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Abstract

A coalitional ranking describes a situation where a finite set of agents can form coalitions that are
ranked according to a weak order. A social ranking solution on a domain of coalitional rankings
assigns an individual ranking, that is a weak order over the agent set, to each coalitional ranking
of this domain. We introduce two lexicographic solutions for a variable population domain of
coalitional rankings. These solutions are computed from the individual performance of the agents,
then, when this performance criterion does not allow to decide between two agents, a collective
performance criterion is applied to the coalitions of higher size. We provide parallel axiomatic
characterizations of these two solutions.

Keywords: Coalitional rankings - Converse consistency - Individual performance - Lexicographic
criteria - Path monotonocity.
JEL classification: C71.

1. Introduction

In a large variety of social environments, a population of agents have the possibility to form
coalitions in order to cooperate. For many real world applications however, it is not possible to
evaluate precisely the worth of the coalitions (e.g. due to the lack of data, the complexity of
the problem at hand, etc). In this case, one can be satisfied with qualitative information on the
power of these coalitions, expressed by a coalitional ranking, which provides binary comparisons
between coalitions. This binary relation is supposed to be a weak order, that is, it is a complete
and transitive relation over the set of nonempty coalitions. Given this qualitative information on
the power of the coalitions, the main objective is to design an individual ranking/weak order over
the agent set. A social ranking solution on a class of coalitional rankings is defined as a mapping
assigning to each coalitional ranking a unique individual ranking over the agent set.

Social ranking solutions have been recently investigated by Khani et al. (2019), Bernardi et
al. (2019) and Algaba et al. (2021). Khani et al. (2019) introduce and axiomatically characterize
a social ranking solution that is inspired from the Banzhaf index for cooperative voting games
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(Banzhaf, 1964). Bernardi et al. (2019) and Algaba et al. (2021) study lexicographic solutions
based on the idea that the most influential agents are those who belong to (small) coalitions ranked
in the highest position in the coalitional ranking, and provide several axiomatic characterizations
of these solutions.

In this paper, we introduce two new lexicographic solutions for coalition rankings based on
the individual and the collective performance of the agents in coalitions. First, the social ranking
solution LP ranks the agent according to the following procedure. If the individual performance of
an agent is strictly better than the individual performance of another agent, then the rank of the
former agent is strictly better than the one of the second agent. The individual performance of an
agent is evaluated by the rank of its singleton coalition in the coalitional ranking. In case the indi-
vidual performance of two agents is identical, that is, if their respective singleton coalitions belong
to the same equivalence class of the coalitional ranking, the procedure examines the performance of
these agents in coalitions of size two to which they belong. This collective performance is measured
by the number of such coalitions of size two that are strictly better ranked than their singleton
coalition. In this way, one measures the capacity of an agent to cooperate more efficiently with
another agent than it would do alone. Given two agents with the same individual performance, if
the collective performance of one of these two agents is strictly better than the collective perfor-
mance of the other agent, then our social ranking solution ranks the first agent ahead the second
agent. If these two agents have the same collective performance for coalitions of size two, then
the procedure applies the same criterion to coalitions of size three, and so on for each coalition of
higher size. Thus, the social ranking solution LP proceeds lexicographically over the size of the
coalitions to break the tie between two agents with identical individual performance.

A drawback of LP is that it is insensitive to the quality of the performance of coalitions to which
an agent may belong, provided this performance is strictly better than the individual performance
of this agent. This point leads us to a second social ranking solution, denoted by LP

∗
, designed

to correct this bias: if two agents have identical individual performance, then the coalitions of size
two whose performance is strictly better than this individual performance are explored, starting
with the best equivalence class. If the number of coalitions of size two containing the first agent is
strictly greater than the number of coalitions of size two containing the second agent in the best
equivalence class, then the first agent is ranked ahead the second agent. Otherwise, that is, if these
two numbers coincide, one moves to the second best equivalence class and proceeds in the same
way. One continues to explore each equivalence class from the best equivalence to the equivalence
class preceding the one measuring the individual performance of these two agents. If the procedure
does not allow to break the tie between these two agents, then the procedure continues by exploring
the collective performance of coalitions of size three and so on. Thus, the social ranking solution
LP
∗

proceeds with a double lexicographical criterion: the criterion on the size of the coalitions is
applied first, then the criterion on the index of the equivalence classes (from the best equivalence
to the equivalence class of the singleton coalition) is used.

We provide comparable axiomatic characterizations of LP and LP
∗
. To that end, several

value judgments about social rankings solutions, expressed by the following list of principles, are
introduced: a principle of neutrality, which indicates that each agent are impartially treated; a
very weak principle of anonymity for coalitions, which indicates that only the size of the coalitions
to which two agents may belong matters to rank these two agents; a principle of independence of
irrelevant coalitions, which indicates that the positions of some coalitions are irrelevant to rank two
agents; a principle of monotonicity which indicates how the ranking between two agents behave
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when the collective performance of one of the two agents change between two coalitional rankings;
a principle of standardness for the two-agent case, which says that the first agent is better rank
than the second agent if and only the individual performance of the first agent is strictly better
than the one of the second agent; and a principle of converse consistency, which allows to deduce
the ranking of two agents in a group from the knowledge of the ranking of these agents for the
associated reduced problems that some subgroups face.

Our work and the literature on coalitional ranking problems have numerous connexions with
other literatures and in particular with cooperative games with transferable utility (TU-games).
Firstly, the social rankings that we are interested in are similar to the rankings that can be deduced
from payoff vectors in TU-games, from richest to poorest. Thus, a social ranking solution can be
viewed either as the ordinal counterpart of a value for TU-games or as the inverse problem of the
well-known problem of ranking groups of objects from a ranking over the individual objects (see,
e.g., Barberà et al., 2004).

Secondly, the two social ranking solutions that we introduce in this article have the same flavor
as well-known and recent values for TU-games which mostly rely on the individual performance
of the agents. For instance, the Center-of-gravity of the imputation-set (CIS) value (Driessen,
Funaki, 1991) that first assigns to each agent its stand-alone worth and distributes the remainder
of the worth of the grand coalition equally among all agents. Other examples are the Proportional
value (Moriarity, 1975, Zou et al., 2021a) and the family of Proportional surplus division values
introduced recently by Zou et al. (2020). The Proportional value distributes the worth of the
grand coalition in proportion to the stand-alone worths of its members (Zou et al., 2021a). Each
Proportional surplus division value assigns to each agent a compromise between its stand-alone
worth and the average stand-alone worths over all agents, and then allocates the remaining worth
among the agents in proportion to their stand-alone worth. For all these values, the ranking of
agents in the population according to the payoffs they receive depends only on their individual
performance, i.e., their stand-alone worth. Contrary to these aforementioned values, Zou et al.
(2021b) design a new family of values, called the α-mollified values, that not only adopt the
proportional and equal division principles, but also take the worths of all coalitions into account.
This is close in spirit from the principles behind our solutions LP and LP

∗
.

Thirdly, our axioms are inspired by principles used in the axiomatic literature. Standardness
is a well-accepted principle in TU-games which indicates that in two-agent TU-games, each one
receives its stand-alone worth plus an equal share of the collective surplus (see, e.g., Hart and Mas
Colell, 1989). Converse consistency is used to characterize solutions in several class of problems
such that matching problems, fair division problems, cooperative game situations, non-cooperative
game situations. Our axiom of neutrality is the counterpart of the axiom of anonymity used in
numerous contexts and especially in TU-games. Our axioms of monotonicity are in line with other
axioms of monotonicity which describe how a solution is influenced by modifications of the worth of
coalitions or of the marginal contribution of the agents (for TU-games, see Megiddo, 1974, Young,
1985, and van den Brink et al., 2013, among others).

The rest of the article is organized as follows. Section 2 introduces the main notation and
definitions. Section 3 presents the axioms and some preliminaries results. Section 4 is devoted to
the axiomatic characterizations of LP and LP∗. Section 5 provides the logical independence of the
axioms used in the main characterization results.
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2. Notation and preliminaries

For any finite set A, the notation |A| stands for the cardinality of A. Let N be the set of
potential active agents, and let F be the collection of all finite and nonempty subsets N of N
containing at least two agents. Given N ∈ F , containing n ≥ 2 agents, a coalition of agents is any
subset of N . Denote by ΩN the collection of the 2n − 1 nonempty coalitions of N . A coalitional
ranking is a pair (N,%), where N ∈ F and % is a weak order (a complete and transitive binary
relation) on ΩN . For any pair of coalitions T and S of ΩN , S % T means that S is at least as highly
ranked as coalition T . We denote by � the asymmetric part of % and by ∼ its symmetric part. The

quotient set is the set of all equivalence classes E
(N,%)
1 , E

(N,%)
2 , . . . , E

(N,%)
k , k ∈ {1, . . . , 2n−1},

of (N,%). It is denoted by ΩN/ ∼ and is totally ordered by the induced quotient relation �∗.
Without loss of generality, assume that:

E
(N,%)
1 �∗ E(N,%)

2 �∗ · · · �∗ E(N,%)
k .

Let RΩN be the set of coalitional rankings (N,%) that one can construct from the set of nonempty
coalitions ΩN . Let

R =
⋃

N∈F
RΩN ,

and denote by RN the set of weak orders or individual rankings on N ∈ F .
A social ranking solution on R is a function f which assigns to each coalitional ranking

(N,%) ∈ RΩN a unique individual ranking f(N,%) ∈ RN . For any pair of agents i and j of N ,

if(N,%)j

means that i is at least as highly ranked as j for their participation to the coalition ranking (N,%).
We denote by �f(N,%) the asymmetric part of f(N,%) and by ∼f(N,%) its symmetric part.

3. Axioms for social ranking solutions

In this section, we introduce a set of properties for a social ranking solution.
Consider any finite set of agents N ∈ F . Let π : ΩN −→ ΩN be a permutation on the

elements of ΩN , π−1 stands for its inverse, and ΠΩN denotes the set of such permutations. Given
a permutation π ∈ ΠΩN and a coalitional ranking (N,%) ∈ RΩN , define the coalitional ranking
(N,%π) ∈ RΩN as follows:

∀S, T ∈ ΩN ,
[
S %π T

]
⇐⇒

[
π−1(S) % π−1(T )

]
.

Next, pick any agent i ∈ N . A permutation π ∈ ΠΩN is agent i invariant if:

∀S ∈ ΩN , [i ∈ S] =⇒ [i ∈ π(S)].

A permutation π ∈ ΠΩN is size invariant if the following holds:

∀S ∈ ΩN , |π(S)| = |S|.
Denote by Π∗ΩN the subset of size invariant permutations in ΠΩN .
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The first axiom, called Super Weak Coalitional Anonymity, has been introduced in Algaba et
al. (2021). It indicates that the ranking between two distinct agents i and j in N is invariant un-
der any permutation of the coalitions, which is agent i invariant, agent j invariant and size invariant.

Super Weak Coalitional Anonymity A social ranking solution f on R satisfies Super Weak
Coalitional Anonymity if, for each (N,%) ∈ R, each pair {i, j} of distinct agents in N , and each
size invariant permutation π ∈ Π∗ΩN which is also agent i and agent j invariant, it holds that:

∀i, j ∈ N,
[
if(N,%)j

]
⇐⇒

[
if(N,%π)j

]
.

Example 1 For any N ∈ F containing at least two agents, denote by im the lowest element of N
and by jm the lowest element of N \ im, so that im < jm. Consider the social ranking solution f
defined as follows: for any coalitional ranking (N,%) in R:

1. ∀i > jm, im �f(N,%) i and jm �f(N,%) i;

2. ∀i, j > jm, i ∼f(N,%) j;

3. (a) if N � N \ {im, jm}, then im �f(N,%) jm;
(b) if N \ {im, jm} � N , then jm �f(N,%) im;
(c) if N \ {im, jm} ∼ N , then jm ∼f(N,%) im.

For each permutation π which is size invariant, agent im invariant and agent jm invariant, we
necessarily have π(N) = N and π(N \ {im, jm}) = N \ {im, jm}. From this observation, we easily
conclude that f satisfies Super Weak Coalitional Anonymity.

Let σ : N −→ N be a permutation of the elements of the agent set N ∈ F ; σ−1 stands for its
inverse, and ΣN denotes the set of such permutations. For each S ∈ ΩN , σ(S) denotes the subset
of agents {σ(i) : i ∈ S}. Given a permutation of ΣN and a coalitional ranking (N,%) ∈ RΩN , we
define the coalitional ranking (N,%σ) ∈ RΩN in the following way:

∀S, T ∈ ΩN ,
[
S %σ T

]
⇐⇒

[
σ−1(S) % σ−1(T )

]
.

The next axiom, introduced in Bernardi et al. (2019), indicates that the ranking of the agents
does not depend on their label.

Neutrality A social ranking solution f satisfies Neutrality if, for each (N,%) ∈ R and each
permutation σ of ΣN , it holds that:

∀i, j ∈ N,
[
if(N,%)j

]
⇐⇒

[
σ(i)f(N,%σ)σ(j)

]
.

Remark 1 Note that a permutation σ can be viewed as a particular size invariant permutation in
Π∗ΩN by considering the sets σ(S), S ∈ ΩN . With this convention, we have %σ=%σ.

The next axiom relies on an independence principle. It indicates that if an agent i has a higher
individual performance than an another agent j, the relative individual ranking between i and
j do not depend on the number of equivalence classes ranked strictly higher (with respect to the
quotient weak order) than the one measuring the individual performance of agent i and the number
of equivalence classes ranked lower than the one measuring the individual performance of agent j.

5



Independence of Irrelevant Equivalent Classes A social ranking solution f satisfies Indepen-
dence of Irrelevant Equivalent Classes if, for each N ∈ F , each pair of distinct agents {i, j} ⊆ N ,
and each pair of coalitional rankings (N,%), (N,%′) ∈ RΩN such that {i} % {j}, the following
holds:

[
∀S ∈ ΩN \ {{i}, {j}},

(
S � {i} ⇐⇒ S �′ {i}

)
∧
(
{j} % S ⇐⇒ {j} %′ S

)]

=⇒
[(
if(N,%)j

)
⇐⇒

(
if(N,%′)j

)]
(1)

A weak version of Independence of Irrelevant Equivalent Classes only indicates that the relative
individual ranking between i and j does not depend on the number of equivalence classes ranked
lower than the one measuring the individual performance of agent j. But, contrary to Indepen-
dence of Irrelevant Equivalent Classes, this weak version of independence is silent on the impact of
the equivalence classes ranked strictly higher than the one measuring the individual performance
of agent i on the relative individual ranking between i and j.

Notation: denote by qi the index of the equivalence class E
(N,%)

qi
of (N,%) containing {i}.

Weak Independence of Irrelevant Equivalent Classes A social ranking solution f satisfies
Weak Independence of Irrelevant Equivalent Classes if, for each N ∈ F , each pair of distinct agents
{i, j} ⊆ N , and each pair of coalitional rankings (N,%), (N,%′) ∈ RΩN such that {i} % {j}, qi = q′i

and, for q < qi, E
(N,%)
q = E

(N,%′)
q , the following holds:

[
∀S ∈ ΩN \ {{i}, {j}}, ({j} % S)⇐⇒ ({j} %′ S)

]
=⇒

[
(if(N,%)j)⇐⇒ (if(N,%′)j)

]
(2)

Remark 2 Obviously, if a social ranking solution f satisfies Independence of Irrelevant Equivalent
Classes, then f satisfies Weak Independence of Irrelevant Equivalent Classes.

Remark 3 Note that the condition,

∀S ∈ ΩN \ {{i}, {j}}, ({j} % S)⇐⇒ ({j} %′ S)

implies that if {i} � {j}, then {i} �′ {j}. And the more demanding condition,

∀S ∈ ΩN \ {{i}, {j}},
(
S � {i} ⇐⇒ S �′ {i}

)
∧
(
{j} % S ⇐⇒ {j} %′ S

)

implies the following: for any coalition S such that {i} % S � {j}, then {i} %′ S �′ {j}.
The following axiom is an ordinal version of the standardness principle applied to solutions in

TU-games. It indicates that in situations where there are only two agents, the ranking over these
agents is determined by the ranking of their respective singleton coalitions, that is, the individual
ranking does not depend on the coalition formed by these two agents.

Standardness. For each coalition ranking ({i, j},%) ∈ R, the following equivalence holds:
[
{i} % {j}

]
⇐⇒

[
if(N,%)j

]
.
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The next axiom is based on a converse consistency principle, which is a well-established prin-
ciple for solutions in TU-games, bargaining situations and allocation problems. In our context, a
solution is conversely consistent if, whenever, for some coalitional ranking, an individual ranking
has the property that for certain proper subgroups of the agents it involves, the solution chooses
the restriction of the individual ranking to the subgroup for the associated reduced problem this
subgroup faces, then the individual should be the solution outcome for the problem.

Formally, for each coalitional ranking (N,%) ∈ R, where N contains at least two elements, and
for each agent k ∈ N , define the coalitional ranking (N \ k,%−k) as:

∀S, T ∈ ΩN\k,
[
S %−k T

]
⇐⇒

[
S % T

]
.

In words, (N \ k,%−k) is the restriction of (N,%) to the coalitions of ΩN\k.

Converse Consistency A social ranking solution f satisfies Converse consistency if for each
coalition ranking (N,%) ∈ R such that N contains at least three elements, the following holds:

∀i, j ∈ N, ∀k ∈ N \ {i, j},
[
i �f(N\k,%−k) j

]
=⇒

[
i �f(N,%) j

]
.

Coalitional ranking solutions apply to different coalitional rankings in a coherent way. In this
respect, it could be desirable to define axioms that impose a restriction on how the individual
ranking change according to alternative monotonicity principles applied to coalitional rankings.
To define such axioms, additional notions must be introduced.

Let (N,%) and (N,%′) be two distinct coalitional rankings in RΩN and let S0 be a coalition in
ΩN . The coalitional ranking (N,%′) is obtained from (N,%) and coalition S0 ∈ ΩN if

∀S, T ∈ ΩN \ S0,
[
S %′ T

]
⇐⇒

[
S % T

]
.

The transition from (N,%) to (N,%′) is a move induced by S0. If, furthermore,

∀T ∈ ΩN \ S0, [S0 % T ] =⇒ [S0 �′ T ],

then the move from (N,%) to (N,%′) is S0-improving. In words, a move is S0-improving if the
ranking between any two coalitions other than S0 does not changed, and S0 is strictly better ranked
after the move. If, moreover, [

{i} % S0

]
∧
[
S0 �′ {i}

]
,

this S0-improving move from (N,%) to (N,%′) is individually rational for agent i or simply
(S0, i)-improving. In such an S0-improving move, {i} is better ranked than S0 before the move
whereas S0 becomes strictly better ranked than {i} after the move.

Reciprocally, a move from (N,%) to (N,%′) is S0-deteriorating if

∀T ∈ ΩN \ S0,
[
T % S0

]
=⇒

[
T �′ S0

]
.

And, this deteriorating move from (N,%) to (N,%′) is (S0, i)-deteriorating if
[
S0 � {i}

]
∧
[
{i} %′ S0

]
.

In dynamic frameworks where the interactions and the performance of coalitions evolve rapidly
in time, it could be meaningful to look at a sequence of moves either in favor or to the detriment of
a single agent i and without affecting another agent j. To this end, we first introduce the notion of
path and then the notion of ij-path. Consider two coalitional rankings (N,%) and (N,%′) in RΩN .
A path between (N,%) and (N,%′) is constituted by a sequence (N,%`)t`=0 ⊆ RΩN of pairwise
distinct coalitional rankings and a sequence of pairwise distinct coalitions (S`)t−1

`=0 ⊆ ΩN such that:
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• %0=% and %t=%′;

• for each ` ∈ {0, . . . , t − 1}, the transition from (N,%`) to (N,%`+1) is a move induced by
coalition S` from (N,%`).

For two distinct agents i and j, a path is an ij-path if, moreover,

• for each ` ∈ {0, . . . , t− 1}, S` ∩ {i, j} = {i}.

Thus an ij-path is formed by sequence of moves (improving or deteriorating) implying agent i
and not agent j in each step. Recently, Moretti et al. (2021) introduce a similar notion of ij-path,
which is more restrictive than the above one.

Further, an ij-path is improving for agent i if:

• all the moves induced by the coalitions S`, ` ∈ {0, . . . , t − 1}, along the sequence are ei-
ther (S`, i)-improving (that is, S`-improving and individually rational for agent i) or (S`, i)-
deteriorating, and the first move of the sequence induced by coalition S0 is (S0, i)-improving.

Remark 4 Note that along an improving ij-path for agent i, one necessarily has S` 6= {i} for each
` ∈ {0, . . . , t− 1}. This follows from the definition of an (S`, i)- improving/deteriorating move.

Among the ij-paths that are improving for agent i, we are interested in those which give the
priority to the smallest coalition:

• the (first) (S0, i)-improving move is such that, for each ` ∈ {1, . . . , t − 1}, |S0| ≤ |S`| and
|S0| = |S`| implies {i} %` S`.

In these paths, which are improving for agent i, the size of the coalition inducing the first improving
and individually rational move is smaller than the size of any other coalition inducing a move along
the sequence; and if another coalition of the same size induces a move at some step of the path,
then it is ranked below the singleton coalition associated with the agent. This means that if a move
along the path is induced by a coalition S` of size |S0|, then it is necessarily (S`, i)-improving, and
so S0 �1 {i} %` S`.

Example 2 Let N = {1, 2, 3, 4}, and consider the coalitional ranking (N,%) containing the fol-
lowing four equivalence classes:

E
(N,%)
1 =

{
{2, 3, 4}, {2, 4}

}
, E

(N,%)
2 =

{
{1, 3, 4}, {1, 2, 3}, {1, 2, 4}, {2, 3}, {1, 4}

}
,

E
(N,%)
3 =

{
N, {3, 4}, {1, 3}, {1}, {2}, {3}

}
, E

(N,%)
4 =

{
{1, 2}, {4}

}
.

One constructs the 14-path (%0,%1,%2,%3), where %0=%, S0 = {1, 2}, S1 = {1, 2, 3}, S2 =
{1, 3}, and

E
(N,%1)
1 = E

(N,%)
1 , E

(N,%1)
2 = E

(N,%)
2 ∪

{
{1, 2}

}
, E

(N,%1)
3 = E

(N,%)
3 , E

(N,%1)
4 = E

(N,%)
4 \ {{1, 2}

}
,

E
(N,%2)
1 = E

(N,%1)
1 , E

(N,%2)
2 = E

(N,%1)
2 \{{1, 2, 3}}, E(N,%2)

3 = E
(N,%1)
3 ∪{{1, 2, 3}}, E(N,%2)

4 = E
(N,%1)
4 ,

E
(N,%3)
1 = E

(N,%2)∪
{
{1,3}

}
,

1 E
(N,%3)
2 = E

(N,%2)
2 , E

(N,%3)
3 = E

(N,%2)
3 \ {{1, 3}}, E(N,%3)

4 = E
(N,%2)
4 .
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Therefore, the move from (N,%0) = (N,%) to (N,%1) is S0-improving, the move from (N,%1)
to (N,%2) is S1-deteriorating, and the move from (N,%2) to (N,%3) is S2-deteriorating. More
specifically, the move from (N,%0) = (N,%) to (N,%1) is individually rational for agent 1 since

[
{1} %0 S0

]
∧
[
S0 �1 {1}

]
,

so that this move is (S0, 1)-improving. The second move from (N,%1) to (N,%2) is (S1, 1)-
deteriorating since [

S1 �1 {1}
]
∧
[
{1} ∼2 S1

]
,

and, the last move from (N,%2) to (N,%3) is (S2, 1)-improving since

[
{1} ∼2 S2

]
∧
[
S2 �3 {1}

]
.

Therefore, this 14-path is improving for agent 1 and gives the priority to the smallest coalition since
|S0| = |S2| < |S1| and S0 �2 {1} ∼2 S2.

�

We have the material to define two new axioms of monotonicity. The first axiom reflects the
following principle. Suppose that an ij-path exists between two coalitional rankings (N,%) and
(N,%′). Assume further that this ij-path is improving for agent i and gives the priority to the
smallest coalition. The principle indicates that in such a situation if agent i is at least highly ranked
than agent j in f(N,%), then i becomes strictly better ranked than j in f(N,%′). In this sense,
this principle gives priority to the smallest coalition whatever the number of improving moves and
deteriorating moves along this ij-path.

Individual Improving Path Monotonicity with Priority to the Smallest Coalition: A
social ranking solution f satisfies Individual Improving Path Monotonicity with Priority to the
Smallest Coalition if, for each coalition ranking (N,%) ∈ R, each pair {i, j} ⊆ N of distinct agents,
the following holds: for each ij-path from (N,%) to another coalitional ranking (N,%′) ∈ R, which
is improving for agent i and gives the priority to the smallest coalition, we have

[
if(N,%)j

]
=⇒

[
i �f(N,%′) j

]
.

One also introduces a strong version of the above axiom. To this end, one considers a less
restrictive class of ij-paths. This class contains the ij-paths that satisfy the following condition:

• all the moves induced by the coalitions S`, ` ∈ {0, . . . , t− 1} are such that S` 6= {i} and the
first move of the sequence induced by coalition S0 is S0-improving and S0 �1 {i}.

If an ij-path satisfies the above condition, one says that it is weakly improving for agent i.
Along such a path, one necessarily has either S` �`+1 {i} or {i} %`+1 S` for each ` ∈ {0, . . . , t− 1}
and S0 �1 {i}. But contrary to the notion of improving ij-path for agent i, it may be the case
that S` �` {i} and S` %`+1 {i} or {i} %` S` and {i} �`+1 S`. By definition and Remark 4, if an
ij-path is improving for agent i, it is also weakly improving for agent i, but the converse is not
true.

Finally, if such a weak improving ij-path for agent i satisfies the following additional condition:

9



• the first move induced by S0 is such that, for each ` ∈ {1, . . . , t − 1}, |S0| ≤ |S`|, and
|S0| = |S`| implies S0 �` S`,

then we say that this path gives the priority to the smallest coalition.
All in all, the class of ij-paths that are improving for agent i and give the priority to the small-

est coalition formed a subset of the class of ij-paths that are weakly improving for agent i and
give the priority to the smallest coalition. The following axiom is a strong version of Individual
Improving Path Monotonicity with Priority to the Smallest Coalition, which uses the larger class
of weak improving ij-paths for agent i.

Strong Individual Improving Path Monotonicity with Priority to the Smallest Coali-
tion: A social ranking solution f satisfies Strong Individual Improving Path Monotonicity with Pri-
ority to the Smallest Coalition if, for each coalition ranking (N,%) ∈ R, each each pair {i, j} ⊆ N
of distinct agents, the following holds: for each ij-path from (N,%) to another coalitional ranking
(N,%′) ∈ R, which is weakly improving for agent i and gives the priority to the smallest coalition,
we have [

if(N,%)j
]

=⇒
[
i �f(N,%′) j

]
.

Obviously, if a social ranking solution f satisfies Strong Individual Improving Path Monotonicity
with Priority to the Smallest Coalition, then f satisfies Individual Improving Path Monotonicity
with Priority to the Smallest Coalition, but not vice et versa.

4. Axiomatic study

Given a coalitional ranking (N,%) ∈ R, where |N | = n and an agent i ∈ N , we construct the

matrix M (N,%),i of size (n, k) where each entry M
(N,%),i
(p,q) denotes the number of coalitions in the set

E
(N,%),i
(p,q) = E(N,%)

q ∩
{
S ∈ ΩN : S 3 i, |S| = p

}
(3)

that is, M
(N,%),i
(p,q) is the number of coalitions of size p ≤ n containing i and belonging to the

equivalence class E
(N,%)
q , where q ≤ k. For each p, it holds that:

k∑

q=1

M
(N,%),i
(p,q) =

(
n− 1

p− 1

)
, and so

n∑

p=1

k∑

q=1

M
(N,%),i
(p,q) = 2n−1. (4)

The first result, already established in Algaba et al. (2021), shows that if a social ranking
solution satisfies Super Weak Coalitional Anonymity and Neutrality, then two agents with the
same matrix with respect to a coalitional ranking obtain the same individual ranking.

Proposition 1 (Algaba et al., 2021) Let f be a social ranking solution on R satisfying Neutrality
and Super Weak Coalitional Anonymity. For each (N,%) ∈ R, it holds that:

∀i, j ∈ N,
[
M (N,%),i = M (N,%),j

]
=⇒

[
i ∼f(N,%) j

]
.

The next result establishes that the combination of Standardness and Converse Consistency
leads to a class of social ranking solutions in which the individual performance of the agents plays
a key role to rank them. Precisely, if the individual performance of an agent, measured by the
position of its singleton coalition, is strictly better than the individual performance of another
agent, then the solution ranks the first agent ahead the second agent.

10



Proposition 2 Let f be a social ranking solution on R satisfying Standardness and Converse
Consistency, then, for each (N,%) ∈ R, it holds that:

∀i, j ∈ N,
[
{i} � {j}

]
=⇒

[
i �f(N,%) j

]
(5)

Proof. We proceed by induction on the number n ≥ 2 of agents in a coalition ranking (N,%).
Initial step: If n = 2, assertion (5) holds by Standardness.
Induction hypothesis: Assume that n ≥ 2 and that assertion (5) holds for all coalitional rankings
with at most n agents.
Induction step: Pick any coalition ranking (N,%) ∈ R containing n + 1 agents. Assume that
{i} % {j}. Obviously, for k ∈ N \ {i, j}, we still have {i} �−k {j}. By the induction hypothesis,
we get i �f(N\k,%−k) j. By Converse consistency, we obtain i �f(N,%) j. This completes the proof
of the induction step. �

Proposition 2 is silent on situations where two agents have the same individual performance,
that is, for coalition rankings where the singleton coalitions of two agents belong to the same
equivalence class. To complete the individual ranking, one introduces a new social ranking solu-
tion which takes into account both the individual performance of the agents and their performance
in larger coalitions to discriminate between them when their individual performance is identical. In
situations where two agents have the same individual performance, one examines the performance
of these agents in coalitions of size two to which they may belong. This collective performance
is measured by the number of such coalitions of size two that are strictly better ranked than the
singleton coalitions. In this way, one measures the capacity of an agent to cooperate more effi-
ciently with another agent than it would do alone. Given two agents with the same individual
performance, if the collective performance of one of these two agents is strictly better than the col-
lective performance of the other agent, then our social ranking solution ranks the first agent ahead
the second agent. If these two agents have the same collective performance for coalitions of size
two, then one applies the same procedure to coalitions of size three, and continues in this fashion
for each coalition of higher size. Thus, this social ranking solution proceeds lexicographically to
break the tie between two agents with identical individual performance: the procedure explores
each row of the matrix starting with the second row (coalitions of size two) to the (n− 1)th row.
In particular, if the matrices of these two agents are identical with respect to a coalitional ranking,
then our social ranking solution attributes to these agents the same individual rank. To formally
define the above social ranking solution, a notation is needed.

Notation: given a coalition ranking (N,%) ∈ R and two distinct agents i, j ∈ N with the same

individual performance, we denote by qij the index of the equivalence class E
(N,%)

qij
to which {i}

and {j} belong, i.e.,

M
(N,%),i

(1,qij)
= M

(N,%),j

(1,qij)
= 1.

Definition 1 The social ranking solution LP on R is defined as follows: for each (N,%) ∈ R and
pair {i, j} of distinct agents in N , i �LP (N,%) j if one of the following conditions holds:

1. {i} � {j};
2. {i} ∼ {j} and there exists p0 ∈ {2, . . . , n− 1}, such that:
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• for p ∈ {2, . . . , p0 − 1}, it holds that:

∑

q<qij

M
(N,%),i
(p,q) =

∑

q<qij

M
(N,%),j
(p,q) ;

• and, for p0, it holds that:

∑

q<qij

M
(N,%),i
(p0,q)

>
∑

q<qij

M
(N,%),j
(p0,q)

.

Example 3 Let N = {1, 2, 3, 4}, and consider the coalitional ranking (N,%) containing the fol-
lowing four equivalence classes:

E
(N,%)
1 =

{
{2, 3, 4}, {1, 2}, {2, 4}

}
, E

(N,%)
2 =

{
{1, 3, 4}, {1, 2, 3}, {1, 3}, {2, 3}, {1, 4}

}
,

E
(N,%)
3 =

{
N, {3, 4}, {1}, {2}, {3}

}
, E

(N,%)
4 =

{
{1, 2, 4}, {4}

}
.

So, for each i ∈ N , M (N,%),i is an (4, 4) matrix:

M (N,%),1 =




0 0 1 0
1 2 0 0
0 2 0 1
0 0 1 0


 , M (N,%),2 =




0 0 1 0
2 1 0 0
1 1 0 1
0 0 1 0


 , M (N,%),3 =




0 0 1 0
0 2 1 0
1 2 0 0
0 0 1 0




and

M (N,%),4 =




0 0 0 1
1 1 1 0
1 1 0 1
0 0 1 0


 .

Here, {1} ∼ {2} and q12 = 3. And, for p = {2, 3, 4}, one has:

∑

q<3

M
(N,%),1
(p,q) =

∑

q<3

M
(N,%),2
(p,q) .

Thus, there is no p0 such that ∑

q<3

M
(N,%),1
(p0,q)

>
∑

q<3

M
(N,%),2
(p0,q)

.

By Definition 1, one has 1 ∼LP (N,%) 2. One also has {3} � {4} so that, by point 1 of Definition
1, 3 �LP (N,%) 4. Because {1} � {4} and {2} � {4}, one gets 1 �LP (N,%) 4 and 2 �LP (N,%) 4. One

sees that {1} ∼ {2} ∼ {3} so that q23 = q13 = q12 = 3. Furthermore, for p0 = 2, one has

∑

q<3

M
(N,%),2
(2,q) = 3 >

∑

q<3

M
(N,%),3
(2,q) = 2,

from which one concludes that 2 �LP (N,%) 3. All in all, one obtains the following individual ranking,

1 ∼LP (N,%) 2 �LP (N,%) 3 �LP (N,%) 4.

�
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The following result provides a characterization of the LP social ranking solution on R.

Theorem 1 The social ranking solution LP is the unique social ranking solution on R satisfying
Super Weak Coalitional Anonymity, Neutrality, Standardness, Converse Consistency, Independence
of Irrelevant Equivalence Classes, and Individual Improving Path Monotonicity with Priority to
the Smallest Coalition.

Before turning to the proof of Theorem 1, we need a definition and a lemma.

Definition 2 Let (N,%) ∈ RΩN and two distinct agents i, j ∈ N with identical individual
performance, that is, {i} ∼ {j}. Define the coalitional ranking (N,%m,ij) ∈ R obtained from
(N,%) ∈ RΩN and i, j ∈ N as follows: as above qij denotes the index of the equivalence class

E
(N,%)

qij
to which {i} and {j} belong. If there exists a coalition S such that S � {i}, then (N,%m,ij)

contains two equivalent classes E
(N,%m,ij)
1 and E

(N,%m,ij)
2 , such that:

E
(N,%m,ij)
1 =

⋃

q<qij

E(N,%)
q and E

(N,%m,ij)
2 =

⋃

q≥qij
E(N,%)
q ,

and
E

(N,%m,ij)
1 (�m,ij)∗E(N,%m,ij)

2 .

Otherwise (N,%m,ij) contains only one equivalent class, i.e., all coalitions have the same rank in
(N,%m,ij).

Example 4 Consider Example 3. The coalitional ranking (N,%m,12) contains two equivalence
classes:

E
(N,%m,12)
1 =

{
{2, 3, 4}, {1, 2}, {2, 4}, {1, 3, 4}, {1, 2, 3}, {1, 3}, {2, 3}, {1, 4}

}

and
E

(N,%m,12)
2 =

{
N, {3, 4}, {1}, {2}, {3}, {1, 2, 4}, {4}

}
.

�

Lemma 1 Let f be a social ranking solution on R satisfying Independence of Irrelevant Equivalent
Classes. Then, for each (N,%) ∈ R and each pair of distinct agents {i, j} ⊆ N such that {i} ∼ {j},
the following equivalence holds:

[
if(N,%)j

]
⇐⇒

[
if(N,%m,ij)j

]
.

Proof. It suffices to observe that, by construction, (N,%m,ij) satisfies condition (1) of Indepen-
dence of Irrelevant Equivalent Classes. Therefore, the result follows by an application of Indepen-
dence of Irrelevant Equivalent Classes. �

Proof. (of Theorem 1). We first show that the social ranking solution LP satisfies the axioms of
the statement of Theorem 1.
Super Weak Coalitional Anonymity. Consider any coalitional ranking (N,%) ∈ R and any
permutation π ∈ Π∗ΩN satisfying the hypotheses of Super Weak Coalitional Anonymity for agent
i and agent j. This permutation does not change the associated matrix of agent i and agent j,
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that is, M (N,%),i = M (N,%π),i and M (N,%),j = M (N,%π),j . Thus, by Definition 1, LP satisfies Super
Weak Coalitional Anonymity.
Neutrality. Consider any coalitional ranking (N,%) ∈ R and any permutation σ ∈ ΣN . We
have M (N,%),i = M (N,%σ),σ(i) and M (N,%),j = M (N,%σ),σ(j). Thus, by Definition 1, LP satisfies
Neutrality.
Standardness. If N = {i, j}, then Definition 1 of LP indicates that, for each (N,%) ∈ R, i �LP j
if and only if {i} � {j}, which ensures that LP satisfies Standardness.
Converse Consistency. Consider any coalitional ranking (N,%) ∈ R, where |N | ≥ 3, and any
two distinct agents i, j ∈ N . Two cases arise:
Case 1 If {i} � {j}, then, for each k ∈ N \ {i, j}, we obviously have {i} �−k {j} and so, by
Definition 1 of LP , i �LP (N\k,%−k) j. Because, {i} � {j} we also have i �LP (N,%) j, as desired.
Case 2 If {i} ∼ {j}, consider, for each p ≥ 2, the set, possibly empty, of coalitions of size p
containing i but not j whose rank is strictly above {i}:

D(N,%),i,j̄
p =

{
S ∈ ΩN : S 3 i, S 63 j, |S| = p, S � {i}

}
.

In a similar way, define D
(N,%),i,j
p as the set, possibly empty, of coalitions of size p containing both

i and j and whose rank is strictly above {i}:

D(N,%),i,j
p =

{
S ∈ ΩN : S ⊇ {i, j}, |S| = p, S � {i}

}
.

By Definition 1, i �LP (N,%) j if and only if there exists an integer p0 such that for p < p0,

|D(N,%)i,j̄
p | = |D(N,%),̄i,j

p | and |D(N,%),i,j̄
p0 | > |D(N,%),̄i,j

p0 |. This assertion follows from the fact that

∑

q<qij

M (N,%),i
pq = |D(N,%),i,j̄

p |+ |D(N,%),i,j
p | and

∑

q<qij

M (N,%),j
pq = |D(N,%),̄i,j

p |+ |D(N,%),i,j
p |.

We have
(n− p− 1)|D(N,%),i,j̄

p | =
∑

k∈N\{i,j}
|D(N\k,%−k),i,j̄

p | (6)

To see why equality (6) holds, it suffices to note that each S ∈ D(N,%)i,j̄
p belongs to D

(N\k,%−k),i,j̄
p

if and only if k /∈ (S ∪ j); and there are exactly n− (p+ 1) = n− p− 1 such k. Thus, to show that
LP satisfies Converse Consistency, assume that

∀k ∈ N \ {i, j}, i �LP (N\k,%−k) j.

Then, there exists an integer pk0 such that

∀p < pk0, |D(N\k,%−k),i,j̄
p | = |D(N\k,%−k),̄i,j

p |, and |D(N\k,%−k),i,j̄

pk0
| > |D(N\k,%−k),̄i,j

pk0
|.

Let p0 = min{pk0 : k ∈ N \ {i, j}}. By definition of p0, for each p < p0, we have,

∀k ∈ N \ {i, j}, |D(N\k,%−k),i,j̄
p | = |D(N\k,%−k),̄i,j

p |.

Thus, by equality (6), we obtain

∀p < p0, |D(N,%),i,j̄
p | = |D(N,%),̄i,j

p |.
14



And, by definition of p0, we have,

∀k ∈ N \ {i, j}, |D(N\k,%−k),i,j̄
p0 | ≥ |D(N\k,%−k),̄i,j

p0 |.

Furthermore, there exists k0 ∈ N \ {i, j} such that

|D(N\k0,%−k0 ),i,j̄
p0 | > |D(N\k0,%−k0 ),̄i,j

p0 |.

Thus, by equality (6), we have

|D(N,%)i,j̄
p0 | > |D(N,%),̄i,j

p0 |,
and so, by Definition 1, i �LP (N,%) j. Conclude that LP satisfies Converse Consistency.

Independence of Irrelevant Equivalent Classes is satisfied by LP because, by Definition 1,
for each (N,%) ∈ R such that {i} ∼ {j}, the relative individual ranking between i and j depends
only on the number of coalitions ranked higher that {i} and {j} and not on the number and com-

position of the equivalent classes ranked higher than E
(N,%)

qij
. Thus, if (N,%) and (N,%′) ∈ R meet

condition (1), then the relative individual ranking between i and j in the two coalitional rankings
is the same under LP .

Individual Improving Path Monotonicity with Priority to the Smallest Coalition fol-
lows directly from Definition 1.

We now show that LP is the unique social ranking solution on R satisfying Super Weak Coali-
tional Anonymity, Neutrality, Standardness, Converse Consistency, Invariance of Independence of
Irrelevant Equivalent Classes, and Individual Improving Path Monotonicity with Priority to the
Smallest Coalition. Let f be a social ranking social satisfying these six axioms. We show that
f = LP . Pick any N ∈ F and any i, j ∈ N . We proceed in two steps.
Step 1 Assume that i �LP (N,%) j. To show: i �f(N,%) j. We distinguish two exclusive cases:

(a) {i} � {j}. Then, by Proposition 2, we get i �f(N,%) j.
(b) {i} ∼ {j}. Consider the coalition ranking (N,%m,ij) obtained from (N,%) as defined in Defini-
tion 2. Because i �LP (N,%) j, by Lemma 1, we also have i �LP (N,%m,ij) j. Because i �LP (N,%m,ij) j,

there exists a coalition S ∈ ΩN such that S 3 i and S �m,ij {i}, meaning that %m,ij contains

two equivalence classes E
(N,%m,ij)
1 and E

(N,%m,ij)
2 . This implies that both matrices M (N,%m,ij),i and

M (N,%m,ij),j have two columns, and there exists an integer p0 such that

∀p < p0, M
(N,%m,ij),i
(p,1) = M

(N,%m,ij),j
(p,1) and M

(N,%m,ij),i
(p0,1) > M

(N,%m,ij),j
(p0,1) .

From the equivalence classes E
(N,%m,ij)
1 and E

(N,%m,ij)
2 , construct another coalitional ranking (N,%′)

in the following way. For each size p ∈ {p0, . . . , n− 1},1

1Note that, for each coalitional ranking (N,%), we necessarily have M
(N,%),i

(n,q) = M
(N,%),j

(n,q) whatever q ∈ {1, . . . , k}
and the pair {i, j} ⊆ N .
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1. if M
(N,%m,ij),i
(p,1) > M

(N,%m,ij),j
(p,1) , then there are at least M

(N,%m,ij),i
(p,1) −M (N,%m,ij),j

(p,1) coalitions of

size p in E
(N,%m,ij)
1 containing i and not j. These M

(N,%m,ij),i
(p,1) −M (N,%m,ij),j

(p,1) coalitions are

moved towards the equivalence class E
(N,%m,ij)
2 ;

2. if M
(N,%m,ij),i
(p,1) < M

(N,%m,ij),j
(p,1) , then M

(N,%m,ij),i
(p,2) > M

(N,%m,ij),j
(p,2) due to the fact that

M
(N,%m,ij),i
(p,1) +M

(N,%m,ij),i
(p,2) = M

(N,%m,ij),j
(p,1) +M

(N,%m,ij),j
(p,2) = 2p−1.

Thus, there are at least M
(N,%m,ij),i
(p,2) −M (N,%m,ij),j

(p,2) coalitions of size p in E
%(N,%m,ij)
2 containing

i and not j. These M
(N,%m,ij)i
(p,2) −M (N,%m,ij),j

(p,2) coalitions are moved towards the equivalence

class E
(N,%m,ij)
1 .

From points 1. and 2., one obtains a new coalitional ranking (N,%′) such that M (N,%′),i =
M (N,%′),j . By Proposition 1, i ∼f(N,%′) j.

Consider now the path from (N,%′) to (N,%m,ij). The key point is that (N,%m,ij) can be
obtained from (N,%′) by ij-path which is improving for agent i. Furthermore, this ij-path can be
constructed is such way that that the first (improving) move is induced by a coalition of size p0.
Precisely, such an ij-path, formed by the sequences (N,%`)t`=0 ⊆ RΩN and (S`)t−1

`=0, starts by an
improving move through a coalition S0 of size p0 such that S0 ∼′ {i} and S0 �m,ij {i}. For each

p such that M
(N,%m,ij),i
(p,1) > M

(N,%m,ij),j
(p,1) the ij-path contains M

(N,%m,ij),i
(p,1) −M (N,%m,ij),j

(p,1) improving

moves and each coalition S` inducing such a move from (N,%`) to (N,%`+1) is such that S` ∼` {i},
S` �m,ij {i}, that is, S0 �` {i} ∼` S` and S0 ∼`+1 S`. Thus, such moves are (S`, i)-improving.

For each p such that M
(N,%m,ij),i
(p,1) < M

(N,%m,ij),j
(p,1) the path contains M

(N,%m,ij),i
(p,2) − M

(N,%m,ij),j
((p,2)

deteriorating moves. For each S` inducing such a move from (N,%`) to (N,%`+1), one has p > p0

by definition of p0, S` �` {i} and S` ∼`+1 {i}. Thus, such moves are (S`, i)-deteriorating. There
is no other move in such a path. Thus, this ij-path is improving for agent i and the first coalition
S0 along the path is such that p0 = |S0| ≤ |S`| for each ` ∈ {1, . . . , t− 1}, and |S0| = |S`| implies
S0 �` {i} ∼` S`.

By Individual Improving Path Monotonicity with Priority to the Smallest Coalition, one con-
cludes that i �f(N,%m,ij) j. By Lemma 1, we get i �f(N,%) j. We have shown the implication

[i �LP (N,%) j] =⇒ [i �f(N,%) j], (7)

which completes Step 1.
Step 2 Assume that i ∼LP (N,%) j. To show: i ∼f(N,%) j. By Lemma 1, one has i ∼LP (N,%m,ij) j.

By definition of LP , we have M (N,%m,ij),i = M (N,%m,ij),j . Thus, by Proposition 1, i ∼f(N,%m,ij) j.
Using Lemma 1, one finally gets the desired result i ∼f(N,%) j.

From Step 1 and Step 2, conclude that LP (N,%) = f(N,%), which completes the proof of
Theorem 1. �

Step 1 (b), which shows implication (7), is instructive. Consider a coalitional ranking with
k ≥ 2 equivalent classes and two distinct agents i and j such that i and j have the same indi-
vidual performance but i is strictly better rank than j under LP . The proof consists in applying
Independence of Irrelevant Equivalent Classes to deduce that the relative ranking between i and
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j is not modified under LP when the equivalent classes of the coalitional ranking are merged in
two equivalent classes, that is, when one restricts the problem to a coalitional ranking that lists
the coalitions with a rank strictly better than the rank of the singletons {i} and {j} and places
the other coalitions in the equivalence class of {i} and {j}. In a second step, it is enough to make
coalitional moves from this merged coalitional ranking to reach another coalitional ranking such
that the matrices associated with i and j are identical. Here, one applies Neutrality and Super
Weak Coalitional Anonymity to deduce that i and j have the same rank under f (see Proposition
1). In a third step, one goes back to the original merged coalitional ranking through an ij-path
which is improving for agent i and gives the priority to the smallest coalition. From this, one
deduces that i has a strictly better rank than j under f in this merged coalitional ranking. In a
last step, one goes back to the original ranking with k equivalent classes by using Independence of
Irrelevant Equivalent Classes to conclude that i has a strictly better rank than j under f in this
original ranking. Figure 1 details the steps of this proof.

(N,%) ; k ≥ 2 equiv. classes

(N,%m,ij) ; 2 equiv. classes (N,%′)

Ind. Improving Path Monotonicity with Priority to the S. C.Ind. of I. Equiv. Classes Ind. of I. Equiv. Classes

i �
LP (N,%m,ij)

j

i �
LP (N,%)

j

M(N,%′),i = M(N,%′),j

Neutrality and S. W. Coalitional Anonymity,
i ∼f(N,%′) j

i �
f(N,%m,ij)

j

i �f(N,%) j

Moves

Figure 1: Given a coalitional ranking (N,%) ∈ R, proof of Step 1 (b) consists in applying Independence of Irrelevant Equivalent Classes (see

Lemma 1) to obtain (N,%m,ij) where certain equivalent classes of (N,%) have been merged, and where (N,%m,ij) contains two equivalence

classes. From (N,%m,ij), one creates a sequence of moves from (N,%m,ij) to reach (N,%′) where (N,%′) is such that M(N,%′),i = M(N,%′),j .
From this, one applies Neutrality and Super Weak Coalitional Anonymity (see Proposition 1) to deduce that i and j have the same individual rank
in (N,%′) under f . Next, one makes the reverse path using an ij-path, improving for agent i and which gives priority to the smallest coalition.

This path connects (N,%′) and (N,%m,ij). By Individual Improving Path Monotonicity with Priority to the Smallest Coalition, one deduces that

i �
f(N,%m,ij)

j and, by Independence of Irrelevant Equivalent Classes, one can split the equivalent classes of (N,%m,ij) to obtain the original

coalition ranking (N,%) without modifying the relative individual ranking between i and j, that is, i �f(N,%) j.

The following example illustrates the procedure of the proof of Theorem 1.

Example 5 Consider the coalitional ranking (N,%) introduced in Example 3. One has {3} ∼ {2}.
The coalitional ranking (N,%m,32) contains two equivalence classes:

E
(N,%m,32)
1 =

{
{2, 3, 4}, {2, 4}, {1, 3, 4}, {1, 2, 3}, {1, 3}, {2, 3}, {1, 4}

}

and
E

(N,%m,32)
2 =

{
N, {3, 4}, {1}, {2}, {2, 4}, {3}, {1, 2, 4}, {4}

}
.

The associated matrices are as follows:
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M (N,%m,32),2 =




0 1
2 1
2 1
0 1


 , M (N,%m,32),3 =




0 1
2 1
3 0
0 1


 .

Here p0 = 3, and M
(N,%m,32),3
(p0,1) −M (N,%m,32),2

(p0,1) = 1 so that M
(N,%m,32),2
(p0,2) −M (N,%m,32),3

(p0,2) = 1. Pick the

only coalition S = {1, 3, 4} of size p0 = 3 in E
(N,%m,32)
1 that contains 3 but not 2. Move it towards

the equivalence class E
(N,%m,32)
2 . Thanks to this move, one reaches the coalitional ranking (N,%′)

such that

M (N,%′),2 =




0 1
2 1
2 1
0 1


 = M (N,%′),3.

By Proposition 1, one gets 3 ∼f(N,%′) 2. Now, from (N,%′), consider the reverse move where

{1, 3, 4} is moved from E
(N,%′)
2 to E

(N,%′)
1 . In this way, one comes back to (N,%m,23) through the

({1, 3, 4}, 3)-improving move, that is {1, 3, 4} ∼′ {3} and {1, 2, 3} �m,32 {3}. This move constitutes
an 32-path, improving for agent 3 and which trivially gives priority to the smallest coalition. By
Individual Improving Path Monotonicity with Priority to the Smallest Coalition, one deduces that
3 �f(N,%m,32) 2 and, by Independence of Irrelevant Equivalent Classes, one finally gets the desired
result, 3 �f(N,%) 2.

�

The social ranking solution LP breaks the tie between two agents with identical individual
performance by comparing the number of coalitions of size two, then of size three and so on, whose
performance is strictly better than the individual performance of these two agents. Therefore, LP

is insensitive to the quality of the performance of these coalitions, as soon as this performance
is strictly better than the individual performance of these two agents. The following alternative
social ranking solution, denoted by LP

∗
, corrects this bias: if two agents have identical individual

performance, then the coalitions of size two whose performance is strictly better than this individ-
ual performance are explored, starting with the best equivalence class. If the number of coalitions
of size two containing the first agent is strictly greater than the number of coalitions of size two
containing the second agent in the best equivalence class, then the first agent is ranked ahead the
second agent. Otherwise, that is, if these two numbers coincide, one moves to the second best
equivalence class and proceeds in the same way. One continues to explore each equivalence class
from best equivalence to the equivalence class measuring the performance of these two agents. If the
procedure does not allow to break the tie between these two agents, then the procedure continues
by exploring the collective performance of coalitions of size three and so on. Thus, the social rank-
ing solution LP

∗
proceeds with a double lexicographical criterion: the criterion on the size of the

coalitions is applied first, then the criterion on the index of the equivalence classes (from the index
1 of the best equivalence class to the index qij−1) is used. The formal definition of LP

∗
is as follows.

Definition 3 The social ranking solution LP
∗

on R is defined as follows: for each (N,%) ∈ R and
pair {i, j} of distinct agents in N , i �LP∗ (N,%) j if one of the following conditions holds:
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1. {i} � {j};
2. {i} ∼ {j} and there exists a pair of integers (p0, q0), where 2 ≤ p0 < n and 1 ≤ q0 < qij , such

that:

• for each p < p0, it holds that:

∀q < qij , M
(N,%),i
(p,q) = M

(N,%),j
(p,q) ;

• and, for p0, it holds that:

∀q < q0, M
(N,%),i
(p0,q)

= M
(N,%),j
(p0,q)

and M
(N,%),i
(p0,q0) > M

(N,%),j
(p0,q0) .

Example 6 Consider again the social ranking of Example 3. Because {1} � {4} and {2} � {4},
one gets 1 �LP∗ (N,%) 4 and 2 �LP∗ (N,%) 4, as it is the case for LP . Consider now agent 1 and

agent 2. We have {1} ∼ {2} and q12 = 3. For p0 = 2 and q0 = 1 < q12, one has:

2 = M
(N,%),2
21 > M

(N,%),1
21 = 1.

Thus, by point 2 of Definition 3, 2 �LP∗ (N,%) 1. In the same way, {1} ∼ {3}, and, for p0 = 2 and

q0 = 1 < q13 = q12, one has

1 = M
(N,%),1
21 > M

(N,%),3
21 = 0,

so that 1 �LP∗ (N,%) 3. All in all, one obtains the following individual ranking,

2 �LP∗ (N,%) 1 �LP∗ (N,%) 3 �LP∗ (N,%) 4,

whereas LP ranks the agents as follows,

1 �LP (N,%) 2 �LP (N,%) 3 �LP (N,%) 4.

�

The social ranking LP
∗

satisfies all axioms of the statement of Theorem 1 except Independence
of Irrelevant Equivalence Classes and Individual Improving Path Monotonicity with Priority to
the Smallest Coalition. Nevertheless, LP

∗
satisfies the weak version of the axiom of independence

and the strong version of the axiom of path monotonicity. Removing Independence of Irrelevant
Equivalence Classes and Individual Improving Path Monotonicity with Priority to the Smallest
Coalition from the statement of Theorem 1 and adding Weak Independence to Irrelevant Equiva-
lence Classes, and Strong Individual Improving Path Monotonicity with Priority to the Smallest
Coalition, one obtains a characterization of LP

∗
.

Theorem 2 The social ranking solution LP
∗
is the unique social ranking solution on R satisfying

Super Weak Coalitional Anonymity, Neutrality, Standardness, Converse Consistency, Weak Inde-
pendence to Irrelevant Equivalence Classes, and Strong Individual Improving Path Monotonicity
with Priority to the Smallest Coalition.
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As for the proof of Theorem 1, we need a definition and two lemmas.

Definition 4 Let (N,%) ∈ R and two distinct agents i, j ∈ N with identical individual perfor-
mance, that is {i} ∼ {j}. Define the coalitional ranking (N,%m,ij) ∈ R obtained from (N,%) ∈ RN
and i, j ∈ N as follows: as above denote by qij the index of the equivalence class E

(N,%)

qij
to which

{i} and {j} belong. If there exists a coalition S such that S � {i}, then (N,%m,ij) contains qij

equivalent classes E
(N,%m,ij)
1 , . . . , E

(N,%m,ij)
qij

, such that:

∀q < qij , E(N,%m,ij)
q = E(N,%)

q and E
(N,%m,ij)
qij

=
⋃

q≥qij
E(N,%)
q ,

and
E

(N,%m,ij)
1 (�m,ij)∗ . . . (�m,ij)∗E(N,%m,ij)

qij
.

Otherwise (N,%m,ij) contains only one equivalent class, i.e., all coalitions have the same rank in
(N,%m,ij).

Lemma 2 Let f be a social ranking solution on R satisfying Weak Independence of Irrelevant
Equivalent Classes. Then, for each (N,%) ∈ R and each pair of distinct agents {i, j} ⊆ N such
that {i} ∼ {j}, the following equivalence holds:

[
if(N,%)j

]
⇐⇒

[
if(N,%m,ij)j

]
.

Proof. It suffices to observe that, by construction, (N,%m,ij) satisfies condition (2) of Weak
Independence of Irrelevant Equivalent Classes. �

Lemma 3 Consider any coalitional ranking (N,%) ∈ R and any pair of distinct agents {i, j} ⊆ N
such that M (N,%),i 6= M (N,%),j. Let (p0, q0) be the pair such that

1. M
(N,%),i
(p0,q0) 6= M

(N,%),j
(p0,q0) ;

2. for each (p, q) such that either p < p0 or p = p0 and q < q0, M
(N,%),i
(p,q) = M

(N,%),j
(p,q) .

Assume that M
(N,%),i
(p0,q0) > M

(N,%),j
(p0,q0) . Then, there exists a coalitional ranking (N,%′) ∈ R such

that M (N,%′),i = M (N,%′),j and an ij-path from (N,%) to (N,%′) such that, for each pair (p, q) where

M
(N,%),i
(p,q) ≤ M

(N,%),j
(p,q) , no coalition S ∈ E(N,%),i

(p,q) induces a move along the ij-path. Futhermore, the

ij-path can be chosen in such a way that the last move is induced by a coalition S ∈ E(N,%),i
(p0,q0) .2

The proof of this Lemma 3 is relegated to the Appendix. Thanks to Lemma 3, the steps in the
proof of Theorem 2 are similar to those of Theorem 1. We therefore limit ourselves to providing
the key points of this proof, some details being similar to those of the proof of Theorem 1.

Proof. (of Theorem 2). The fact the LP
∗

satisfies Super Weak Coalitional Anonymity, Neutrality,
Standardness, Weak Independence of Irrelevant Equivalence Classes, and Weak Individual Improv-
ing Path Monotonicity with Priority to the Smallest Coalition is straightforward. To see that it

2Recall from (3) that E
(N,%),i

(p,q) = E
(N,%)
q ∩

{
S ∈ ΩN : S 3 i, |S| = p

}
.
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satisfies Converse Consistency, consider any coalitional ranking (N,%) ∈ R, where |N | ≥ 3, and
any two distinct agents i, j ∈ N . Two cases can be distinguished:
Case 1: If {i} � {j}, then, for each, k ∈ N \ {i, j}, we obviously have {i} �−k {j} and so, by
Definition 3, i �LP∗ (N\k,%−k) j. Because, {i} � {j} one also has i �LP∗ (N,%) j, as desired.

Case 2: If {i} ∼ {j}, for each size p ≥ 2 and each q < qij define the set, possibly empty, of
coalitions of size p containing i but not j:

D(N,%),i,j̄
pq =

{
S ∈ E(N,%)

q : S 3 i, S 63 j, |S| = p
}
.

In a similar way, define D
(N,%),i,j
pq as the set of coalitions of size p in the equivalence class E

(N,%)
q

containing both i and j:

D(N,%),i,j
pq =

{
S ∈ E(N,%)

q : S ⊇ {i, j}, |S| = p
}
.

Remark that, by definition,

M (N,%),i
pq = |D(N,%),i,j̄

pq |+ |D(N,%),i,j
pq | and M (N,%),j

pq = |D(N,%),̄i,j
pq |+ |D(N,%),i,j

pq |.

Thus, to show that LP
∗

satisfies Converse Consistency, assume that

∀k ∈ N \ {i, j}, i �LP∗ (N\k,%−k) j.

By Definition 3 and the above remark, i �LP∗ (N\k,%−k) j if and only if there exists a pair of integers

(pk0, q
k
0 ), where 2 ≤ pk0 < n− 1 and 1 ≤ qk0 < qij , such that:

• for each p < pk0, it holds that:

∀q < qij , |D(N\k,%−k),i,j̄
pq | = |D(N\k,%−k),̄i,j

pq |;

• and, for pk0, it holds that:

∀q < q0, |D(N\k,%−k),i,j̄

pk0q
| = |D(N\k,%−k),̄i,j

pk0q
| and |D(N\k,%−k),i,j̄

pk0q
k
0

| > |D(N\k,%−k),̄i,j

pk0q
k
0

|.

Let (p0, q0) = min{(pk0, qk0 ) : k ∈ N \ {i, j}} where the minimum is taken over the pairs (pk0, q
k
0 ),

k ∈ N \ {i, j} ordered according to the following lexicographic relation:

(p, q) <L (p′, q′) if p < p′ or p = p′ and q < q′.

And, in a similar way as (6), one obtains:

∀k ∈ N \ {i, j}, (n− p− 1)|D(N,%),i,j̄
pq | =

∑

k∈N\ij
|D(N\k,%−k),i,j̄

pq | (8)

By definition of (p0, q0), for each k ∈ N \ {i, j}, it holds that:

∀p < p0, ∀q < qij , |D(N\k,%−k),i,j̄
pq | = |D(N\k,%−k),̄i,j

pq |;
and, for p0,

∀q < q0, |D(N\k,%−k),i,j̄
p0q | = |D(N\k,%−k),̄i,j

p0q | and |D(N\k,%−k),i,j̄
p0q0 | ≥ |D(N\k,%−k),̄i,j

p0q0 |.
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Furthermore, there is k∗ ∈ N \ {i, j} such that:

|D(N\k∗,%−k∗ ),i,j̄

pk
∗

0 qk
∗

0

| > |D(N\k∗,%−k∗ ),̄i,j

pk
∗

0 qk
∗

0

|.

Therefore, by (8), one obtains:

∀p < p0, ∀q < qij , |D(N,%),i,j̄
pq | = |D(N,%),̄i,j

pq |;
and for p0,

∀q < q0, |D(N,%),i,j̄
p0q | = |D(N,%),̄i,j

p0q | and |D(N,%),i,j̄
p0q0 | > |D(N,%),̄i,j

p0q0 |,
which ensures that i �LP∗ (N,%) j, as desired.

To show that LP
∗

is the unique social ranking solution on R satisfying Super Weak Coali-
tional Anonymity, Neutrality, Standardness, Converse Consistency, Weak Independence of Irrele-
vant Classes, and Strong Individual Improving Path Monotonicity with Priority to the Smallest
Coalition, let f be a social ranking social satisfying these six axioms. We have to show that
f = LP

∗
. Pick any N ∈ F , any (N,%) ∈ RN and any i, j ∈ N . We proceed in two steps.

Step 1: Assume that i �LP∗ (N,%) j. To show: i �f(N,%) j. We distinguish two exclusive cases:
(a) {i} � {j}. Then, by Proposition 2, we get i �f(N,%) j.
(b) {i} ∼ {j}. Consider the coalition ranking (N,%m,ij) obtained from (N,%) as defined in
Definition 4. Because i �LP∗ (N,%) j, by Lemma 2, we also have i �LP∗ (N,%m,ij) j. Because

i �LP (N,%m,ij) j, there exists a coalition S ∈ ΩN such that S 3 i and S �m,ij {i}, meaning

that %m,ij contains qij > 1 equivalence classes E
(N,%m,ij)
1 , . . . , E

(N,%m,ij)
qij

. This implies that both

matrices M (N,%m,ij),i and M (N,%m,ij),j have qij columns, and there exists a pair (p0, q0) as defined

in point 2 of Definition 4, such that M
(N,%mij),i
(p0,q0) > M

(N,%m,ij),j
(p0,q0) . By Lemma 3, there is an ij-path

from (N,%m,ij) to a coalitional ranking (N,%′) such that M (N,%′),i = M (N,%′),j and the last move

is induced by a coalition S0 3 i of size p0 belonging to E
(N%m,ij)
q0 .

By Proposition 1, we have i ∼f(N,%′) j. Next, starting from (N,%′), one can construct the
reverse ij-path ending with the coalitional ranking (N,%m,ij) where this first move is induced by

a coalition belonging to E
(N,%m,ij),i
(p0,q0) . By definition of (N,%′) (note that in the latter {i} and {j}

belong to the worst equivalence class), each of these moves is weakly S`-improving for i and the

first move induced by coalition S0 ∈ E(N,%m,ij)
q0 is such that |S0| = p0; and, for each other coalition

S` along this path such that |S`| = p0, one necessarily has S0 �` S` by definition of the pair
(p0, q0) as defined in point 2 of Definition 4 (see above). By Strong Individual Improving Path
Monotonicity with Priority to the Smallest Coalition, one obtains i �f(N,%m,ij) j and then Lemma
2 applies to obtain i �f(N,%) j. This concludes the proof of Step 1.

Step 2: Assume that i ∼LP∗ (N,%) j. In this case, the proof is identical to Step 2 of the proof of
Theorem 1, except that one uses Lemma 2 instead of Lemma 1.

This completes the proof of Theorem of 2. �

5. Logical independence of the axioms

The following list of social ranking solutions shows that the axioms used in Theorem 1 are
logically independent.
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Neutrality is not satisfied. Consider the social ranking solution f on R defined as follows: for
any (N,%) ∈ R an any pair {i, j} ⊆ N such that {i} % {j},

i �f(N,%) j if either
[
{i} � {j}

]
or
[
{i} ∼ {j} and i < j and |N | 6= 2

]
.

The social ranking solution f satisfies Super Weak Coalitional Anonymity, Standardness, Inde-
pendence to Irrelevant Equivalent Classes, Converse Consistency, and Individual Improving Path
Monotonicity with Priority to the Smallest Coalition, but obviously violates Neutrality.

Individual Improving Path Monotonicity with Priority to the Smallest Coalition is
not satisfied. Consider the social ranking solution f on R defined as follows: for any (N,%) ∈ R,

i �f(N,%) j if {i} � {j}.

The social ranking solution f satisfies Neutrality, Super Weak Coalitional Anonymity, Standard-
ness, Independence to Irrelevant Equivalent Classes, Converse Consistency, but violates Individual
Improving Path Monotonicity with Priority to the Smallest Coalition.

Standardness is not satisfied. Consider the social ranking solution f on R defined as follows:
for any (N,%) ∈ R,

i �f(N,%) j if either {j} � {i} or {i} ∼ {j} and i �LP (N,%) j.

The social ranking solution f satisfies Neutrality, Super Weak Coalitional Anonymity, Independence
to Irrelevant Equivalent Classes, Converse Consistency, Individual Improving Path Monotonicity
with Priority to the Smallest Coalition, but violates Standardness.

Converse Consistency is not satisfied. Consider the social ranking solution f on R defined
as follows: for any (N,%) ∈ R,

i �f(N,%) j if




{i} � {j} and |N | = 2,
{j} � {i} and |N | 6= 2,
{i} ∼ {j} i �LP (N,%) j.

The social ranking solution f satisfies Neutrality, Super Weak Coalitional Anonymity, Indepen-
dence to Irrelevant Equivalent Classes, Standardness, Individual Improving Path Monotonicity
with Priority to the Smallest Coalition, but violates Converse Consistency.

Independence to Irrelevant Equivalent Classes is not satisfied. The social ranking LP
∗

sat-
isfies Neutrality, Super Weak Coalitional Anonymity, Standardness, Converse Consistency, (Strong)
Individual Improving Path Monotonicity with Priority to the Smallest Coalition, but violates In-
dependence to Irrelevant Equivalent Classes.

The logical independence of the axioms used in Theorem 2 can be shown in a similar way. The
proof is omitted.
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6. Conclusion

This paper proposed two new solutions for coalitional ranking problems. Both social ranking
solutions use a lexicographic criterion to rank the agents. The main axiomatic results show that
these two solutions satisfy similar principles. To switch from LP to LP

∗
, it is sufficient to weaken

the independence axiom and to strengthen the path monotonicity axiom. It is possible to refine
the solution LP

∗
by exploring the equivalence classes that are ranked below the equivalence class

containing the singleton coalitions of two indifferent agents with respect of LP
∗
. Such a modification

requires a revision of the independence and the path monotonicity axioms.
To construct the social ranking solutions LP and LP

∗
, one first considers singleton coalitions,

then coalitions of size two, etc. Another option would be to start with coalitions of size n − 1,
then of size n− 2, etc. Such a solution allows to put forward first the collective performance of the
agents, then the individual performance. At this stage of the analysis, we have not succeeded in
axiomatizing such a social ranking solution.

7. Appendix

Proof. (of Lemma 3) Let ∆
(N,%)
ij be the number of pairs (p, q) such that M

(N,%),i
(p,q) 6= M

(N,%),j
(p,q) .

Recall that, for each p,
k∑

q=1

M
(N,%),i
(p,q) =

k∑

q=1

M
(N,%),j
(p,q) .

Thus, when there exists (p1, q1) such that M
(N,%),i
(p1,q1) > M

(N,%),j
(p1,q1) , then there exists q2 such that

M
(N,%),i
(p1,q2) < M

(N,%),j
(p1,q2) . This is turn implies that ∆

(N,%)
ij ≥ 2. Moreover, when ∆

(N,%)
ij = 2, there

exists a unique q2 > q0 such that M
(N,%),j
(p0,q2) −M

(N,%),i
(p0,q2) = M

(N,%),i
(p0,q0) −M

(N,%),j
(p0,q0) , and for any pair

(p, q) /∈ {(p0, q0), (p0, q2)}, M (N,%),i
(p,q) = M

(N,%),j
(p,q) . The proof is done by induction on ∆

(N,%)
ij .

Initialization: ∆
(N,%)
ij = 2. It is possible to create an ij-path starting from (N,%) and formed

by M
(N,%),i
(p0,q0) −M

(N,%),j
(p0,q0) moves. Each of these moves is induced by a coalition S ∈ E(N,%),i

(p0,q0) – that

is, by (3), a coalition S ∈ E(N,%)
q0 of size p0 and containing i – and S is moved to E

(N,%),i
(p0,q2) . The

coalitonal ranking (N,%′) obtained at this end of this path is such that M (N,%′),i = M (N,%′),j , and,

obviously, the last move of the path is induced by coalition S ∈ E(N,%)
q0 of size p0. Thus, we are done.

Induction hypothesis: Assume that the result holds for any (N,%) ⊆ R such that ∆
(N,%)
ij ≤ k,

for k ≥ 2.

Induction step: Let k ≥ 2 and (N,%) ⊆ R such that ∆
(N,%)
ij = k + 1. Let (p1, q1) and (p1, q2)

such that
M

(N,%),i
(p1,q1) > M

(N,%),j
(p1,q1) and M

(N,%),i
(p1,q2) < M

(N,%),j
(p1,q2) .

We distinguish two cases.
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Case 1: Assume that (p1, q1) can be chosen in such way that (p1, q1) 6= (p0, q0), that is, (p0, q0) is
not the only pair such that

M
(N,%),i
(p0,q0) > M

(N,%),j
(p0,q0) .

It is possible to create an ij-path starting from (N,%) formed by

min

{
M

(N,%),i
(p1,q1) −M

(N,%),j
(p1,q1) ,M

(N,%),j
(p1,q2) −M

(N,%),i
(p1,q2)

}

moves. Each of these moves is induced by a coalition S ∈ E(N,%),i
(p1,q1) ; and S is moved from E

(N,%),i
(p1,q1)

to E
(N,%),i
(p1,q2) . The coalitonal ranking (N,%′′) obtained at the last step of this path is such that

∆
(N,%′′)
ij < ∆

(N,%)
ij since M

(N,%′′),i
(p1,q1) = M

(N,%′′),j,
(p1,q1) or M

(N,%′′),i
(p1,q2) = M

(N,%′′),j
(p1,q2) . Furthermore, because

(p0, q0) 6= (p1, q1), one also has

M
(N,%′′),i
(p0,q0) = M

(N,%),i
(p0,q0) > M

(N,%),j
(p0,q0) = M

(N,%′′),j
(p0,q0) .

Thus, the induction hypothesis applies to (N,%′′): there exists an ij-path satisfying the condition
of the Lemma 3 starting with (N,%′′) and ending with a coalitional ranking (N,%′) such that
M (N,%′),i = M (N,%′),j . Concatenating the above two ij-paths, we get an ij-path from (N,%) to
(N,%′) satisfying the hypothesis of the Lemma 3. Notice that each coalition used in the first
ij-path from (N %) to (N,%′′) is not used in the second ij-path from (N,%′′) to (N,%′). Indeed,

such a coalition belongs to the set E
(N,%′′)
q such that M

(N,%′′),i
(p,q) ≤M (N,%′′),j

(p,q) .

Case 2: One necessarily have (p0, q0) = (p1, q1), that is, (p0, q0) is the only pair such that

M
(N,%),i
(p0,q0) > M

(N,%),j
(p0,q0) .

Thus, for each size p 6= p0 and each q ∈ {1, . . . , k}, M (N,%),i
(p,q) = M

(N,%),j
(p,q) , and, for each q 6= q0,

M
(N,%),i
(p0,q)

≤M (N,%),j
(p0,q)

. Because

k∑

q=1

M
(N,%),i
(p,q) =

k∑

q=1

M
(N,%),j
(p,q) and k + 1 ≥ 3,

there exist q2 and q′2 in {1, 2, . . . , k} such that q0 < q2 < q′2 and

M
(N,%),i,
(p0,q2) < M

(N,%),j
(p0,q2) and M

(N,%),i
(p0,q′2)

< M
(N,%),j
(p0,q′2)

,

which in turn implies that

M
(N,%),j
(p0,q2) −M

(N,%),i
(p0,q2) < M

(N,%),i
(p0,q0) −M

(N,%),j
(p0,q0) .

Thus, it is possible to create an ij-path starting from (N,%) and formed by M
(N,%),j
(p0,q2) −M

(N,%),i
(p0,q2)

moves, each of them being induced by a coalition S ∈ E(N,%)
q0 of size p0, which is moved from E

(N,%)
q0
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to E
(N,%)
q2 . On the one hand, the coalitonal ranking (N,%′′) obtained at the end of this path is

such that M
(N,%′′),i
(p0,q2) = M

(N,%′′),j
(p0,q2) , so that ∆

(N,%′′)
ij < ∆

(N,%)
ij . On the other hand,

M
(N,%′′),i
(p0,q0) = M

(N,%),i
(p0,q0) −

(
M

(N,%),j
(p0,q2) −M

(N,%),i
(p0,q2)

)

> M
(N,%),i
(p0,q0) −

(
M

(N,%),i
(p0,q0) −M

(N,%),j
(p0,q0)

)

= M
(N,%),j
(p0,q0)

= M
(N,%′′),j
(p0,q0) .

Thus, the induction hypothesis applies to (N,%′′): there exists an ij-path satisfying the condition of
the lemma starting with (N,%′′) and ending with a coalitional ranking (N,%′) such thatM (N,%′),i =
M (N,%′),j . In the same way as in Case 1, one concatenates the above two ij-paths from (N,%)
to (N,%′′) and from (N,%′′) to (N,%′) to get an ij-path from (N,%) to (N,%′) satisfying the
hypothesis of the Lemma 3. This completes the induction step. �
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