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Abstract

We study the relationship between two cooperative games which arise from very dif-
ferent situations. On the one hand, the labeled network game which is defined to study
how to allocate a certain flow in a network among agents that control different parts of
the network. On the other hand, the museum pass game which is defined to analyze how
to distribute the profit obtained from the use of passes which provide visitors unlimited
access to the collaborating museums. We establish that both problems are related in
the sense that a museum pass game can be written as a labeled network game and some
labeled network games can be written as museum pass games.
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1 Introduction

Many articles in the literature analyze different network models from a game theoretical point
of view (see, for example, Jackson and Zenou, 2014). Some network games related to labeled
network games are the so-called flow games. These games were first introduced by Kalai and
Zemel (1982). In flow games the directed arcs of a network with a source node and a sink
node are controlled by different agents and the worth of a coalition is the total flow that can
be sent from the source to the sink throughout the arcs controlled by the members of the
coalition. These games coincide with the class of non negative totally balanced games (Shapley
and Shubik, 1969). Derks and Tijs (1985, 1986) extended flow games to the case of multi-
commodity flow situations. Curiel et al. (1989) studied flow games with committee control and
Reijnierse et al. (1996) analyzed simple flow games. All these networks games are cooperative
games. In Guha et al. (2018) non cooperative multi-player flow games are studied.

In this note, we consider labeled networks as those used in Algaba et al. (2019b), in which
there is one perfectly divisible unit of flow or traffic to allocate between different nodes of
the network. Multiple arcs connecting two nodes are allowed, for this reason they are labeled
in order to distinguish each other. The part of the unit of flow between two nodes can go
throughout different routes and this is known due to different reasons, for example, the real
flow is observed during a time window. In the network there are agents that control different
sets of labels. Thus, the set of arcs of the network is partitioned among the agents. The worth
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obtained by a coalition of agents is the part of the unit of flow that they can obtain by using
only their arcs. This network model is more general than the one introduced by Algaba et al.
(2019a) to study the profit allocation problem in horizontal cooperation in public transport
systems. Note also that the flow is fixed as exogenous.

The museum pass problem was originally posed by Ginsburgh and Zang (2003) and devel-
oped by Béal and Solal (2010), Casas-Méndez et al. (2011), Wang (2011) and Bergantiños and
Moreno-Ternero (2015 and 2016), among others. The museum pass game models how to share
the profit that a coalition of museums can obtain when they offer a limited time subscription
or access pass allowing unlimited usage of their museums. Museum games are convex (Shapley,
1971) and their Shapley values (Shapley, 1953) have a simple expression.

The main goal is to prove that labeled network games and museum pass games are closely
related. Therefore, labeled network games are convex and their Shapley values can be easily
calculated.

The rest of the article is organized as follows. In Section 2, we recall some basic elements
of cooperative game theory and introduce the labeled network game and the museum pass
game. Section 3 is devoted to establish the relation between the labeled network game and the
museum pass game.

2 Preliminaries

Cooperative games In this section, we recall some basic elements of cooperative game
theory. A cooperative game with transferable utility or TU-game, is a pair (N, v), where N
denotes the finite set of players and v : 2N → R the characteristic function, with v(∅) = 0. A
group of players S ⊆ N is called a coalition and v(S) is the worth obtained by a coalition, i.e.,
what the agents in S may obtain by themselves.

A cooperative game (N, v) is said to be convex if for all S ⊂ T ⊆ N \ {i}, it holds that

v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T ).

The convexity property reflects a snowball effect, i.e., the larger is the coalition the higher is
the contribution. Therefore, for this kind of games the collaboration is very profitable because
the players can increase significantly the total profit.

Given a TU-game (N, v), an allocation or payoff vector is a vector (xi)i∈N ∈ Rn assigning
to player i ∈ N the amount xi. An allocation (xi)i∈N ∈ Rn is efficient if

∑
i∈N xi = v(N), and

it is coalitionally rational if
∑

i∈S xi = x(S) ≥ v(S), for each S ⊆ N . The set of all efficient
allocations that satisfy coalitional rationality is called the core (see Gillies, 1953 and 1959,
Shapley, 1955 and Zhao, 2018) and is denoted by core(N, v).

A solution for TU-games is a function ψ that assigns a payoff vector ψ(N, v) to every TU-
game. One of the most used solutions is the Shapley value (Shapley, 1953) that assigns to each
player the average of all her marginal contributions with respect to all possible coalitions of
players. Formally, for each i ∈ N ,

φi(N, v) =
∑

S⊆N\{i}

s!(n− s− 1)!

n!
(v(S ∪ {i})− v(S)) ,

where s = |S| and n = |N |.
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Labeled network allocation problems The labeled network allocation problem (see, Al-
gaba et al., 2019b) is given by the 3-tuple LN = (N, N,L) where N = (G,R, f) is a network with
G = (V, L,A) such that V is the set of nodes, L is the set of labels and A ∈ N ×N ×L is a set
of labeled arcs (consisting of an arc together with a label); R is a set of labeled routes5 between
nodes of V , and f : R→ [0, 1] is the distribution of one unit of flow among all labeled routes in
R such that

∑
r∈R f(r) = 1. The finite set N of cardinality n contains the agents controlling the

different labels of the problem as indicated by the partition of the labels L = {L1, L2, ..., Ln}.
We simply assume that Li 6= ∅ for each i ∈ N .

With each labeled network allocation problem, we may associate a labeled network game
(N, vLN) defined as follows

vLN(S) =
∑

r∈R:L(r)⊆
⋃

i∈S Li

f(r), ∀ S ⊆ N, (1)

where L(r) is the set of different labels in labeled route r.
We conclude this paragraph with the following remarks. First, note the following with regard

to the structure of the characteristic function. On the one hand, the characteristic function
measures the part of the unit of flow using the feasible labeled routes provided exclusively by
agents in coalition S or alternatively, the probability that the flow goes along a labeled route
provided exclusively by agents in coalition S. On the other hand, vLN(N) = 1 because we sum
up all parts of the unit of flow or all probabilities of an exhaustive set of disjoint independent
events.

Museum pass problems The museum pass game was introduced by Ginsburgh and Zang
(2003). The museum pass problem is given by the 3-tuple M = (N,M,K), where N is the set
of museums participating in the pass program, M is the set of customers having bought a pass
(i.e. the set of pass holders) and K : M → N specifies the set of museums K(j) ⊆ N visited
by customer j ∈M .

With each museum pass problem, we may associate a museum pass game (N, vM) defined
as follows

vM(S) =
∑

j∈M :K(j)⊆S

1, S ⊆ N. (2)

Note that vM(S) counts the number of pass holders who only visited some or all museums in
coalition S. Assuming that the price of a pass is normalized to unity, this quantity is equivalent
to the total revenue generated by a pass program allowing visits of museums in S only.

3 Relation between the labeled network game and the

museum pass game

In this section, we study the relation between the labeled network game and the museum pass
game. We establish certain relationships between both classes of games. These relationships
allow us to conclude that labeled network games are convex and to obtain a simple expression
for the Shapley value of these games.

5A labeled route connecting two nodes i, j ∈ V in a labeled graph (V,L,A) is a sequence of labeled arcs
{(i, i1, l1), (i1, i2, l2), ..., (ik−1, j, lk)} ⊆ A.
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To begin with, for each museum pass problem, we show that it is possible to construct an
associated labeled network allocation problem with the same player set in such a way that
the resulting museum pass game and labeled network game are proportional, i.e. they are
multiplicatively connected to a constant.

Lemma 1. Each museum pass problem is TU-proportional to a labeled network allocation
problem: for each M, there is LN(M) such that vLN(M) = cvM for some constant c ∈ R++.

Proof. Let M = (N,M,K) be any museum pass problem. Let us construct a labeled network
allocation problem LN(M) as follows. As a start, the set of players N is the same in M and LN(M).
Next, we consider the labeled network (N,R, f) where G = (V, L,A) is such that

• V = N ∪ {n+ 1},

• L = N ,

• A = {(i, j, i)) : i < j; i, j ∈ N} ∪ {(n, n+ 1, n)}.

Let us also define R = {{(i1, i2, i1)(i2, i3, i2), . . . , (ip−1, ip, ip−1)(ip, ip+1, ip)}, i1 < i2 < · · · < ip <
n+ 1, p = 1, 2, . . . , n} and f as:

f(r) =
|{j ∈M : K(j) = L(r)}|

|M |
, ∀r ∈ R. (3)

Furthermore, we take the partition of the labels as L with Li = {i} for all i ∈ N , i.e., this
partition contains all singletons. Since there are |M | customers, it is clear that

∑
r∈R f(r) = 1

and f(r) = 0 if r /∈ R. This implies that LN(M) is a labeled network allocation problem.
It remains to prove that vM = cvLN(M) for some constant c ∈ R++. So pick any coalition

S ⊆ N . By (1), (3) and the fact that Li = {i} for each i ∈ N , we have

vLN(M)(S) =
∑

r∈R:L(r)⊆∪i∈SLi

f(r)

=
∑

r∈R:L(r)⊆S

|{j ∈M : K(j) = L(r)}|
|M |

=
1

|M |
∑

j∈M :K(j)⊆S

|{j ∈M : K(j) = L(r)}|

=
1

|M |
vM(S),

where the third equality comes from the condition K(j) = L(r) in (3). Hence, the proof is
complete by setting c = 1/|M |.

Similarly, for a generic class of labeled network allocation problems, we show that it is
possible to construct an associated museum pass problem with the same player set in such a
way that the resulting labeled network game and museum pass game are proportional. We
only need to impose the following minor restriction on a labeled network problem. A labeled
network problem (N, N,L) with N = (G,R, f) is called rational if f(r) ∈ Q for each labeled
route r ∈ R.

Lemma 2. Each rational labeled network problem is TU-proportional to a museum pass prob-
lem: for each LN, there is M(LN) such that vM(LN) = cvLN for some constant c ∈ R++.
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Proof. Let LN = (N, N,L) with N = (G,R, f) and G = (V, L,A) be any rational labeled network
problem. Since f(r) ∈ Q for each r ∈ R, there is a function F such that F (r) ∈ N for each
r ∈ R and

F (r′)∑
r∈R F (r)

= f(r′), ∀r′ ∈ R. (4)

From LN, we construct the museum pass problem M(LN) = (N,M,K) as follows. The set of
players N is the same in LN and M(LN). The set of pass holders contains

∑
r∈R F (r) customers

and can be partitioned into |R| types of customers, one for each feasible labeled route in R. For
each type of customers r, there are exactly |F (r)| customers. Therefore, each customer j in M
has an associated labeled route rj and each labeled route r has |F (r)| customers. Finally, for
each customer j ∈M define

K(j) = {i ∈ N : Li ∩ L(rj) 6= ∅}. (5)

We shall prove that vLN = cvM(LN) for some constant c ∈ R++. Choose any coalition S ⊆ N . By
(2), the fact that there are F (r) identical customers for each r ∈ R, (5) and (4), we have

vM(LN)(S) =
∑

j∈M :K(j)⊆S

1

=
∑

r∈R:{i∈N :Li∩L(r)6=∅}⊆S

F (r)

=
∑

r∈R:L(r)⊆∪i∈SLi

F (r)

=
∑
r′∈R

F (r′)
∑

r∈R:L(r)⊆∪i∈SLi

f(r)

=
∑
r′∈R

F (r′)vLN(S).

Thus, setting c =
∑

r′∈R F (r′) completes the proof.

Note that if we apply the procedure used in Lemma 1 to the museum pass problem defined
in Lemma 2, we do not obtain, in general, the original graph G = (V, L,A) of the initial rational
labeled network, but a labeled network problem with the same feasible labeled routes. However,
if we apply the procedure used in Lemma 2 to the labeled network defined in Lemma 1, which is
easy to check that it is rational, we obtain the original museum pass problem up to a constant
for the number of visitors, as in the following example.

Example 1. Consider the following museum pass problem: N = {n1, n2}, M = {m1,m2,m3},
K(m1) = {n1}, K(m2) = {n2}, K(m3) = {n1, n2}. The associated network is:

����
n1

n1 ����
n2

n2 ����
n3

The labeled routes are: r1 = {(n1, n2, n1)}, r2 = {(n2, n3, n2)}, r3 = {(n1, n2, n1)(n2, n3, n2)}
and f(r1) = f(r2) = f(r3) = 1

3

Going from the network to the museum pass problem, we may define F (r1) = F (r2) =
F (r3) = k for some k ∈ N in order to obtain a museum pass problem with 3k customers, which
coincides with the original one only if k = 1.
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The immediate consequence of Lemmas 1 and 2 is the following result.

Theorem 1. The classes of rational labeled network games and museum pass games are the
same except for the product by a positive constant.

We conclude this article with several remarks.
First, from Theorem 1, we can conclude that rational labeled network games are convex.

They are even totally positive (Vasil’ev, 1975), i.e. all Harsanyi dividends (Harsanyi, 1959) are
non-negative. Obviously, not all totally positive games can be generated by rational labeled
network problems. If the museum pass problem is augmented by the price p ∈ R++ of a pass,
then the class of museum pass games coincides with the class of totally positive games.

Second, the Shapley value of a rational labeled network game (N, vLN) can be written for
each i ∈ N as follows:

φi(N, v
LN) =

∑
r∈R

f(r)

|L(r)|
δi(L(r)),

where δi(L(r)) = 1, if Li ∩ L(r) 6= ∅, and δi(L(r)) = 0, otherwise. More generally, the link
between museum pass games and rational labeled network games established in Theorem 1
also extends to solutions for TU-games ψ that are homogeneous, that is ψ(N, cv) = cψ(N, v)
for each TU-game (N, v) and any real number c ∈ R. The Shapley value is only one among
numerous homogeneous solutions for TU-games.

Third, the Shapley value of a rational labeled network game lies in its core (Shapley, 1971).
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IFAAMAS, 104-112.

Harsanyi JC (1959) A bargaining model for cooperative n-person games. In: Tucker,
A. W., Luce, R. D. (Eds.), Contributions to the Theory of Games IV. Princeton
University Press, pp. 325-355.

Jackson M, Zenou Y (2014) Games on networks, in Handbook of Game Theory
(Zamir S, Young P). North Holland (Elsevier), vol. 4, Chapter 3, 89 pages.

Kalai E, Zemel E (1982) Totally Balanced Games and Games of Flow. Mathematics
of Operations Research, 7:476-478.

Reijnierse JH, Maschler MB, Potters JAM, Tijs SH (1996). Simple flow games.
Games and Economic Behavior, 16:238-260.

Shapley LS (1953) A Value for n-person Games, Annals of Mathematical Studies
28: 307-317.

Shapley, L. (1955), Markets as cooperative games, Rand Corporation Papers P-629,
1-5.

Shapley LS (1971) Cores of convex games, International Journal of Game Theory
1: 11-26.

Shapley LS, Shubik M (1969) On market games. Journal of Economic Theory,
1:9-25.

Vasil’ev VA (1975) The Shapley value for cooperative games of bounded polynomial
variation (in Russian). Optimizacija, 17:5-27.

Wang Y (2011) A museum cost sharing problem, American Journal of Operations
Research 1: 51-56.

Zhao J (2018) Three little-known and yet still significant contributions of Lloyd
Shapley, Games and Economic Behavior 108:592-599.

7


