) Link amalgamation and Top consistency.

The logical independence of the axioms is demonstrated as follows:

1. The Equal Surplus Division rule applied on G, denoted by ESD and defined as:

∀i ∈ N, ESDi(N, v, L,�) = v(i) +
v(N)−∑j∈N v(j)

n
,

satisfies Standardness, Consistency but violates Link amalgamation.

2. The allocation rule Ψ1 on G defined as Φe except for the point (b) when the associated game
(Ni, vi, Li,�i) contains only two players, say Ni = {i, k}. In such a case, vi(Ni) is fully
allocated to player i if i < k; otherwise the worth is allocated to player k. The allocation
rule Ψ1 satisfies Standardness, Amalgamation but violates Consistency.

3. Consider the null allocation rule on G which assigns a null payoff vector to each ordered tree
TU-game in G. This allocation rule violates Standardness, but satisfies Consistency and Link
Amalgamation.

Remark To conclude this section, two remarks are in order.

1. It should be noted that, in very special cases, the payoffs allocated by Φe coincide with the
payoffs allocated by the Sequential Surplus Equal Division (SESD) rule introduced by Béal et
al. (2015) for rooted tree TU-games. The SESD rule generalizes the individual standardized
remainder vectors proposed by Ju et al. (2007) for the class of all TU-games to the class
of rooted tree TU-games. Consider a rooted tree TU-game (N, v,D) where the rooted tree
(N,D) is a directed line, say D = {(i, i + 1) : i ∈ {1, . . . , n − 1}}. In this case, it is easy
to see that the SESD rule applied to (N, v,D) coincides with the payoffs distributed by Φe

applied to the situation (N, v, L,�), where L = {i(i + 1) : i ∈ {1, . . . , n − 1}} and the total
order over the links is 12 � 23 � . . . � (n− 1)n.

2. The rule Φe, the SESD rule for rooted tree TU-games and the sequential sharing (bankrupcty)
rules introduced by Ansik and Weikkard (2012) for river sharing problems (where the river
is represented by a directed line), have in common to be computed recursively from the Top
link.

4. Bargaining foundation

We address the problem of reaching an allocation of the worth of the grand coalition by sug-
gesting a bidding mechanism and focusing on its subgame perfect Nash equilibria. We design a
bidding mechanism where pairs of neighbors are successively involved in a two-stage bargaining
game where the first stage is a bidding stage and the second stage is a ‘Take-it or leave-it procedure’.
The distinctiveness of our mechanism is its recursive structure.

The idea to introduce a bidding stage in a bargaining process is due to Demange (1984). In the
context of exchange economies, she devised a bidding mechanism to implement efficient egalitarian
allocations in subgame perfect equililbrium. Later, Pérez-Castrillo and Wettstein (2001) revisited
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the bidding mechanisms to support the (weighted) Shapley value(s) in subgame perfect Nash
equilibrium. Recently, Navarro and Perea (2013), van den Brink et al. (2016) and Béal et al.
(2017c) design bidding mechanisms to support allocation rules defined on (directed) graph TU-
games in subgame perfect Nash equilibrium.

We first define a simple two-player mechanism, called Mechanism (A). Then, we will embed it
into a mechanism for ordered tree TU-games with n players, called Mechanism (B), whose struc-
ture is recursive.

We first define a simple two-player mechanism, called Mechanism (A). Then, we will embed it
into a mechanism for ordered tree TU-games with n players, called Mechanism (B), whose struc-
ture is recursive.

Mechanism (A) Let Q be a non-negative real value which has to be shared between a set N
of two players,

Stage 1 Each player i ∈ N makes bids hi ∈ R.2 Denote by Ω the subset of players with the
highest bids. Pick at random any player j ∈ Ω. Each such a j induces a sequential strategic game
Gj whose payoffs are denoted by (gij)i∈N .

Stage 2 Gj describes a ‘Take-it-or-leave-it’ procedure or an ultimatum game, where player j
makes a proposal xj ∈ [0, Q] to the other player. If the other player i 6= j accepts the proposal,

then he or she receives gij = xj , and player j receives gjj = Q− xj . If i refuses the proposal, both

player obtain gij = gjj = 0.

Stage 3 Rewards (zij)i∈N resulting from Stage 1 and Stage 2 associated with Gj , j ∈ Ω, are
defined as:

zjj = gjj − hj +
hj − hi

2
and zij = gij − (−hi) +

hj − hi

2
for i 6= j,

or equivalently

zjj = gjj −
hi + hj

2
and zij = gij +

hi + hj

2
for i 6= j.

The explanation is that each agent pays her bid, receives an equal share of the aggregate bid plus
the payoff resulting from the interaction in Gj , j ∈ Ω.

Finally, since j is chosen randomly in Ω, the expected payoff of each player playing Mechanism
(A) is given by:

∀i ∈ N, mi =

∑
j∈Ω zij
|Ω| .

Mechanism (A) is a particular case of a class of general bidding mechanisms studied in Béal
et al. (2017b). In particular, it is well-known that Gj , j ∈ Ω, admits a unique subgame perfect
Nash equilibrium with payoffs (ĝij)i∈N and where the offer made by the proposer j is equal to zero.
From Proposition 9 in Béal al (2017b), we obtain that Mechanism (A) admits a unique subgame
perfect equilibrium with the following properties:

2To be precise, in the family of bidding mechanisms we consider — see e.g., Béal et al. (2017b) —, it is customary
to assume that each i ∈ N bids over i and j ∈ N \ i under the ‘budget’ constraint hi

i/2 +
∑

j∈N\i h
i
j/2 = 0. Because

here N contains only two players, hi
i determines uniquely hi

−i under the ‘budget’ constraint, where −i denotes i’s
opponent. That is the reason why we simplify a little bit the notation. The weight 1/2 means that the designer
values each agent equally. .
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1. The equilibrium bids (ĥi)i∈N coincide. Precisely, for each i ∈ N , ĥi = Q/2, so that Ω = N ;

2. The equilibrium proposals (x̂j)j∈N coincide. Precisely, for each j ∈ N , x̂j = 0; and each
player accepts any proposal from the proposer.

3. The equilibrium rewards (ẑij)i∈N in Gj do not depend on j ∈ Ω, and, therefore,

∀j ∈ N, ∀i ∈ N, ẑij =
Q

2
.

4. From the previous item, we conclude that the expected payoff m̂i of each player i ∈ N in
Mechanism (A) is given by:

∀i ∈ N, m̂i =
Q

2
.

We have now the material to design Mechanism (B) which supports Φe in subgame perfect Nash
equilibrium. As underlined above, Mechanism (B) has a recursive structure, as it is the case for
Φe. More specifically, Mechanism (B) applied to (N, v, L,�) first calls Mechanism (A) and then
calls Mechanism (B) in a self-similar way but applied to an ordered tree TU-game constructed
from the outcome of Mechanism (A) and (N, v, L,�). In the following, given (N, v, L,�) ∈ G and
the top link ij ∈ L, the notation (Ni, v

c
i ) stands for the TU-game on Ni = CN

i such that c ∈ R,
vci (Ni) = v(Ni) + c, and, for each other coalition S ⊂ Ni, v

c
i (S) = v(S).

Mechanism (B) Let (N, v, L,�) ∈ G such that (N, v) is superadditive.

1. If N = {i}, then player i’s final payoff in Mechanism (B) is v(i);

2. Otherwise, pick the top link ij of (L,�).

(a) Members of {i, j} are involved in Mechanism (A) to share the value

Q = v(N)− v(CN
i )− v(CN

j ) ≥ 0.

As above, mi and mj denote the expected payoffs obtained by i and j in Mechanism
(A);

(b) For each p ∈ {i, j}, elements of Np = CN
p are involved in Mechanism (B) applied to

(Np, v
mp

p , Lp,�p) ∈ G. By construction, (Np, v
mp

p ) remains superadditive.

(c) The final payoff obtained by each player in CN
p in Mechanism (B) applied to (N, v, L �)

coincides with the final payoff obtained in Mechanism (B) applied to (Np, v
mp

p , Lp,�p).

Note that in step 2(a), players i and j are the representatives of their component CN
i and CN

j ,

respectively. Therefore, the payoffs mi and mj are not received by i and j, except in case in which
i and j are the only elements of their component. To figure out how Mechanism (B) runs, consider
the following example.

Example 2 Let the ordered tree (N, v, L,�) be given by N = {1, 2, 3, 4, 5}, for each i ∈ N ,
v(i) = i/4, for each other nonempty coalition S ∈ 2N , v(S) = s2, L = {12, 23, 34, 25} and
12 � 25 � 34 � 23 as in Figure 1. Mechanism (B) applied to (N, v, L,�) runs as follows. Because
N is not a singleton, go to stage 2 in Mechanism (B). Stage 2(a) indicates that players in {2, 3},
the endpoints of the Top link, are involved in Mechanism (A) to share the worth

v(N)− v(CN
3 )− v(CN

2 ) = 12.
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In Mechanism (A), players 2 and 3 receive expected payoffs m2 and m3, respectively. Next go to
stage 2(b). At this stage, for each p ∈ {2, 3}, elements of Np = CN

p are involved in Mechanism (B)

applied on (Np, v
mp

p , Lp) �p) ∈ G. Consider first the ordered tree TU-game (N3, v
m3

3 , L3,�3), where

N3 = {3, 4}, vm3

3 (N3) = 4+m3, L3 = {34}, and 34 �3 34. By stage 2(a) of Mechanism (B), players
3 and 4 are involved in Mechanism (A) to share the value 4 + m3 − 3/4− 4/4 = 9/4 + m3. In this
Mechanism (A), players 3 and 4 receive expected payoffs m3,3 and m3,4, respectively. By stage 1 of
Mechanism (B), their final payoff will be m3,3 + 3/4 and m3,4 +4/4, respectively. Next, consider the
ordered tree TU-game (N2, v

m2

2 , L2,�2), where N2 = {1, 2, 5}, vm2

2 (N2) = 9 + m2, L2 = {12, 25},
and 12 �2 25. By stage 2(a) of Mechanism (B), players 2 and 5 are involved in Mechanism (A)
to share the value 9 + m2 − 5/4− 4 = 15/4 + m2. In this Mechanism (A), players 2 and 5 receive
expected payoffs m2,2 and m2,5, respectively. By stage 1 of Mechanism (B), the final payoff received
by player 5 in Mechanism (B) applied to (N, v, L,�) is m2,5 + 5/4. The final payoffs obtained by
players 1 and 2 are those obtained in Mechanism (B) applied to ((N2)2, (v

m2

2 )m
2,2

2 , (L2)2, (�2)2),
where (N2)2 = {1, 2}, (vm

2

2 )m
2,2

2 ({1, 2}) = vm
2

2 ({1, 2}) +m2,2 = v({1, 2}) +m2,2, (L2)2 = {12}, and
12(�2)2)12. By stage 2(a) of Mechanism (B) applied to this game, players 1 and 2 are involved
in Mechanism (A) to share the value 4 + m2,2 − 1/4 − 2/4 = 13/4 + m2,2, and received expected
payoffs m1 and m2,2,2, respectively. Finally, by stage 1 of Mechanism (B), the final payoff received
by player 1 is m2,2,1 + 1/4, and the final payoff of player 2 is m2,2,2 + 2/4.

The following figure depicts the sequential bargaining process, where the notation Mechanism
A({i, j}, Q) means that the neighbors i and j are involved in Mechanism A to bargain over the
value Q. From the total order (L,�), we construct a binary tree rooted at N . The direct successors
of N are the two components {1, 2, 5} and {3, 4} of (N,L) resulting from the deletion of the top
link 23. This means that the top link connects these two components and generate a surplus equal
to 12. Agents 2 and 3 are involved in Mechanism A({2, 3}, 12) to share 12. Then, the process
is repeated according to the total order (L,�) until there is no link to consider. At each step of
the process, the payoffs obtained through the Mechanism (A) are incorporated in the next step as
described by Mechanism (B).

N

{1,2,5} {3,4}

3 4

1 2

{1,2}
5

23

25 34

12

Mechanism

A({2, 3}, 52 − 32 − 22)

Payoffs (m2,m3)

Mechanism

A({2, 5}, 42 + m2 − 22 − 5/4)

Payoffs: (m2,2,m2,5)

End of (B):

m2,5 + 5
4

Mechanism

A({3, 4}, 22 + m3 − 3/4− 4/4)

Payoffs: (m3,3,m3,4)

End of (B): m3,i + i
4
, i ∈ {3, 4}

Mechanism

A({1, 2}, 22 + m2,2 − 1/4− 2/4)

Payoffs: (m2,2,1,m2,2,2)

End of (B): m2,2,i + i
4
, i ∈ {1, 2}

�

In the following result, we will use the fact that Φe satisfies the axiom of (Strict) Aggregate
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monotonicity (Megiddo 1974) on G saying that the allocation of each player strictly increases
when the worth of the grand coalition N increases while the worth of the other coalitions remains
fixed. This axiom is well-known in problems of fair division. Formally, for (N, v, L,�) ∈ G, each
constant c > 0,

∀i ∈ N, Φe
i (N, vc, L,�) > Φe

i (N, v, L,�), (8)

where, here, vc(N) = v(N) + c, and, for each S ⊂ N , vc(S) = v(S).

Proposition 5 For any (N, v, L,�) ∈ G such that (N, v) is supperadditive, Mechanism (B) sup-
ports the payoff vector Φe(N, v, L,�) in subgame Nash equilibrium.

Proof. We proceed by induction on the number n of players of (N, v, L �) ∈ G.
Initial step If (N, v, L �) ∈ G1, say N = {i}, then, by definition of Mechanism (B), this player
gets v(i), which coincides with Φe

i (N, v, L �) by point (a) of definition of Φe.
Induction hypothesis Assume that the result holds for any element of Gn, 1 ≤ n ≤ r, where r ≥ 1.
Induction step Consider any (N, v, L,�) ∈ Gr+1 such that (N, v) is supperadditive. Let ij denote
the top link of (L,�). We proceed in two steps. In a first step, we show that on each subgame
Nash equilibrium of Mechanism (B) applied to (N, v, L,�) ∈ Gr+1, the payoff vector coincides
with Φe(N, v, L,�). In a second step, we prove that such an equilibrium exists.

Uniqueness part Pick any subgame Nash equilibrium of Mechanism (B) applied to (N, v, L,�
) ∈ Gr+1. Each player p ∈ CN

i = Ni receives the equilibrium payoff of Mechanism (B) applied

to (Ni, v
mi

i , Li,�i). By the induction hypothesis, the subgame equilibrium payoff obtained by

each p ∈ CN
i coincides with Φe

p(Ni, v
mi

i , Li,�i). It remains to show that, on a subgame perfect

equilibrium of Mechanism (B) applied to (N, v, L,�), vm
i

i = vi. By Aggregate monotonicity of
Φe expressed by (8), player i has an incentive to maximize mi. The same argument holds for
her neighbor j in (Nj , v

mj

j , Lj ,�j). By stage 2(a) of Mechanism (B), (mi,mj) is obtained by
playing the ultimatum game augmented by the bidding stage between i and j to share the value
v(N) − v(CN

i ) − v(CN
j ) ≥ 0, as described by Mechanism (A). The unique subgame equilibrium

pair of payoffs of this Mechanism (A) is (m̂i, m̂j). Assume, by way of contradiction, that there is
one player, say i, that contemplates the possibility to deviate from her strategy at this stage. The
resulting pair of payoffs is denoted by (mi,mj) 6= (m̂i, m̂j) where mi ≤ m̂i. By inequality (8), we
get Φe

i (Ni, v
mi

i , Li,�i) ≤ Φe
i (Ni, v

m̂i

i , Li,�i). Therefore, we conclude that on any subgame Nash
equilibrium of Mechanism (B), players i and j coordinate on the subgame Nash equilibrium of
Mechanism (A). This proves the uniqueness part. In particular, on any subgame Nash equilibrium
of Mechanism (B) applied to (N, v, L,�) ∈ Gr+1, we have:

m̂i = m̂j =
v(N)− v(CN

i )− v(CN
j )

2
,

i.e. vm
i

i = vi, which in turn ensures that the equilibrium payoff vector of Mechanism (B) is neces-
sarily Φe(N, v, L,�) by point (b) of definition of Φe.

Existence part We propose the following strategy profile:
- In stage 2(a) of Mechanism (B), i and j (the endpoints of the top link) both play the equilib-

rium strategy of Mechanism (A) in order to share v(N)− v(CN
i )− v(CN

j );

19



- In stage 2(b) of Mechanism (B), each player in CN
p , p ∈ {i, j}, plays an equilibrium strategy

of Mechanism (B) applied to (Np, v
mp

p , Lp,�p) whatever the payoff mp obtained in stage 2(a). The
existence of such an equilibrium strategy is assumed by the induction hypothesis. Therefore, by
definition of an equilibrium strategy, in each subgame of stage 2(b) of Mechanism (B), no player
has an interest to deviate. Now, assume, without loss of generality, that player i contemplates the
possibility to deviate in stage 2(a) of Mechanism (B). In such a case, the payoff mi obtained by
i in Mechanism (A) is at most equal to the equilibrium payoff m̂i, and the final payoff obtained
by the same player i is, by the induction hypothesis, Φe

i (Ni, v
mi

i , Li,�i), while the final payoff he

obtains by playing the proposed strategy is Φe
i (Ni, v

m̂i

i , Li,�i) = Φe
i (N, v, L,�). By inequality (8),

we have Φe
i (Ni, v

mi

i , Li,�i) ≤ Φe
i (N, v, L,�), which proves that i has no interest to deviate in stage

2(a). The same argument holds for j. This completes the existence part, and so the induction
step. �

5. Conclusion

There are at least two natural extensions of our work. The first one is that our allocation rule
can be easily adapted to account for an arbitrary graph. The adaptation is obvious if the graph
is a forest (i.e. if it contains several trees) since our recursive procedure has just to be applied to
each component. If the graph contains some cycle, the step procedure is the same whenever the
deleted link is a bridge, i.e. if cutting this link creates two new components. Otherwise, deleting
the link does not change the connectivity of its component (and of the other components), and it
makes sense to assume that the temporary payoffs of the current components remain unchanged
at that step.

The second extension takes the allocation rule presented in this article as a building block
of a more sophisticated allocation rule for the classical Myerson’s framework. More specifically,
it is possible to compute the average over all total orders over the links of the payoff allocation
specified by our allocation rule. The resulting allocation rule would provide an interesting mixture
between the egalitarian and marginal aspects. There is a lack of such mixtures in the literature
on cooperative games enriched by a graph. This extension can parallel the connection between the
hierarchical vector proposed by Demange (2004) and the Average tree solution studied in Herings,
van der Laan and Talman (2008), which is simply the average of the hierarchical outcomes induced
by all the players. This second extension also share some similarities with the Position value
(Meessen 1988, Borm et. al. 1992), which is obtained by averaging specific contribution vectors
associated with all permutations of links of a graph, since there is an obvious bijection between
the set of total orders and the set of all permutations of a set.
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