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Abstract

This paper proposes a generalised Wald type tests to test the hypothesis of
the nonlinear restrictions. We circumvent the problem of singularity of the co-
variance matrix associated with the usual Wald test by proposing a generalised
inverse procedure, and an alternative simple procedure which can be approxi-
mated by a suitable chi-square distribution. New threshold value is derived to
estimate the rank of the covariance matrix .
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1 Introduction

Analyses of economic data often entail the testing of hypotheses that imply
complex nonlinear restrictions on subsets of parameters, and it is thus desirable
to employ econometric methods that are �exible both in terms of their applica-
tions and implementation for typical data sets. In this paper we are interested
in testing the null hypothesis H0 in the following form

H0 : g(�) = 0 (1)

against the alternative hypothesis

H1 : g(�) 6= 0 (2)

where the vector parameter � 2 �, the parameter space � is a k-dimensional
compact subspace of Rk and g(�) is a mapping from Rk to Rl continuously
di¤erentiable functions of �.
In econometrics literature the Wald tests are commonly used to test this

null hypothesis since the generality of its formulation a¤ords the testing of sev-
eral interesting economic hypotheses which might present formidable di¢ culties
for other procedures (see, e.g. Sargan 1980; Gregory and Veall, 1985, 1986).
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Moreover, it is well known that in a linear regression model with normally dis-
tributed errors, the Wald statistic for a set of linear restrictions is a monotonic
transformation of the likelihood ratio (LR) test statistics.
Under regularity conditions, the null asymptotic distribution is chi-squared

distribution, and this is the distribution that one usually uses to carry out hy-
pothesis tests. On the other hand, under the nonregularity conditions, Wald
tests fail to have limiting chi-squared distribution in general (Andrew 1987) as
in the cases of multiple-hypothesis testing within a single model. The functional
restrictions used to represent the hypotheses failed to satisfy regularity condi-
tions, in particular, their Jacobian matrices failed to have full rank in certain
circumstances (Sargan 1980). Also, in vector autoregressive (VAR) processes,
if the process is stationary, the multivariate least squares (LS) estimator of the
coe¢ cients has a non-singular asymptotic distribution whereas the distribution
becomes singular if some variables are integrated or cointegrated. So the Wald
test has a nonstandard asymptotic distribution.
Another example is the Granger non-causality test. As shown in Toda and

Phillips (1993) when there is a cointegrating relationship, in general the Wald
statistic of the Granger non-causality test has a non-standard limiting distrib-
ution, depending on nuisance parameters.
This paper develops an asymptotic theory for Wald test in the case where

the asymptotic covariance matrix is degenerate. That case occurs when the
functional restriction representing the hypothesis of interest fails to satisfy the
regular conditions that its Jacobian matrix has full rank at the true parameter
values and/or the asymptotic covariance matrix of the estimator parameters is
singular.
Lütkepohl and Burda (1997) used a generalized inverse of the asymptotic

covariance matrix and they showed that the Wald test still has an asymptoti-
cally standard distribution. However, the serious problem is how to detect the
degeneracy or the rank of asymptotic covariance matrix.
It is well known that the rank of matrix is equal to the number of nonzero

eigenvalues. Lütkepohl and Burda (1997) used an ad-hoc threshold to determine
if the eigenvalues are zero or not. Unfortunately their choice of a threshold is
more approximate. The values of the threshold do not appear to be based on any
explicit analytical expressions. An obvious way of circumventing this di¢ culty
would be to determine the distribution of the eigenvalues.
In this paper, we investigate the asymptotic distribution of the eigenvalues

and new threshold values are proposed to test if the eigenvalues are signi�cantly
di¤erent from zero or not. This permits to determine the rank of the covariance
matrix. One important property of the eigenvalues is that they are su¢ cient
statistics invariant with respect to the multiplication of the matrix from left and
right by any nonsingular matrices.
The paper is organised as follows. Section 2 develops the general expression

for the tests statistics. Section 3 proposes new threshold value for the eigenvalues
and conclusions are given in Section 4.
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2 Wald tests

In this section, we will develop general expressions for Wald test statistics for
nonlinear restrictions. Let b� be an estimator of � based on a sample of size n.
We make the following assumption regarding the estimator b�:
Assumption (i) b� = � + Op(n�1=2); (ii) pn(b� � �) �!d Nk(0;
); where 


is �nite non zero but possibly singular; (iii) a consistent estimator b
 of 
 is
available.
The asymptotic normality of b� implies that under the null hypothesis,png(b�)

is asymptotically normally distributed with a �nite asymptotic variance matrix
�.

p
ng(b�) �!d Nl(0;�) (3)

where � = G(�)
G(�)0is of dimension (l � l) and G(�) = @g(�)

@�0
is the l � k

Jacobian matrix of g = (g1; :::; gl)0.
To establish the limiting distribution of the standard Wald test, we assume

the following two regularity conditions.
C1 The Jacobian matrix G(�) is of full rank for all � in the parameter space.
C2. The asymptotic covariance matrix 
 is non singular, it is symmetric

and positive de�nite.
Let b� be a consistent estimator of �, obtained by replacing G(�) and 


by their consistent estimator G(b�) and b
 respectively. Hence under the two
regularity conditions C1 and C2, the Wald statistic for testing (1) is given by

W = ng(b�)0b��1g(b�) (4)

and W is asymptotically distributed as chi-square with l degrees of freedom
on H0.
Now, when the covariance matrix � is singular, i.e. if at least one of these

regularity conditions (C1 and C2) is not satis�ed, then the Wald statistic may
not have an asymptotic chi-square distribution. The singularity of � comes from
three possible situations. First the matrix of �rst-order partial derivatives of
the restrictions, G(�) has reduced rank. Secondly the asymptotic covariance 

is a matrix degenerate and �nally the combination of the two: rank(G(�)) < l
and 
 is singular.
If the function g(�) involves products of the elements of � then the matrix

of �rst-order partial derivatives G(�) is likely to have a reduced rank over part
of the parameter space. Such functions are relatively common in time series
analysis. For instance, impulse responses and related quantities of interest in a
vector autoregressive (VAR) analysis involve products of the VAR coe¢ cients.
Similarly, such functions come up in analyzing multi-step causality in VAR
models (Lütkepohl and Burda, 1997); or Granger causality in VARMA models
(Lütkepohl, 1993) and in testing of restrictions on the levels of parameters of a
cointegrated VAR process.

3



The singularity of the asymptotic covariance matrix of the estimator para-
meters occurs for instance in VAR processes. If the process is nonstationary, i.e.
some variables are integrated or cointegrated, the multivariate least squares (LS)
estimator of the coe¢ cients has a singular asymptotic distribution. This singu-
larity problem has also been noted or discussed in the context of the long-run
impact matrix (see Johansen 1995).
In that case, it is a usual practice to resort a generalized inverse procedure

when we have inverted a singular matrix. That is, we have under the null
hypothesis,

W+ = ng(b�)0b�+g(b�) (5)

where b�+ is the Moore-Penrose generalized inverse of a matrix b�: Under
additional condition, rank(b�) = rank (�) = r < l; the Wald statistic W+ still
have an asymptotic chi-square distribution with r degrees of freedom. (see
Andrews 1987). Unfortunately, this rank condition is not always easy to verify
in practice.
To overcome this di¢ culty, the Moore-Penrose generalized inverse can be

obtained in using the spectral decomposition of b�+. Let �i be the i� th eigen-
value of � and ui the corresponding i� th (orthonormal) eigenvector, satisfying
u0iuj = �ij ; where �ij is the usual Kronecker delta (i; j = 1; :::; l): The eigenvalue-
eigenvector equation is �ui = �iui; then u0i�ui = �i; i = 1; :::; l and collecting
together we obtain U 0�U = �; or � = U�U 0;where � = diag(�1; :::; �l); with
�1 � �2 � ::: � �l; is the (l � l) diagonal matrix of ordered eigenvalues and
U = [u1; u2; :::; ul] is the (l � l) matrix whose columns are the orthonormal
eigenvectors of �: That is U 0U = Il and UU 0 = Il where Il is the unity matrix
of dimension l � l. If �i = 0; i = r + 1; :::; l; so that rank(�) = r, we can write

� = U1�1U
0
1; (l � l)

U = [U1; U2]; (l � r; l � l � r)

� =

�
�1 0
0 0

�
where �1 = diag(�1; :::; �r); with �1 � �2 � ::: � �r > 0; is the (r � r)

diagonal matrix of the ordered positive eigenvalues of � and the columns of U1;
ui (i = 1; :::r) are the corresponding eigenvectors to the positive eigenvalues.
The Moore-Penrose generalized inverse of � is �+ = U1�

�1
1 U 01; consistently

estimated by b�+ = bU1b��11 bU 01 which can be used to construct W+: Hence the
Wald statistic

W+ = ng(b�)0 bU1b��11 bU 01g(b�) (6)

is asymptotically chi-squared with r degrees of freedom on H0; and r =
rank(�):
This test statistic has fewer degrees of freedom than the usual Wald test

since r = rank(�) � l: Hence it has improved power, in particular if super�uous
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restrictions are removed. Gallant (1977) �nds in a small sample Monte Carlo
investigation that power advantages may in fact result from taking into account
fewer restrictions.

3 New threshold values for the eigenvalues

However the problem associated with this test statistic is the determination of
the number of nonzero eigenvalues of the matrix � that is the rank of �; since
in the construction of generalised Wald test statistics, the rank of the variance
matrix estimate should be equal to the rank of the true variance matrix. In this
section we propose a sequence pretest procedure. We develop the test procedures
for

H 0
0 : �i = 0; i = r + 1; :::; l (7)

against the alternative hypothesis

H 0
1 : �i > 0

where the �i are the eigenvalues of the matrix �: The null hypothesis H 0
0

is equivalent to the hypothesis rank(�) = r: To decide if the eigenvalues are
nonzero or not, Lütkepohl and Burda (1997) used a threshold c which depends
on di¤erent factors such as the sample size n and the value of the largest eigen-
value b�1 of b�: Then �i is nonzero if the eigenvalue b�i of the estimator b� of � is
greater than c: In other words, for our purposes one reject the null hypothesis
if b�i > c: Unfortunately their choice of a threshold c is more approximative,
the values of the threshold do not appear to be based on any explicit analytical
expressions but are selected on an ad hoc basis. Consequently it will not be
certain to take all restrictions which correspond to nonzero eigenvalues of the
covariance matrix �: Thus the rank estimated may be larger than the true rank.
We shall propose an appropriate threshold level criteria. The approach consist
to derive the statistical properties of b�i: To this end, we use some results of the
matrix perturbation theory.
Let us consider the matrix perturbation theory

b� = �+ "B (8)

where "B, with small "; is the error matrix b��� or the matrix perturbation:
These results of the matrix perturbation theory indicate how much the eigen-
values and eigenvectors of the matrix b� can di¤er from those of � for small
": Assume that the estimator b� of � is root � n consistent and has a limiting
normal distribution, then the perturbation term "B is of order Op(n�1=2) and
can be seen as a zero mean Gaussian random matrix (Ratsimalahelo 2001).
Let b�1 � b�2 � ::: � b�l be the ordered eigenvalues of matrix perturbedb� and bu1; bu2; :::; bul the corresponding eigenvectors, the eigenvalue-eigenvector
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equation b�bui = b�ibui i = 1; :::; l

can be written as
(� + "B)bui = b�ibui:

Following the spectral decomposition of �; the eigenvalue-eigenvector equa-
tion can be equivalently expressed as

(U�U 0 + "B)bui = b�ibui:
Now, premultiplying by U 0, we obtain

(� + "U 0BU)U 0bui = b�i(U 0bui)
that is, "U 0BU is the perturbation matrix of the diagonal matrix � andb�i is an eigenvalue of � + "U 0BU corresponding to the eigenvector U 0bui. The

�rst-order approximation of b�i is given byb�i = �i + "u0iBui +Op �"2� :
A similar result is given by Wilkinson (1965, p.65). For " = n�1=2, we have

b�i = �i + n�1=2u0iBui +Op �n�1� : (9)

Hence for the zero eigenvalue of � that is �i = 0, we getb�i = n�1=2u0iBui +Op �n�1� (10)

which corresponds to the i� th smallest eigenvalue of the estimated matrixb�:
The asymptotic distribution of b�i is obtained from the following equation

p
n(b�i � �i) = u0iBui + op (1) : (11)

Since the elements of the perturbation term B are asymptotically normally
distributed with mean zero, therefore u0iBui which is a linear combination of
the elements B will also be asymptotically normally distributed with mean zero,
E(u0iBui) = 0 8i and �nite variance �2i = V ar(u0iBui) = (u0i
 u0i)Cov(B)(ui

ui); where 
 denotes the Kronecker product. Moreover

p
n(b�i � �i) has the

same asymptotic distribution as u0iBui; and it can immediately be established
that

p
n(b�i � �i) converge in distribution in normally variate with mean zero

and �nite variance �2i .

p
n(b�i � �i)!d N(0; �2i ): (12)

In particular, under H 0
0 : �i = 0; the smallest eigenvalue of b�; b�i is asymp-

totically normally distributed with mean zero and �nite asymptotic variance
�2i =n.
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In Ratsimalahelo (2003), Lardies and Ratsimalahelo (2005) the perturbation
theory has been adapted to bounded perturbations that permits to use it, due
to the iterated logarithm law, in consistent rank estimation of matrix.
Having fully de�ned the statistical properties of b�i we shall propose a one-

side test statistic to decide whether eigenvalue should be declared zero or not.
Let b�2i be a consistent estimator of �2i . According to the asymptotic distribu-

tion of b�i we reject the null hypothesis H 0
0 if b�i > z�b�i=pn where z� represents

the percentile of the standard normal distribution.
We have de�ned a value of the threshold adequately. To assess the test

statistic, approximate p-values are computed with reference to standard normal
distribution.

The procedure of test is based on a sequential testing of the smallest eigen-
values of b�: If the null hypothesis H 0

0 is rejected for the smallest l�r eigenvalues
then the rank of � is found to be r: Then, in the construction of generalised
Wald test statistics W+, we keep only the largest r eigenvalues of b�:
More precisely, the rank of � is detected sequentially using the pretest pro-

cedure. Since the eigenvalues of the estimated b� are ordered, and tests for
individual eigenvalues are considered, it is more appropriate to use an upward
testing procedure. Starting with the smallest eigenvalue b� of b�; we carry out
tests with progressively larger b� until we �nd that the test reject the null hy-
pothesis that the rank considered is correct.
In sum, the sequential testing procedure proposed in this paper consists of

the following two steps:
Step 1: Determine the rank of � by testing H 0

0 : �i = 0 by above pre-testing
procedure (upward testing procedure).
Step 2: If � is found to be full rank, test the null hypothesis H0 : g(�) = 0

with W (Equation 4):
Otherwise, test the nullH0 withW+ in using the decomposition spectral

of b�+ (Equation 6):
4 Conclusion

In this paper, we have proposed an asymptotic theory for Wald type test of
nonlinear restrictions. The Wald statistic is known to be asymptotically chi-
square distributed under the null hypothesis, provided that the Jacobian of the
restriction function describing the null hypothesis has full rank and the asymp-
totic covariance matrix of the estimator parameters is non singular. There are,
however, examples of important models and hypotheses in economics which do
not satisfy theses regular conditions and the Wald statistic fail to have limit-
ing chi-squared distribution. We derive a generalised Wald test statistics which
guarantees the asymptotic chi-square distribution under nonregular conditions.
The limiting distribution of the Wald statistic for testing nonlinear restric-

tions depends substantially on the singularity or not of the asymptotic covari-
ance matrix, the determination of its rank is of great importance in this con-
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text. It is well known that the rank of the matrix is equal to the number of the
eigenvalues nonzero. Using the perturbation theory, we derive the asymptotic
distribution of the eigenvalues. We propose two new threshold values for the
eigenvalues which permit to decide if the eigenvalues are nonzero or not.
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