
Working paper No. 2018 – 03

C
R

E
S

E 30, avenue de l’Observatoire
25009 Besançon
France
http://crese.univ-fcomte.fr/

The views expressed are those of the authors
and do not necessarily reflect those of CRESE.

G AMES WITH IDENTICAL
SHAPLEY VALUES

SYLVAIN BÉAL, MIHAI MANEA,

ERIC RÉMILA, AND PHILIPPE SOLAL

February 2018



GAMES WITH IDENTICAL SHAPLEY VALUES
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Abstract. We discuss several sets of cooperative games in which the Shapley value assigns

zero payoffs to all players. Each set spans the kernel of the Shapley value and leads to a

different characterization of games with identical Shapley values. The special games we

identify deliver intuitive axiomatizations of the Shapley value. We explain how each basis

of the kernel of the Shapley value can be augmented to construct a basis of the space of all

games.
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1. Introduction

In this chapter, we survey the research studying cooperative games with transferable utility

that induce the same Shapley values. The problem of identifying all games that generate

a given vector of Shapley values has been first considered by Kleinberg and Weiss (1985)

and became known as the “inverse problem” in the literature. Since the Shapley value is

a linear operator on the space of games, the inverse problem is equivalent to characterizing

its kernel—the space of games in which the Shapley value assigns zero payoffs to all players.

We discuss several sets of games that reflect a clear balance of power among players and

coalitions and constitute bases for the kernel of the Shapley value. We show how these

games can be used to develop new axiomatizations of the Shapley value.

The chapter is organized as follows. Section 2 provides basic definitions related to the

Shapley value. In Section 3, we investigate the kernel of the Shapley value. We present three

bases for this kernel as well as an intuitive characterization of games in the kernel. These
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classes of games lead to natural axiomatizations of the Shapley value, which we present in

Section 4. In Section 5, we discuss how the bases for the kernel of the Shapley value can be

completed to construct bases for the space of all games. Section 6 surveys alternative bases

for the kernel of the Shapley value from the literature. Section 7 explores other interesting

games that belong to the kernel of the Shapley value. Finally, Section 8 provides proofs of

the new results and Section 9 concludes.

2. The Shapley Value

Fix a set N of n ≥ 2 players. A coalition is any subset of players S ⊆ N . A game v with

transferable payoffs, simply called a game henceforth, associates a real number v(S) to any

coalition S, which represents the value coalition S can create and share among its members

(v(∅) = 0). A solution ψ assigns a payoff ψi(v) to each player i ∈ N for every game v. The

kernel K(ψ) of a solution ψ is the space of games in which ψ assigns 0 payoffs to all players:

K(ψ) = {v|ψi(v) = 0, ∀i ∈ N}.
Shapley (1953) proposed the following solution φ:

(1) φi(v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |! (v(S ∪ {i})− v(S)),∀i ∈ N.

This solution, now known as the Shapley value, has the following interpretation. If players

are ordered randomly (all orderings being equally likely), then φi(v) represents the expected

marginal contribution of player i to the coalition formed by his predecessors. The Shapley

value has many elegant properties. For a comprehensive treatment, the reader may consult

the monograph edited by Roth (1988) and the textbooks of Moulin (1988) and Osborne

and Rubinstein (1994). Here we discuss only some of its properties—most of which Shapley

introduced in his original paper—necessary for our analysis. Since these properties have

been used in the context of axiomatic characterizations of the Shapley value, we refer to

them as axioms.

Some preliminary definitions are necessary for stating the classic axioms. Player i is null

in game v if v(S ∪ {i}) = v(S) for all coalitions S. Players i and j are interchangeable in v

if v(S ∪ {i}) = v(S ∪ {j}) for all coalitions S disjoint from {i, j}. A game v is inessential if

v(S) =
∑

i∈S v({i}) for all coalitions S.
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Given the assumption that the empty coalition has value 0, we view games as column

vectors in the linear (vector) space R2N\{∅}, which has dimension 2n − 1. Likewise, we

represent solutions (ψi(v))i∈N for specific games v as column vectors in RN . Hence, for any

pair of games v and w and real number α, v+αw is the game in which the value of coalition

S is given by v(S) +αw(S); similarly, ψ(v) +αψ(w) denotes the vector (ψi(v) +αψi(w))i∈N .

We use the notation 0 for the zero vector in either R2N\{∅} or RN (the dimension will be

clear from the context).

It is well-known that the Shapley value φ satisfies the following axioms.

Axiom (Null). Solution ψ satisfies the null axiom if ψi(v) = 0 whenever player i is null in

game v.

Axiom (Linearity). Solution ψ satisfies the linearity axiom (or is linear) if ψ(v + αw) =

ψ(v) + αψ(w) for every pair of games v and w and real number α.

Axiom (Symmetry). Solution ψ satisfies the symmetry axiom if ψi(v) = ψj(v) whenever

players i and j are interchangeable in game v.

Axiom (Inessential). Solution ψ satisfies the inessential axiom if ψi(v) = v({i}) for all

i ∈ N in every inessential game v.

In his original paper, Shapley identified a salient basis for the linear space of all games—

unanimity games—which also plays an important role in our analysis. For every non-empty

coalition T , the unanimity game uT with ruling coalition T is specified as follows:

uT (S) =





1 if S ⊇ T

0 otherwise.

Shapley proved that the 2n−1 games (uT )T∈2N\{∅} are linearly independent and thus (uT )T∈2N\{∅}

constitutes a basis for the (2n − 1)-dimensional space of games R2N\{∅}.
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3. The Kernel of the Shapley Value

Given the natural embedding of games and solutions in the corresponding linear spaces,

the Shapley value can be expressed as φ(v) = Av, where A is an n × (2n − 1) matrix that

reflects the coefficients from formula (1). For inessential games v, we have Av = φ(v) =

(v({i}))i∈N because the Shapley value satisfies the inessential axiom. Since the space of

vectors (v({i}))i∈N derived from inessential games v has dimension n, the matrix A must

have full row rank equal to n. It follows that, as Kleinberg and Weiss (1985) noted, the set

of games in which all players have Shapley value 0—the kernel K(φ) = {v|Av = 0}—is a

linear subspace of R2N\{∅} of dimension 2n − n− 1.

In what follows, we construct several sets of games, each spanning a space of dimension

2n − n− 1, in which all players have Shapley value 0. Since K(φ) has dimension 2n − n− 1

and contains each set of games, we conclude that every set spans the full space K(φ).

An oligarchy is any coalition that consists of at least two players. The members of an

oligarchy are called oligarchs. Let O denote the set of oligarchies, O = {O ⊆ N ||O| ≥ 2}.
We define multiple games for every oligarchy O.

The dog eat dog game wO for oligarchy O is specified by

wO(S) =





1 if |S ∩O| = 1

0 otherwise.

This game has been introduced by Yokote (2015) and is called the commander game in the

follow-up paper of Yokote et al. (2016).

The scapegoat game w̄O for oligarchy O is specified by

w̄O(S) =





1 if |S ∩O| = |O| − 1

0 otherwise.

This game first appears in the study of Béal et al. (2016).

In the games constructed above, oligarchs have some power and are instrumental for value

creation but the oligarchy is factious and cannot cooperate effectively to realize any value.

In dog eat dog games, a coalition creates value only if it includes a single oligarch—the

fierce “dog.” In scapegoat games, a coalition generates value only if it contains all but one

oligarch—the “scapegoat.”
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Yokote and Funaki (2015) construct a more general set of games with disharmonious

oligarchies as follows. The factious oligarchic game for oligarchy O with parameter k (1 ≤
k ≤ |O| − 1) is given by

wOk (S) =





1 if |S ∩O| = k

0 otherwise.

In order to generate a basis for the kernel of the Shapley value, we allow for any variation

in the parameter k as a function of the oligarchy O. Let f : O → {1, 2, . . . , n − 1} be a

function such that 1 ≤ f(O) ≤ |O|−1 for all O ∈ O. The family of factious oligarchic games

(wOf )O∈O with power structure f is specified by wOf := wOf(O) (with a slight abuse of notation).

Note that dog eat dog games and scapegoat games are families of factious oligarchic games

with special power functions f—the former specified by f(O) = 1 for all O ∈ O, and the

latter by f(O) = |O| − 1 for all O ∈ O.

As Yokote (2015), Yokote and Funaki (2015), Yokote et al. (2016), and Béal et al. (2016)

show, every player has Shapley value 0 in all types of oligarchic games defined above. To see

this, consider the factious oligarchic game wOk for oligarchy O with parameter k ≤ |O| − 1.

In wOk , all players in N \O are null and must obtain Shapley value 0 since φ satisfies the null

axiom. All oligarchs are interchangeable in wOk and should obtain the same Shapley value

because φ satisfies the symmetry axiom. The common Shapley value of the oligarchs must

be 0 because wOk (N) = 0. Since φ is linear and φ(w) = 0 for all games w defined above, the

Shapley value satisfies the following axioms.

Axiom (Dog Eat Dog). Solution ψ satisfies the dog eat dog axiom if ψ(v) = ψ(v + αw) for

every game v, any dog eat dog game w, and all real numbers α.

Axiom (Scapegoat). Solution ψ satisfies the scapegoat axiom if ψ(v) = ψ(v+αw) for every

game v, any scapegoat game w, and all real numbers α.

Axiom (Factious Oligarchy). Solution ψ satisfies the factious oligarchy axiom if there exists

a power structure f such that ψ(v) = ψ(v + αw) for every game v, any factious oligarchic
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game w with power structure f , and all real numbers α.

The intuition for each of the three axioms is that changing the cooperation structure

by adding disharmonious oligarchies should not affect the division of payoffs. Note that a

solution ψ satisfies the dog eat dog, scapegoat, or factious oligarchy axiom if and only if

ψ(v) = ψ(v + w) for every game v and all games w that are linear combinations of dog eat

dog, scapegoat, or factious oligarchic games, respectively.

We next introduce a set of games inspired by Hamiache (2001) and Béal et al. (2016). A

synergy function is a game π with the property that π({i}) = 0 for all i ∈ N . The paper

tiger game with synergy π is defined by

wπ(S) =
∑

i∈N
(π(S ∪ {i})− π(S)) (=

∑

i∈N\S
(π(S ∪ {i})− π(S))).

The interpretation of this game is that every player i is by nature a solitary “tiger”, which

can add synergies to any group S that excludes him. However, the synergy of the expanded

group S ∪ {i} supersedes the original synergy of S, rendering i a “paper tiger.” Since only

outsiders add value to coalitions, all synergies “wash out” for the grand coalition, wπ(N) = 0.

The set of paper tiger games constitutes a linear subspace of R2N\{∅} that has dimension at

most 2n−n− 1 because each component of any element (wπ(S))S∈2N\{∅} is a linear function

of the 2n − n − 1 variables (π(S))S∈O. Béal et al. (2016) remark that for any oligarchy O,

the paper tiger game wπ derived from the synergy function

π(S) =





1 if O ⊆ S

0 otherwise

is identical to the scapegoat game w̄O. Thus, the space of paper tiger games contains the lin-

ear space spanned by scapegoat games. Béal et al. argue that the space of scapegoat games

has dimension 2n − n− 1, which implies that the space of paper tiger games has dimension

2n − n − 1 and coincides with the space spanned by scapegoat games. Hence, every paper

tiger game is a linear combination of scapegoat games. The linearity of the Shapley value,

along with the fact that φ(w̄O) = 0 for all scapegoat games w̄O, implies that φ(wπ) = 0 for

every paper tiger game wπ. Therefore, the Shapley value satisfies the following axiom, which
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captures the “paper tiger” metaphor.

Axiom (Paper Tiger). Solution ψ satisfies the paper tiger axiom if ψ(v) = ψ(v + w) for

every game v and any paper tiger game w.

Yokote (2015) established that the set of dog eat dog games forms a basis for the kernel

of the Shapley value, and Béal et al. (2016) proved that the set of scapegoat games has the

same property. Yokote and Funaki (2015) generalized these two results to families of factious

oligarchic games (wOf )O∈O with special power structures f . In the analysis of Yokote and

Funaki, f(O) depends only on the size of O, i.e., f(O) = g(|O|) where g is a function from

{2, . . . , n} to {1, . . . , n− 1}. Moreover, their main result imposes the following “continuity”

restriction on g:

g(k − 1)− 1 ≤ g(k) ≤ g(k − 1) + 1 for k ∈ {3, . . . , n}.

We show that neither of these restrictions is necessary for the result: the family of factious

oligarchic games (wOf )O∈O is linearly independent and spans the kernel of the Shapley value

for every power structure f . The proof of this result relies on a new basis of the set of all

games consisting of games with oligarchic structures we develop in Section 5 (see Theorem

3).

Theorem 1. The set of dog eat dog games constitutes a basis for the linear space K(φ), and

the same is true about the set of scapegoat games. More generally, the family of factious

oligarchic games with any power structure forms a basis for K(φ). Furthermore, K(φ) is

given by the set of paper tiger games.

Section 8 at the end of the chapter provides the proof of Theorem 1. We next present

two corollaries that invoke paper tiger games. In light of Theorem 1, we can restate either

corollary using a linear combination of each type of oligarchic game in lieu of the paper tiger

game. The first corollary follows from the linearity of the Shapley value.

Corollary 1. Games v and w yield identical Shapley values if and only if their difference

v − w is a paper tiger game.
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Fix a game v. The Shapley inessential game w of v is defined by w(S) =
∑

i∈S φi(v)

for all coalitions S. Since the Shapley value satisfies the inessential axiom, we have that

φi(w) = w({i}) = φi(v) for all i ∈ N . Then the linearity of the Shapley value implies that

φ(v−w) = 0. Thus, as Kleinberg and Weiss (1985) observed, the game v can be decomposed

into its Shapley inessential game w and the game v − w, which is an element of K(φ). This

conclusion leads to another corollary of Theorem 1.

Corollary 2. Every game is the sum of its Shapley inessential game and a paper tiger game.

4. Axiomatizations of the Shapley Value Based on Its Kernel

If a solution ψ is pinned down for inessential games by the inessential axiom, and the

addition of games in K(φ) does not affect the solution as implied by any of the dog eat

dog, scapegoat, factious oligarchy, or paper tiger axioms, then ψ must coincide with the

Shapley value φ. This observation, along with Theorem 1 and Corollary 2, lead to four

axiomatizations of the Shapley value.

Theorem 2. A solution is the Shapley value if and only if it satisfies the inessential axiom

and any one of the dog eat dog, scapegoat, factious oligarchy, and paper tiger axioms.

We finally comment on a connection between our paper tiger axiom and an axiom due to

Hamiache (2001). Derive a synergy function πv from a game v as follows:

(2) πv(S) = v(S)−
∑

i∈S
v({i}).

Let wπv denote the paper tiger game with synergy π, and define the game vλ = v + λwπv ,

where λ is a positive real number. Algebra leads to

vλ(S) = v(S) + λ
∑

i∈N\S
(v(S ∪ {i})− v(S)− v({i})) ,∀S ⊆ N.

Since wπv is a paper tiger game, Theorem 2 implies that the games v and vλ have the same

Shapley value for every λ. Hamiache (2001) uses this property, coined associated consistency,

to develop a characterization of the Shapley value. In addition to the inessential axiom,

his characterization requires a continuity axiom because associated consistency is a weaker

version of our paper tiger axiom that applies only to pairs of games (v, λwπv) for which the

synergy function πv has the special relation to v described by formula (2).
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To obtain an alternative proof of Hamiache’s result, Béal et al. (2016) remark that the

matrix associated with the linear transformation v → wπv is upper triangular when expressed

in the basis of unanimity games. Its kernel is formed by the set of inessential games, and all

its non-zero eigenvalues are negative. This ensures that, for sufficiently small λ, the sequence

generated by the iteration of the transformation v → vλ converges to an inessential game v∞

for every first term v. The associated consistency and continuity of the solution ψ are used

to conclude that ψ(v) = ψ(v∞). If ψ satisfies the inessential axiom, then ψi(v) = ψi(v
∞) =

v∞({i}) for all players i, which proves that ψ(v) is uniquely determined.

Kleinberg (2017) extends the work of Hamiache (2001) by exploring linear and anonymous

solutions (called membership solutions) other than the Shapley value that satisfy associated

consistency. A solution is anonymous if a change in the label of the players has no effect

on the solution. Note that the equal division solution, which divides the value of the grand

coalition evenly among all players, is linear and anonymous and satisfies associated consis-

tency. Kleinberg proves that a solution is linear and anonymous and satisfies associated

consistency if and only if it is a linear combination of the Shapley value and the equal divi-

sion solution. An equivalent statement of this result is that a linear and anonymous solution

satisfies associated consistency if and only if its kernel contains the kernel of the Shapley

value.

5. Bases for the Space of Games

Recall that Shapley (1953) showed that the set of unanimity games (uT )T∈2N\{∅} constitutes

a basis for the space of all games. We construct a rich class of new bases for the space of

games by expanding the set of oligarchic games from Section 3. Specifically, we allow for

“singleton oligarchies” O = {i} and consider the possibility that oligarchies are functional,

so parameter k in the specification of the corresponding game wOk can take the value |O|
(which is necessary for singleton oligarchies to generate a game different from 0). Therefore,

we redefine an oligarchy to be any nonempty coalition O ⊆ N and specify the oligarchic

game for oligarchy O with parameter k as in Section 3,

wOk (S) =





1 if |S ∩O| = k

0 otherwise
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for 1 ≤ k ≤ |O|, with the novelty that k = |O| is an admissible parameter. Power functions

need to be adjusted accordingly—f : 2N \ {∅} → {1, 2, . . . , n} is a power function if 1 ≤
f(O) ≤ |O| for all O ∈ 2N \ {∅}. The family of oligarchic games (wOf )O∈2N\{∅} with power

structure f is specified as before, wOf := wOf(O).

By definition, for singleton coalitions O = {i}, every power function f satisfies f({i}) = 1

and w
{i}
f = u{i}. In general, wO|O| := uO for all oligarchies O. Thus, the new oligarchic games

added to the set of factious ones are exactly the unanimity games. Note that the Shapley

value for the unanimity game uO is given by

φi(u
O) =





1/|O| if i ∈ O

0 if i ∈ N \O.

Hence, the newly added games do not belong to the kernel of the Shapley value. We establish

that the family of oligarchic games with any power structure constitues a basis of the space

of games, which generalizes the main result of Yokote and Funaki (2015) as discussed in

Section 3.

Theorem 3. For any power structure f , the set of oligarchic games (wOf )O∈2N\{∅} forms a

basis for the space of all games.

The proof of the theorem can be found in Section 8. The key ingredient of the proof

is a representation of the oligarchic game for oligarchy O with parameter k in the basis of

unanimity games,

wOk =
∑

S⊆O,|S|≥k
(−1)|S|−k

(|S|
k

)
uS.

The coefficient of the game uS in the unique linear decomposition of any game v in the basis

(uT )T∈2N\{∅} is known as the Harsanyi (1959) dividend of coalition S in game v. Hence, the

identity above shows that the Harsanyi dividend of coalition S in the oligarchic game wOk is

(−1)|S|−k
(|S|
k

)
for S ⊆ O, |S| ≥ k and 0 otherwise. We then reach the desired conclusion by

noting that the linear transformation (uT )T∈2N\{∅} → (wOf )O∈2N\{∅} derived from the identity

above is captured by a lower-triangular matrix with non-zero diagonal elements.

We can build an alternative basis for the space of games by augmenting any basis of the

(2n − n− 1)-dimensional kernel K(φ) of the Shapley value identified in Theorem 1 with any

collection of n linearly independent games that span a space whose only intersection with
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K(φ) is game 0. One obvious selection for the n games is the set of degenerate unanimity

games with singleton ruling coalitions, (u{i})i∈N , which we call trivial games. By Theorem

3, trivial games are linearly independent and span the space of inessential games. Since

φ(v) = (v({i}))i∈N for every inessential game v, the intersection of the set of inessential

games and the kernel of the Shapley value is {0}. It follows that any basis of K(φ) described

in Theorem 1 along with the collection of trivial games forms a basis for the set of all games.

In a result related to Corollary 2, Yokote et al. (2016) show that the coefficient of the trivial

game u{i} in the decomposition of any game in each of these bases coincides with the Shapley

value of player i. To see this, note that the discussion above implies that every game v can

be uniquely decomposed as a linear combination of games in any basis of K(φ) and trivial

games u{j} for j ∈ N . Let αj denote the coordinate of u{j} in the decomposition of v. Then,

the linearity of the Shapley value φ leads to

φi(v) =
∑

j∈N
αjφi(u

{j}),∀i ∈ N.

For any j ∈ N , since u{j} is an inessential game, we have φj(u
{j}) = u{j}({j}) = 1 and

φi(u
{j}) = u{j}({i}) = 0 for i ∈ N \{j}. Therefore, φi(v) = αi for all i ∈ N , as asserted. The

following theorem collects results from Yokote and Funaki (2015) and Yokote et al. (2016).

Theorem 4. The collection of trivial games and each family of factious oligarchic games

with any power structure constitutes a basis for the space of all games. In every such basis,

the coefficient of each trivial game in the decomposition of any given game coincides with the

Shapley value of the corresponding player in that game.

6. Other Bases

Kleinberg and Weiss (1985) provided the first characterization of the kernel of the Shapley

value as a direct sum decomposition of linear spaces. Each game in their decomposition

assigns non-zero values only to singletons or coalitions of a fixed size. Their decomposition
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consists of three types of games:

{v|v(S) = v(S ′) if |S| = |S ′| = k; v(S) = 0 if |S| 6= k} for 1 ≤ k ≤ n− 1,
{
v|
∑

i∈N
v({i}) = 0; v(S) = −

∑

i∈S
v({i}) if |S| = k; v(S) = 0 if |S| 6= 1, k

}
for 2 ≤ k ≤ n− 1,

{
v|v(S) = 0 if |S| 6= k;

∑

i∈S
v(S) = 0,∀i ∈ N

}
for 2 ≤ k ≤ n− 1.

Dragan et al. (1989) develop a different basis for the space of games building on the

potential value of Hart and Mas-Colell (1989). Recall that the potential P (S, v)S⊆N of a

game v is defined recursively by

P (S, v) =
1

|S| (v(S) + P (S \ {i}, v))

with the initial condition P (∅, v) = 0. Hart and Mas-Colell showed that the Shapley value

can be computed as

φi(v) = P (N, v)− P (N \ {i}, v),∀i ∈ N.

Dragan et al. pointed out that the potential function P can be interpreted as a linear

endomorphism on the space of games, and hence one can derive a basis for this space by

identifying a game wT for every nonempty coalition T with the property that P (T,wT ) = 1

and P (S,wT ) = 0 if S 6= T . They found that

wT (S) =





|S| if S = T

−1 if S = T ∪ {j} with j /∈ T

0 otherwise.

It can then be checked that the set of games (wT )1≤|T |≤n−2 together with the game wN +
∑

i∈N w
N\{i} forms a basis for the kernel of the Shapley value.

Another basis for the kernel of the Shapley value can be obtained by considering a gen-

eralization of the Shapley value. Recall that a solution ψ is efficient if the total payoffs it

allocates equal to the value of the grand coalition, i.e.,
∑

i∈N ψi(v) = v(N) for all games v.

The Shapley value is a prominent solution which is linear, anonymous, and efficient. Ruiz et

al. (1998) show that any linear, anonymous, and efficient solution takes the form φb, where

φbi(v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |! (b|S|+1v(S ∪ {i})− b|S|v(S)),∀i ∈ N
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for a collection of constants b = (bk)0≤k≤n with bn = 1.

Rojas and Sanchez (2016) analyze the subset of linear, anonymous, and efficient solutions

φb with bk 6= 0 for all k, which they call regular solutions. They provide a basis for the kernel

of each regular solution φb consisting of the games (vbT )T⊆N,|T |6=1 defined as follows:

vbN(S) =





1 if |S| = 1

0 otherwise

and for T such that 2 ≤ |T | ≤ |N | − 1,

vbT (S) =





1 if |S| = 1 and S ∩ T = ∅
b1
b|T |

(|N | − 2

|T | − 1

)
if S = T

0 otherwise.

Since the Shapley value is obtained by setting bk = 1 for all k, the collection of games

(v
(1,...,1)
T )T⊆N,|T |6=1 is a new basis for the kernel of the Shapley value. As in Section 5, the

authors further provide a basis of the space of all games by augmenting their basis of the

kernel of any regular solution ψb. Rojas and Sanchez (2016) first prove that the kernel

K(ψb) of any such solution ψb has dimension 2n−n−1. Then they need to add the following

collection of n games (vb{i})i∈N such that:

vb{i}(S) =





1

b|S|
if i ∈ S and S 6= N

|N | if S = N

0 otherwise.

In another recent study, Faigle and Grabish (2016) employed the change of basis underlying

isomorphic linear operators to construct new bases for the space of games and for the kernel

of linear values from existing linear representations of games. Starting from the Shapley

interaction transform of Grabisch (1997), Faigle and Grabish obtain the basis (bT )T⊆N,|T |6=1

for the kernel of the Shapley value specified by

bT (S) =

|S∩T |∑

j=0

(|S ∩ T |
j

)
B|T |−j,

where B0, B1, . . . are the cumbersome Bernoulli numbers.
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While conceptually interesting, the approaches discussed in this section provide less im-

mediate game theoretic intuitions for the kernel of the Shapley value.

7. Other Games in the Kernel of the Shapley Value

For any oligarchy O ∈ O and every nonempty set K ⊆ {1, 2, . . . , |O| − 1}, the game wOK

defined by

(3) wOK(S) =





1 if |S ∩O| ∈ K

0 otherwise

delivers Shapley value 0 to all players. This follows from the linearity of the Shapley value

and the observation that each such game can be decomposed into factious oligarchic games

with parameters in K,

wOK =
∑

k∈K
wOk .

In particular, note that dog eat dog, scapegoat, and fictitious oligarchic games are all special

instances of this set of games in which K is a singleton.

One interesting subset of the games wOK is obtained by setting K = {1, 2, . . . , |O| − 1} for

every O ∈ O. Specifically, define the (dysfunctional) wolf pack game w̃O for oligarchy O as

follows:

w̃O(S) =





1 if 1 ≤ |S ∩O| ≤ |O| − 1

0 otherwise.

In dysfunctional wolf pack games, a coalition is productive only if it involves some but not

all oligarchs—the “wolf pack” cannot coordinate as a whole. In light of the rich set of bases

identified by Theorem 1, it is worth pointing out that the 2n−n−1 wolf pack games obtained

by varying the composition of the oligarchy are not always linearly independent and hence

do not span the kernel of the Shapley value. For instance, for n = 4, one can check that the

sum of all wolf pack games with oligarchies of size two is identical to the sum evaluated for

oligarchies of size three.

Wolf pack games lie at the opposite end on the spectrum of dissent among oligarchs

from dog eat dog games: every subset of oligarchs except for the entire oligarchy operates

effectively in wolf pack games, while no two oligarchs can cooperate successfully in dog

eat dog games. Yokote and Funaki (2015) consider an intermediate level of power struggle
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among oligarchs whereby only coalitions formed by half of the oligarchs are effective. This

corresponds to setting K = {|O|/2} for |O| even and K = {(|O|+ 1)/2} for |O| odd in (3).

Theorem 4 implies that this set of games augmented with the set of trivial games constitutes

a basis for the kernel of the Shapley value. Yokote and Funaki employ the decomposition

of games in this basis to identify games for which the Shapley value coincides with the

prenucleolus.

8. Proofs

Proof of Theorem 1. Since dog eat dog games and scapegoat games are families of factious

oligarchic games with two special power functions f—the former specified by f(O) = 1 for

all O ∈ O, and the latter by f(O) = |O|−1 for all O ∈ O—the statements about dog eat dog

games and scapegoat games are implied by the one about general factious oligarchic games.

To prove the statement regarding factious oligarchic games, fix a power structure f and

consider the family of factious oligarchic games (wOf )O∈O it generates. By Theorem 3, the

elements of the family (wOf )O∈O are linearly independent. Since this family contains exactly

2n − n − 1 games, it spans a linear space of dimension 2n − n − 1. In Section 3, we have

argued that K(φ) = {v|φ(v) = 0} is a linear subspace of R2N\{∅} of dimension 2n − n − 1

that contains all factious oligarchic games, including the ones in (wOf )O∈O. Since the space

spanned by (wOf )O∈O has dimension 2n − n − 1, it must coincide with K(φ). Therefore,

(wOf )O∈O constitutes a basis for K(φ).

Finally, the conclusion that the space of paper tiger games is identical to K(φ) follows

from the finding that K(φ) spans the set of scapegoat games and the arguments provided

after the definition of paper tiger games. �

Proof of Theorem 3. Fix a power structure f and consider the family of 2n− 1 oligarchic

games (wOf )O∈2N\{∅} it generates. To establish that the family (wOf )O∈2N\{∅} forms a basis

for the (2n − 1)-dimension space of all games, it is sufficient to show that the games in the

family are linearly independent.

We first argue that the oligarchic game for oligarchy O with parameter k can be decom-

posed in the basis of unanimity games as follows:

wOk =
∑

S⊆O,|S|≥k
(−1)|S|−k

(|S|
k

)
uS.
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We need to show that for every coalition T ⊆ N ,

(4) wOk (T ) =
∑

S⊆O,|S|≥k
(−1)|S|−k

(|S|
k

)
uS(T ).

Fix a coalition T , and let T ′ = T ∩O and t = |T ′|.
Clearly, if t < k, then wOk (T ) = wOk (T ′) = 0 and uS(T ) = uS(T ′) = 0 for S ⊆ O such that

|S| ≥ k. Hence, for t < k, both sides of equation (4) equal zero.

Suppose now that t ≥ k. We can rewrite the right-hand side term in equation (4) as

follows:

∑

S⊆O,|S|≥k
(−1)|S|−k

(|S|
k

)
uS(T ) =

∑

S⊆O,|S|≥k
(−1)|S|−k

(|S|
k

)
uS(T ′)

=
∑

S⊆T ′,|S|≥k
(−1)|S|−k

(|S|
k

)

=
t∑

s=k

(−1)s−k
(
s

k

)(
t

s

)

=
t∑

s=k

(−1)s−k
(
t

k

)(
t− k
s− k

)

=

(
t

k

) t−k∑

s=0

(−1)s
(
t− k
s

)

=

(
t

k

)
(1− 1)t−k.

The first equality follows from uS(T ) = uS(T ∩ S) = uS(T ∩ O) = uS(T ′) for S ⊆ O, the

second relies on the fact that uS(T ′) = 1 if S ⊆ T ′ and uS(T ′) = 0 otherwise (along with

T ′ ⊆ O), and the third accounts for the number
(
t
s

)
of sets S ⊆ T ′ with |S| = s ≥ k given

that |T ′| = t. The fourth equality uses the formulae

(
s

k

)(
t

s

)
=

s!

k!(s− k)!

t!

s!(t− s)! =
t!

k!(s− k)!(t− s)!

=
t!

k!(t− k)!

(t− k)!

(s− k)!(t− s)! =

(
t

k

)(
t− k
s− k

)
,

while the fifth one simply changes the variable s − k to s. The final equality follows from

the binomial formula.

For t ≥ k, claim (4) then follows from noting that
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• if t = k, then
(
t
k

)
(1− 1)t−k = 1 = wOk (T );

• if t > k, then
(
t
k

)
(1− 1)t−k = 0 = wOk (T ).

We are now prepared to show that the games (wOf )O∈2N\{∅} are linearly independent.

Consider any linear order � on 2N \ ∅ extending the partial order (2N \ ∅,⊇) and construct

the (2n − 1) × (2n − 1) matrix of coordinates of the games of (wOf )O∈2N\∅ in the basis of

unanimity games (uT )T∈2N\{∅}. This matrix is lower-triangular since the coordinates of wOf

associated with uT are zero whenever T � O. Moreover, each diagonal element in the matrix

takes the form

(−1)|O|−f(O)

( |O|
f(O)

)
6= 0.

Consequently, the matrix has full rank, which delivers the result. �

9. Conclusion

We introduced several classes of cooperative games in which the Shapley value yields zero

payoffs to all players. These games deliver a rich set of bases for the kernel of the Shapley

value and lead to multiple characterizations of games with identical Shapley values. Building

on these games, we were able to provide new intuitive axiomatizations of the Shapley value.

We explained how each basis of the kernel of the Shapley value can be enlarged to create

a basis for the space of all games. Many of the games we presented admit straightforward

game theoretic interpretations. However, some of the games require a deeper understanding

of the power structure they induce among coalitions. It would be useful to develop more

connections between the various bases of the kernel of the Shapley value.
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