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Abstract

This note introduces three variant of existing axioms in which equal players are replaced by neces-
sary players, i.e. players such that each coalition not containing such a player enjoys a zero worth.
As an example, we weaken the axiom of equal treatment of equals by requiring that two necessary
players obtain the same payoff. We highlight that necessary players can replace equal players in
many well-known axiomatic characterizations, but not in all. In addition, we provide new char-
acterizations of the Shapley value, the class of positively weighted Shapley values, the Solidarity
value and the Equal Division value. This sheds a new light on the real role of equal treatment of
equals in the axiomatic literature.

Keywords: Necessary players, equal players, mutually dependent players, equal treatment of
necessary players, (weighted-)Shapley value, Equal Division value, Solidarity value.

1. Introduction

The axiom of equal treatment of equals is essential in axiomatic studies and in particular in
cooperative game theory where it imposes that two players with the same marginal contributions
to coalitions obtain the same payoff. The most well-known sharing rules for cooperative games,
such as the Shapley value (Shapley, 1953), the Solidarity value (Nowak and Radzik, 1994), the
Equal Division value and the Equal Surplus Division value all satisfy this axiom. Such values are
often characterized by equal treatment of equals together with extra axioms.

In recent years, several works have tried to eliminate the unnecessary requirements in axiomatic
studies in order to pinpoint the minimal associations of axioms that can characterize a sharing
rule. Not surprisingly, this recent literature has been very active with regard to the Shapley value.
Casajus (2011) introduces a differential version of the axiom of marginality (Young, 1985), Yokote
and Kongo (2017) and Yokote et al. (2018) weaken the axiom of balanced contributions (Myerson,
1980), Casajus (2018, 2019) weakens equal treatment of equals by requiring only identical signs for
the payoffs of equal players or mutually dependent players, among others. To sum up, there are
perhaps two ways to weaken the axiom of equal treatment of equals: weakening the requirement
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of the axiom by imposing equal signs instead of equal payoffs and restricting the set of players to
which this requirement applies by considering only certain equal players but not all.

The present note is in line with this recent literature: we focus on the second approach, even
if we sometimes combine both. Instead of equal players, we only consider necessary players.1 A
player is necessary if each coalition without this player has a null worth. The first axiom involving
necessary players comes from van den Brink and Gilles (1996) in the context of games with a
permission structure. The veto equal loss property invoked in van den Brink and Funaki (2009)
is, to the best of our knowledge, the sole axiom in classical cooperative games involving necessary
players so far. Necessary players also emerge naturally in some applications. As an example, Dehez
and Ferey (2013) study sequential liability games in which each member of the group of initial
tortfeasors is a necessary player. Other such applications, in particular in operations research, are
listed in Arin and Feltkamp (1997) and emphasize the importance of analyzing necessary players
from a theoretical point of view.

In this note, we offer a complete comparison between necessary and equal players, which in
particular clarifies the exact role of equal treatment of equals in the axiomatic literature. This
study relies on the introduction of new axioms involving necessary players. Our results answer the
following three questions.

1. Do the characterizations in which equal players are treated equally persist when only neces-
sary players are treated equally?

2. Do the characterizations in which the payoffs of equal players must have the same sign persist
when it is only required that the payoffs of necessary players have the same sign?

3. Do the characterizations in which an axiom dealing with equal coalitions (instead of equal
players) persist when only necessary coalitions are considered?

In order to answer question 1, we introduce the axiom of equal treatment of necessary players
and prove that this axiom is weaker than the axiom of equal treatment of equals, even in presence
of natural extra axioms such as efficiency, linearity, monotonicity (Kalai and Samet, 1987) and
coalitional monotonicity. This highlights that equal treatment of necessary players cannot replace
equal treatment of equals in the characterization of the large family of sharing rules satisfying
linearity, efficiency and equal treatment of equals by Ruiz et al. (1998) and in the characterization
of the family of procedural values by Malawski (2013). We also prove that any sharing rule
satisfying equal treatment of necessary players together with linearity and self-duality also satisfies
equal treatment of equals. We also highlight that equal treatment of necessary players can replace
equal treatment of equals in the characterizations of the Shapley value by Shubik (1962) and Young
(1985), of the Equal Division value in van den Brink (2007) and of the Solidarity value in Nowak
and Radzik (1994), among others. The proofs of several of these results are immediate while others
need some adaptation. The axiom of equal treatment of necessary players has already been studied
recently by Navarro (2019) for cooperative games enriched by a communication graph, who shows
that this axiom is at the origin of the fairness axiom satisfied by the Myerson value (Myerson, 1977).
It has also been used by Manuel et al. (2020) to offer a characterization of the Myerson value, the
between groups Myerson value and the within groups Myerson value (González-Arangüena et al.,
2017).

In order to answer question 2, we introduce the axiom of equal sign for necessary players, which
imposes that the payoffs of two necessary players have the same sign. This axiom is weaker than the

1Necessary players are also called veto players, especially in simple games (see for instance Sprumont, 1990).
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axioms of sign symmetry (identical signs for the payoffs of equal players) and weak sign symmetry
(identical signs for the payoffs of mutually dependent players) introduced in Casajus (2018, 2019).
We prove that the characterization of the class of positively weighted Shapley values in Casajus
(2019) is still valid when weak sign symmetry is replaced by equal sign for necessary players.

The answer of question 3 relies on two coalitional variant of equal treatment of necessary players
that are similar to those studied in Béal et al. (2019). In that article, equal coalitions are considered
instead of equal players and two axioms are introduced: one requiring the same total payoff for two
equal coalitions, one requiring the same average payoff within two equal coalitions. We propose two
similar axioms in which necessary coalitions replace equal coalitions: equal treatment of necessary
coalitions and average equal treatment of necessary coalitions. We confirm two results in Béal et al.
(2019) by showing that there is no sharing rule satisfying equal treatment of necessary coalitions
and efficiency while the Equal Division value is the unique sharing rule that satisfies efficiency,
linearity and average equal treatment of necessary coalitions.

The rest of the note is organized as follows. Section 2 provide definitions. Section 3 introduces
the axiom of equal treatment of necessary players and compares it with equal treatment of equals, in
particular by revisiting existing characterizations of the Shapley value, Solidarity value and Equal
Division value. Section 4 introduces the axiom of equal sign for necessary players and provides a
characterization of the positively weighted Shapley values. Section 5 introduces the two coalitional
variants of equal treatment of necessary players and presents an impossibility result as well as a
characterization of the Equal Division value. Section 6 concludes with some remarks.

2. Preliminaries

Throughout this note, we fix a finite player set N = {1, . . . , n} with n ≥ 2. Any subset S of
N is called a coalition and its cardinality is denoted by s. A coalitional game with transferable
utility (simply game henceforth) on N is a characteristic function v : 2N → R such that v(∅) = 0.
Let Γ be the set of all those games on N . We call unanimity game induced by R the game uR with
uR(S) = 1 if R ⊆ S and uR(S) = 0 otherwise. It is well-known that the set of unanimity games is
a basis for the set of games Γ. More specifically, for each v ∈ Γ:

v =
∑

S⊆N :S 6=∅

∆v(S)uS

where ∆v(S) is called the Harsanyi dividend of coalition S and can be defined recursively by setting
∆v(S) = v(S)−

∑
T(S,T 6=∅∆v(T ). The Dirac game induced by R is the game δR with δR(S) = 1

if R = S and δR(S) = 0 otherwise. The set of Dirac game is obviously another basis for the set of
games Γ since

v =
∑

S⊆N :S 6=∅

v(S)δS .

Two players i, j ∈ N are equal in the game v if v(S ∪ {i}) = v(S ∪ {j}) for each S ⊆ N \ {i, j}.
A player i ∈ N is necessary in game v if v(S) = 0 for each S ⊆ N \ {i}. A player i ∈ N is null
in game v if v(S ∪ {i}) = v(S) for each S ⊆ N \ {i}. A player i ∈ N is nullifying in game v if
v(S ∪ {i}) = 0 for each S ⊆ N \ {i}. Two players i, j ∈ N are mutually dependent in a game v
if, for each S ⊆ N \ {i, j}, v(S ∪ {i}) = v(S) = v(S ∪ {j}). A coalition S is necessary if v(T ) = 0
for each T ⊆ N \ S. The average marginal contribution of the players in coalition S is denoted by
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Av(S) =
∑

k∈S
[
v(S) − v(S \ {k})

]
/s. A player i ∈ N is A-null in game v if Av(S) = 0 for each

S ⊆ N such that i ∈ S.
A permutation π on N assigns a position π(i) ∈ {1, . . . , n} to each player i ∈ N . The coalition

containing player i and the set of its predecessors in π is denoted by P πi = {j ∈ N : π(j) ≤ π(i)}.
Let Π be the set of n! permutations on N . Given v ∈ Γ and π ∈ Π, πv ∈ Γ is defined as: for
each nonempty S ⊆ N , πv(∪i∈Sπ(i)) = v(S). For each games v, w ∈ Γ and α ∈ R, the game
(v + αw) ∈ Γ is such that, for each S ⊆ N , (v + αw)(S) = v(S) + αw(S). A game v ∈ Γ is
monotone if v(S) ≤ v(T ) for each S ⊆ T . For each v ∈ Γ, the dual game (Kalai and Samet, 1987)
of v is the game vD ∈ Γ such that, for each S ⊆ N , vD(S) = v(N)− v(N \ S).

A sharing rule on Γ is a function ψ which associates to each game v ∈ Γ a vector ψ(v) ∈ RN
describing the payoffs that the players receive for participating in v. The following sharing rules
are well-known. The Shapley value (Shapley, 1953) is the sharing rule Sh such that, for each v ∈ Γ
and each i ∈ N ,

Shi(v) =
∑

S⊆N :S3i

(s− 1)!(n− s)!
n!

[
v(S)− v(S \ {i})

]
,

Let ω ∈ RN++ be a positive weight vector onN . The positively weighted Shapley value associated
with ω (Kalai and Samet, 1987) is the Sharing rule Shω such that, for each v ∈ Γ and each i ∈ N ,

Shωi (v) =
∑

S⊆N :S3i

ωi∑
j∈S ωj

∆v(S).

The Shapley value is the positively weighted Shapley value such that ωi = ωj for each i, j ∈ N .
The Solidarity value (Nowak and Radzik, 1994) is the sharing rule Sol such that, for each v ∈ Γ

and each i ∈ N ,

Soli(v) =
∑

S⊆N :S3i

(s− 1)!(n− s)!
n!

Av(S).

The Equal Division value is the sharing rule ED such that, for each v ∈ Γ and each i ∈ N ,

EDi(v) =
v(N)

n
.

The Equal Surplus Division (or the Center of the imputation set in Driessen and Funaki, 1991)
is the sharing rule ESD such that, for each v ∈ Γ and each i ∈ N ,

ESDi(v) = v({i}) +
1

n

v(N)−
∑
j∈N

v({j})

 .
3. Equal treatment of necessary and equal players

We introduce below the axiom of equal treatment of necessary players. This axiom requires
that all players necessary to produce worth shall receive the same payoff.

Equal treatment of necessary players. For each game v ∈ Γ and each player i, j ∈ N who are
necessary in v, it holds that ψi(v) = ψj(v).

4



This axiom is proposed as a relaxation of two widely-used axioms: equal treatment of equals
and symmetry.

Equal treatment of equals. For each game v ∈ Γ and each player i, j ∈ N who are equal in
v ∈ Γ, it holds that ψi(v) = ψj(v).

Symmetry. For each permutation π ∈ Π, each game v ∈ Γ and each i ∈ N , it holds that
ψπ(i)(πv) = ψi(v).

Equal treatment of equals is weaker than symmetry: any sharing rule satisfying symmetry
also satisfies equal treatment of equals, while the converse is not true. Below, we also prove that
equal treatment of necessary players is weaker than equal treatment of equals (and in turn than
symmetry).

Proposition 1 Equal treatment of equals implies equal treatment of necessary players.

Proof. Consider any game v ∈ Γ such that two players i, j ∈ N are necessary in v. This means
that v(S) = 0 for all S ⊆ N such that |S∩{i, j}| < 2. Hence, v(T ∪{i}) = v(T ∪{j}) = 0 whenever
T ⊆ N \ {i, j}, meaning that players i and j are equal in v. Therefore, equal treatment of equals
implies that ψi(v) = ψj(v). �

Next, from any vector of positive weights ω ∈ RN++, construct the game vω ∈ Γ such that

vω(S) =

{
ωiv({i}) if S = {i}, i ∈ N,
v(S) if s ≥ 2.

Now, from any sharing rule f on Γ and any positive weight vector ω, construct the sharing rule
ψf,ω on Γ such that, for each game v ∈ Γ, ψf,ω = f(vω).

Proposition 2 Equal treatment of necessary players does not imply equal treatment of equals.

Proof. Consider any sharing rule f on Γ and any positive weight vector ω. We proceed in
two steps. Firstly, we show that if f satisfies equal treatment of equals, then ψf,ω satisfies equal
treatment of necessary players. Pick any game v in which two players i, j ∈ N are necessary. Since
v(S) = 0 for any S ⊆ N \ {i} and any S ⊆ N \ {j}, it holds that v({k}) = 0 for all k ∈ N . This
implies that vω = v. As a consequence, if f satisfies equal treatment of equals, then ψf,ω satisfies
the equal treatment of necessary players by Proposition 1.

Secondly, we specify f in order to prove that ψf,ω violates equal treatment of equals. For this,
set f = ESD and suppose that not all coordinates of ω are equal. Pick any two players i, j ∈ N such
that ωi 6= ωj and consider any game v in which i and j are equal. Assume further that their singleton

worths are not null. Then, it is clear that ψESD,ωi (v)−ψESD,ωj (v) = ωiv({i})− ωjv({j}) 6= 0 since
v({i}) = v({j}) for two equal players. Finally, note that this second part can be proved by setting
f = Sh or f = Sol instead of f = ESD, but not with f = ED since the Equal Division value is
not sensitive to the worths of singletons. �

At this stage, equal treatment of necessary players may seem very close to equal treatment of
equals. Hence, it is natural to ask whether it is possible that the combination of equal treatment

5



of necessary players and some other axioms implies equal treatment of equals. In the next results,
we provide both negative and positive answers.

A popular class of sharing rules is the class of sharing rules satisfying linearity, efficiency and
equal treatment of equals.

Linearity. For each games v, w ∈ Γ and each real number α ∈ R, it holds that ψ(v + αw) =
ψ(v) + αψ(w).2

Efficiency. For each game v ∈ Γ, it holds
∑

i∈N ψi(v) = v(N).

As an example, Ruiz et al. (1998) provide a formulation of any sharing rule satisfying these
three axioms. Malawski (2013) introduce the so-called class of procedural values introduced as a
relevant subclass of all sharing rules satisfying linearity, efficiency and equal treatment of equals.
A Procedural value is the average of contribution vectors associated with all permutations of the
player set, where, for each permutation and each player, a procedure specifies how the marginal
contribution of this player is shared among herself and all her predecessors in the permutation.
Formally, a procedure l is a collection of nonnegative coefficients ((lp,q)

p
q=1)np=1 such that for each

p ∈ {1, . . . , n},
∑p

q=1 lp,q = 1. The coefficient lp,q specifies the share of player at position q ≤ p
in the marginal contribution of player at position p in the permutation. Obviously, l11 = 1. For
each permutation π ∈ Π, and each v ∈ Γ, the procedure l generates a contribution vector rπ,l(v)
defined, for each i ∈ N , as

rπ,li (v) =
∑

j∈(N\Pπi )∪i

lπ(j),π(i)

(
v(P πj )− v(P πj \ j)

)
. (1)

The Procedural value associated with procedure l is the sharing rule PV l such that, for each v ∈ Γ
and each i ∈ N ,

PV l
i (v) =

1

n!

∑
π∈ΠN

rσ,li (v).

The class of procedural value is a strict subset of all sharing rules satisfy the axioms of linearity,
efficiency and equal treatment of equals: the Shapley value, the Equal Division value and the
Solidarity value are procedural values but not the Equal Surplus Division value. Malawski (2013)
characterizes the class of procedural values by these three axioms together with the axioms of
monotonicity (also known as positivity in Kalai and Samet, 1987) and coalitional monotonicity.

Monotonicity. For each monotone game v ∈ Γ and each i ∈ N , it holds that ψi(v) ≥ 0.

Coalitional monotonicity. For each games v, w ∈ Γ such that v(T ) > w(T ) and v(S) = w(S)
for each S 6= T , and each i ∈ T , it holds that ψi(v) ≥ ψi(w).

Even in the presence of linearity, efficiency, monotonicity and coalitional monotonicity, equal
treatment of necessary players does not imply equal treatment of equals. In other words, equal

2In this note, for simplicity, we always invoke the axiom of linearity even when it can be weakened into the
additivity axiom.
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treatment of necessary players is not a substitute for equal treatment of equals in the characteri-
zation of the class of proceduraal values by Malawski (2013).

Proposition 3 The combination of linearity, efficiency, monotonicity, coalitional monotonicity
and equal treatment of necessary players does not imply equal treatment of equals.

Proof. Consider the sharing rule ψSh,ω as constructed before in Proposition 2 by setting f = Sh
and ω such that ωi ∈ ]0, 1[ for each i ∈ N . Since n ≥ 2, vω(N) = v(N). Thus, if a sharing rule f
satisfies efficiency, then ψf,ω clearly inherits efficiency from f . Similarly, the weight vector being
exogenous (i.e. the weights do not depend on the characteristic function), if f is linear, then ψf,ω is
linear too. Combining these two remarks with the first part of the proof of Proposition 2, we obtain
that for any f satisfying linearity, efficiency and equal treatment of equals, ψf,ω satisfies linearity,
efficiency and equal treatment of necessary players. Hence, ψSh,ω satisfies linearity, efficiency,
equal treatment of necessary players but not equal treatment of equals by Proposition 2. So,
it only remains to show that ψSh,ω satisfies monotonicity and coalitional monotonicity. Firstly,
consider any monotone game v. Since ωi ∈]0, 1[ for each i ∈ N , we have vω({i}) ∈ ]0, v({i})[ for
each i ∈ N and vω(S) = v(S) for each S such that s 6= 1. Therefore, for each i ∈ N and each S ⊆ N
with i ∈ S, 0 = v(∅) ≤ v({i}) ≤ v(S) implies 0 = vω(∅) ≤ vω({i}) < vω(S). This implies that vω
is monotone too. As a consequence, since Sh satisfies monotonicity, ψSh,ω satisfies monotonicity
as well. Regarding coalitional monotonicity, pick two games v, w ∈ Γ such that v(T ) > w(T ) and
v(S) = w(S) for each S 6= T . Since the coordinates of ω are positive, it holds that vω(T ) > wω(T )
and vω(S) = wω(S) for each S 6= T as well. Hence ψSh,ω inherits coalitional monotonicity from
Sh. �

Proposition 3 means that ψSh,ω is not a procedural value. As a corollary, we get that class
of sharing rules satisfying linearity, efficiency and equal treatment of necessary players is strictly
larger than the class of sharing rules satisfying linearity, efficiency and equal treatment of equals.
Below, we temper this negative result by considering the following axiom.

Self-duality. For each game v ∈ Γ, it holds that ψ(v) = ψ(vD).

The Shapley value and the Equal Division value satisfies self-duality, contrary to the Equal
Surplus Division value and the Solidarity value. Malawski (2013) characterizes the procedural
values that satisfy self-duality. This axiom is also invoked in Hernandez-Lamoneda et al. (2008)
and Béal et al. (2016).

Proposition 4 The combination of linearity, equal treatment of necessary players and self duality
implies equal treatment of equals.

Proof. Consider any sharing rule ψ on Γ that satisfies linearity, equal treatment of necessary
players and self-duality. For each S ⊆ N , S 6∈ {∅, N} and each c ∈ R and each i ∈ N , Béal et al.
(2016, Lemma 1 (b)) prove that linearity and self-duality implies that

ψi(c(δS + δN\S)) = 0. (2)

Now, consider any game v ∈ Γ in which two players i and j are equal. Consider any ordering
(Sk)2n−1−1

k=1 of all nonempty coalitions not containing player i. Set v0 = v and define the sequence
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of games (vk)2n−1−1
k=0 such that, for each k = 1, . . . , 2n−1 − 1,

vk = vk−1 − vk−1(Sk)
(
δSk + δN\Sk

)
.

For simplicity, denote by w the final game v2n−1−1. By construction, we have

w(S) =

{
0 if S ⊆ N \ {i},
v(S)− v(N \ S) if i ∈ S. (3)

This implies that i is necessary in w. Now, pick any S ⊆ N \ {j}. There are two cases. If
S ⊆ N \ {i}, then (3) implies that w(S) = 0. If i ∈ S, we can write that

w(S) = v(S)− v(N \ S) = v((S \ {i}) ∪ {j})− v(((N \ S) \ {j}) ∪ {i}) = w((S \ {i}) ∪ {j}) = 0

where the first, third and fourth equalities comes from (3) and the second equality holds since i and
j are equal in v. Combining the two cases, we conclude that j is necessary in w as well. Applying
equal treatment of necessary players in w and 2n−1 − 1 times the invariance in (2) to consecutive
games vk and vk−1, k = 1, . . . , 2n−1 − 1, we get that ψi(v) = ψi(w) = ψj(w) = ψj(v), proving that
ψ satisfies equal treatment of equals. �

In the rest of this section, we show that equal treatment of necessary players can successfully
replace equal treatment of equals in numerous characterizations of well-known sharing rules. Some
of these characterizations single out a unique sharing rule among the class of sharing rules satis-
fying linearity, efficiency and equal treatment of equals by invoking an extra axiom that specifies
the type of player who receives a null payoff. Furthermore, in most of the proofs of these charac-
terizations, equal treatment of equals is applied to pairs of equal players that are also necessary.
Therefore, replacing equal treatment of equals by equal treatment of necessary players can be done
by using proofs that are identical to their original counterparts. We omit such immediate proofs
(for Propositions 5, 6 (i) and 7). It should also be clear that the logical independence of the axioms
in our characterizations follows from that in their original counterparts.

Shubik (1962) provides the modern version of the classical axiomatization of the Shapley value
by linearity, efficiency, equal treatment of equals and the following axiom.

Null player axiom. For each game v ∈ Γ and each player i ∈ N who is null in v, it holds that
ψi(v) = 0.

Another well-known characterization of the Shapley value is proposed by Young (1985) who
invokes the axiom of strong monotonicity in combination with efficiency and equal treatment of
equals.

Strong monotonicity. For each games v, w ∈ Γ and each player i ∈ N such that v(S ∪ {i}) −
v(S) ≥ w(S ∪ {i})− w(S) for each S ⊆ N \ {i}, it holds that ψi(v) ≥ ψi(w).

The aforementioned two characterizations still hold if we swap equal treatment of equals for
equal treatment of necessary players.
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Proposition 5 The Shapley value is the unique sharing rule on Γ that satisfies efficiency, equal
treatment of necessary players and either (i) linearity and the null player axiom or (ii) strong
monotonicity.

Two characterizations of the Equal Division value provided by van den Brink (2007) can be
revisited. The first one invokes efficiency, equal treatment of equals (named symmetry in that
article), linearity and the following nullifying player axiom.

Nullifying player axiom. For each game v ∈ Γ and each player i ∈ N who is nullifying in v, it
holds that ψi(v) = 0.

The second characterization combines efficiency with strong coalitional monotonicity and weak
equal treatment of equals.

Strong coalitional monotonicity. For each pair of games v, w ∈ Γ and each player i ∈ N such
that, for each S ⊆ N with i ∈ S, v(S) ≥ w(S), it holds that ψi(v) ≥ ψi(w).

Weak equal treatment of equals. For each game v ∈ Γ such that all players are equals in v,
there is c ∈ R such that ψi(v) = c for each i ∈ N .

Once again, these results are robust to a replacement of equal treatment of equals by equal
treatment of necessary players.

Proposition 6 The Equal Division value is the unique sharing rule on Γ that satisfies efficiency,
equal treatment of necessary players and either (i) linearity and the nullifying player axiom or (ii)
strong coalitional monotonicity.

Proof. Only the proof of part (ii) needs an adaptation compared to its counterpart in van
den Brink (2007). We already know that ED satisfies the three axioms. For the uniqueness
part, let us divide the set of games Γ into two subsets: the set of non-negative games Γ+ =
{v ∈ Γ : v(S) ≥ 0, ∀S ⊆ N} and the complementary set Γ− = {v ∈ Γ : ∃S ⊆ N with v(S) < 0}.

For any game v ∈ Γ+, let us consider a game w1 ∈ Γ such that w1(S) = 0 for all S ( N
and w1(N) = v(N). By efficiency and the equal treatment of necessary players we have ψi(w1) =
v(N)/n. Since v(S) ≥ w1(S) for any S ⊆ N , strong coalitional monotonicity implies, for each
i ∈ N , that

ψi(v) ≥ ψi(w1) =
v(N)

n
.

Using efficiency, we conclude that ψi(v) = EDi(v) for each i ∈ N .
For any game v ∈ Γ−, let us consider a game w1 ∈ Γ defined as before and a game w2 ∈ Γ

defined as

w2(S) =

{
v(S) if v(S) ≥ 0 or S = N,
0 if v(S) < 0 and S 6= N,

for each S ⊆ N . We have w2(S) ≥ w1(S) for all S ⊆ N . Strong coalitional monotonicity and equal
treatment of necessary players then imply that ψi(w2) ≥ ψi(w1) = v(N)/n for each i ∈ N . By
efficiency, we get that ψi(w2) = v(N)/n for each i ∈ N . It also holds that w2(S) ≥ v(S) for all
S ⊆ N . Again, strong coalitional monotonicity implies v(N)/n = ψi(w2) ≥ ψi(v) for each i ∈ N
and efficiency therefore yields that ψi(v) = v(N)/n = EDi(v) for each i ∈ N . �
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Finally, Nowak and Radzik (1994) offer a characterization of the Solidarity value similar to that
of the Shapley value in Shubik (1962) by replacing the null player axiom by the following axiom
in which A-null players must get zero payoffs.

A-null player axiom. For each game v ∈ Γ and each player i ∈ N who is A-null in v, it holds
that ψi(v) = 0.

A similar characterization is possible by substituting equal treatment of equals for equal treat-
ment of necessary players.

Proposition 7 The Solidarity value is the unique sharing rule on Γ that satisfies linearity, the
A-null player axiom, efficiency and equal treatment of necessary players.

4. Equal sign for the payoffs of necessary and equal players

Casajus (2018, 2019) introduces the axioms of sign symmetry and weak sign symmetry, which
require identical signs for the payoffs of two equal players and two mutually dependent players,
respectively. The obvious difference between sign symmetry and equal treatment of equals is that
equal players may not receive identical payoff. The Shapley value is characterized by efficiency,
sign symmetry and either strong monotonicity (Casajus, 2018) or linearity and the null player
axiom (Casajus, 2019). Furthermore, Casajus (2019) characterizes the class of positively weighted
Shapley values by efficiency, linearity, the null player axiom and weak sign symmetry defined below.
We introduce a weak variant of the sign symmetry and weak sign symmetry which imposes the
same requirement but for pairs of necessary players.

Equal sign for necessary players. For each v ∈ Γ and each i, j ∈ N who are necessary in
v, it holds that sign(ψi(v)) = sign(ψi(v)), where sign : R → {−1, 0, 1} is the function such that
sign(x) = 1 if x > 0, sign(x) = 0 if x = 0 and sign(x) = −1 if x < 0.

Note that two mutually dependent players are equal, while the converse does not hold. Fur-
thermore, two necessary players are mutually dependent. The converse implication is not true.
To see this, construct the game v such that, for two distinct players i, j ∈ N and each coalition
S ⊆ N \{i, j}, v(S) > 0 and v(S∪{i}) = v(S) = v(S∪{j}). Players i and j are mutually dependent
but not necessary in v. Combining these remarks, we obtain that sign symmetry implies weak sign
symmetry, which in turn implies equal sign for necessary players, while the converse implications
do not hold. Below, we prove that equal sign for necessary players is a substitute for weak sign
symmetry in the characterization of the positively weighted Shapley value in Casajus (2019).

Proposition 8 A sharing rule on Γ satisfies linearity, the null player axiom, efficiency and equal
sign for necessary players if and only if it is a positively weighted Shapley value.

It is worth mentioning that a key step in the proofs of Casajus (2018, 2019) rely on games
in which equal or mutually dependent players may not be necessary players. As a consequence,
we cannot mimic these proofs to demonstrate Proposition 8. Instead, we offer a different, but
nonetheless elegant, proof.
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Proof. It is well-known that any positively weighted Shapley value Shω satisfies efficiency,
linearity and the null player axiom. Regarding equal sign for necessary players, consider a game
v such that two players i and j are necessary in v. Since ∆v(S) = 0 for each S ⊆ N such that
{i, j} 6⊆ S, for each k ∈ {i, j}, it holds that

Shωk (v) =
∑

S⊆N :S⊇{i,j}

ωk∑
r∈S ωr

∆v(S) = ωk
∑

S⊆N :S⊇{i,j}

∆v(S)∑
r∈S ωr

.

Hence,
Shωi (v)

Shωj (v)
=
ωi
ωj

> 0,

which implies that either both Shωi (v) > 0 and Shωj (v) > 0 or both Shωi (v) < 0 and Shωj (v) < 0,
proving that sign(Shωi (v)) = sign(Shωi (v)).

For the uniqueness part, consider any sharing rule ψ on Γ that satisfies the four axioms. By
linearity, it is enough to show that fi(uS) = Shωi (uS) = ωi/

∑
j∈S ωj for each S ⊆ N . By the null

player axiom and efficiency, this immediately holds for each S with s = 1. So assume that s ≥ 2.
The null player axiom imposes ψi(uS) = 0 for each i ∈ N \ S, so that efficiency yields∑

i∈S
ψi(uS) = 1. (4)

By equal sign for necessary players, we conclude that ψi(uS) > 0 for each i ∈ S. Next, let us
prove that for each pair of distinct coalitions S, T and each pair of distinct players i, j such that
{i, j} ⊆ S ∩ T , it holds that

ψi(uS)

ψi(uT )
=
ψj(uS)

ψj(uT )
(5)

We proceed by contradiction. So, without any loss of generality, assume that

ψi(uS)

ψi(uT )
>
ψj(uS)

ψj(uT )

for some distinct coalitions S, T and some distinct players i, j such that {i, j} ⊆ S ∩ T . We can
pick a constant

c ∈
]
ψj(uS)

ψj(uT )
,
ψi(uS)

ψi(uT )

[
.

Then, construct the game z = uS − cuT . Since i and j are necessary players in both uS and uT ,
they are necessary players in z too. By linearity and the definition of c, we have

ψi(z) = ψi(uS)− cψi(uT ) > ψi(uS)− ψi(uS)

ψi(uT )
ψi(uT ) = 0

and

ψj(z) = ψj(uS)− cψj(uT ) < ψj(uS)− ψj(uS)

ψj(uT )
ψj(uT ) = 0,

which implies that ψ violates equal sign for necessary players, a contradiction. Now, set ωi = ψi(uN )
for each i ∈ N . For each S ( N with s ≥ 2, (5) implies that

ψi(uS)

ωi
=
ψj(uS)

ωj
.
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Summing on j ∈ S and using (4), the previous equality becomes

ψi(uS) =
ωi∑
j∈S ωj

= Shωi (uS)

for each i ∈ S. This completes the proof. �

The axioms invoked in Proposition 8 are logically independent:

• The null sharing rule satisfies linearity, the null player axiom and equal sign for necessary
players but not efficiency.

• The Equal Division value satisfies linearity, efficiency and equal sign for necessary players
but not the null player axiom.

• The sharing rule ψ which assigns to each game v ∈ Γ and to each i ∈ N the marginal vector
ψi(v) = v({1, . . . , i})−v({1, . . . , i}\{i}) satisfies linearity, efficiency and the null player axiom
but not equal sign for necessary players.

• The sharing rule which coincides with the Shapley value on the class of games with a
nonempty set of null players and with the Equal Division value otherwise satisfies the null
player axiom, efficiency and equal sign for necessary players but not linearity.

5. Equal treatment of necessary and equal coalitions

Another approach investigated by Béal et al. (2019) and Hu (2019) is based on coalitional vari-
ants of equal treatment of equals3. Instead of equal players, these articles consider equal coalitions.
In this section, we consider necessary coalitions instead of necessary players and we introduce two
axioms inspired by those in Béal et al. (2019) can be formulated.

Equal treatment of necessary coalitions. For each game v ∈ Γ and each S, T ⊆ N that are
necessary in v, it holds that

∑
i∈S ψi(v) =

∑
i∈T ψi(v).

Average equal treatment of necessary coalitions. For each game v ∈ Γ and each S, T ⊆ N
that are necessary in v, it holds that

∑
i∈S ψi(v)/s =

∑
i∈T ψi(v)/t.

Equal treatment of necessary coalitions imposes the same total payoff within each necessary
coalition, while average equal treatment of necessary coalitions accounts for the possible differences
in size by relying on the average payoffs. Obviously, these axioms reduce to equal treatment of
necessary players when s = t = 1. The results below are similar to those in Béal et al. (2019) but
with different proofs.

Proposition 9 There is no sharing rule on Γ that satisfies efficiency and equal treatment of
necessary coalitions.

3The axioms are slightly more general in that they compare players and coalitions with respect to the desirability
relation, but they imply equal treatment of equals.
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Proof. Consider the unanimity game uN . Since all players are necessary, equal treatment of
necessary coalitions and efficiency imply that ψi(uN ) = 1/n for each i ∈ N . Moreover, for any
pair {i, j} of distinct players and any T ⊆ N \ {i, j}, uN (T ) = 0, which means that {i, j} is
a necessary coalition. Applying equal treatment of necessary coalitions to {i, j} and {j} yields
that ψi(uN ) + ψj(uN ) = ψj(uN ), or equivalently that ψi(uN ) = 0, a contradiction with the above
equality ψi(uN ) = 1/n. �

Proposition 10 The Equal Division value is the unique sharing rule on Γ that satisfies efficiency,
linearity and average equal treatment of necessary coalitions.

Proof. It is easy to check that the Equal Division value satisfies average equal treatment of
necessary coalitions (in addition to efficiency and linearity). For the uniqueness part, let ψ be any
sharing rule on Γ that satisfies the three axioms. By linearity, it is enough to show that ψ(δS) is
uniquely determined for each nonempty S ⊆ N . Pick any i ∈ S. For each T ⊆ N \ {i}, δS(T ) = 0,
which implies that {i} is a necessary coalition. Furthermore, N is trivially a necessary coalition.
An application of average equal treatment of necessary coalitions to {i} and N yields that

ψi(δS) =
1

n

∑
j∈N

ψj(δS),

so that efficiency implies ψi(δS) = δS(N)/n for each i ∈ S. For each j ∈ N \ S (if any), each
i ∈ S and each T ⊆ N \ {i, j}, it holds that δS(T ) = 0. Thus, {i, j} is another necessary coalition.
Applying average equal treatment of necessary coalitions to {i, j} and N and efficiency yield that

1

2

(
ψi(δS) + ψj(δS)

)
=
δS(N)

n
,

and since we already found that ψi(δS) = δS(N)/n, we conclude that ψj(δS) = δS(N)/n for each
i ∈ N \ S. �

The axioms invoked in Proposition 10 are logically independent:

• The null sharing rule satisfies linearity and average equal treatment of necessary coalitions
but not efficiency.

• The Shapley value satisfies efficiency and linearity but not average equal treatment of neces-
sary coalitions.

• The sharing rule which coincides with the Shapley value on the class of games in which N is
the unique necessary coalition and with the Equal Division value otherwise satisfies efficiency
and average equal treatment of necessary coalitions but not linearity.

6. Concluding remarks

The results presented in section 3 are only a few examples from the wide range of characteri-
zations in which equal treatment of necessary players can replace equal treatment of equals. As a
conclusion, we briefly mention other such results. To begin with, de Clippel (2018, point 4 on page
127) already points out that his characterization of the Shapley value by symmetry, the carrier ax-
iom (Shapley, 1953) and the so-called difference formula axiom still works when equal treatment of
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necessary players replaces equal treatment of equals. Similarly, it is immediate to prove that equal
treatment of necessary players can replace equal treatment of equals in the third characterization
of the Equal Division value provided by van den Brink (2007, Theorem 3.2) by means of efficiency,
coalitional standard equivalence and equal treatment of equals. The same substitution holds for
the characterization of the consensus value, i.e. the average between the Shapley value and the
Equal Surplus Division value, by means of efficiency, equal treatment of equals, the neutral dummy
property and linearity in Ju et al. (2007). So far, all these examples operate on a fix player set.
Allowing variable player sets, it is straightforward to show that the characterizations of the Equal
Surplus Division value in Chun and Park (2012) remain valid when equal treatment of necessary
players replace equal treatment of equals. These characterizations involve efficiency, equal treat-
ment of equals, strategic equivalence and either population solidarity or population fair-ranking.
All these results suggest that a universal demonstration that equal treatment of necessary player
can be a substitute for equal treatment of equals may exist. This is left for future work. Finally,
Yokote and Kongo (2017) has weakened the axiom of balanced contributions (Myerson, 1980) by
applying it only to pairs of equal players. They called it balanced contributions for symmetric
players. In any axiomatization of a sharing rule satisfying symmetry, they prove that replacing
symmetry with this weaker axiom results in new axiomatizations of the sharing rule. It remains an
open question as whether the same result holds if the principle of balanced contributions is applied
to pairs of necessary players only.
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