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Abstract

We consider cooperative games with a neighborhood structure modeled by a graph. Our approach

shares some similarities with the models of graph games (Myerson, 1977) and games with a local

permission structure (van den Brink and Dietz, 2014). The value that we study shares the Harsanyi

dividend of each coalition equally among the coalition members and their neighbors. We characterize

this value by �ve axioms: E�ciency, Additivity, Null neighborhood out (removing a null player

whose neighbors are also null does not a�ect the remaining players' payo�s), Equal loss in an

essential situation (if a single coalition has a non-null Harsanyi dividend and the other players are

neighbors of that coalition, removing any player induces the same payo� variation for the remaining

players) and Two-player symmetry (In a two-player game, the players obtain equal payo�s if they

are symmetric or neighbors).

Keywords: Shapley value, Graph games, Neighborhood, Harsanyi dividends, Axiomatization.

1. Introduction

Cooperative games with transferable utility (simply games) describe the worth that each coali-

tion of players can generate by cooperating. The goal is to �nd a value that speci�es the payo�s

obtained by the players from their participation in the game. In this classical model, such a value

can only depend on the worths of the coalitions of players and the Shapley value (Shapley, 1953)

is the most well-known value. However, in many situations exogenous a�nities among players are

relevant and can be represented by some social, hierarchical, economical, communicational, or tech-

nical structure. For instance, Myerson (1977) models bilateral communication among players by

the links of an undirected graph and the so-called Myerson value extends the Shapley value in this

framework.

In this article, we retain the same model as in Myerson (1977) but with a totally di�erent

interpretation. More speci�cally, the edges of the graph are interpreted as neighbourhood relations,
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and we hypothesize that each player needs the agreement of each of its neighbours in order to be

able to cooperate within a coalition. We introduce a value which shares the Harsanyi dividend

(Harsanyi, 1959) of each coalition equally among the extended neighborhood of this coalition, i.e.

the coalition members and their neighbors. This is comparable with, albeit di�erent from, the

Shapley value and the Myerson value, which shares equally among the coalition's members the

Harsanyi dividend of the coalition in the game and graph-restricted game, respectively. We called

this value the Neighborhood value. Alternatively, the Neighborhood value can be formulated as the

Shapley value of a neighborhood-restricted game in which the worth of a coalition is the worth, in

the original game, of the susbset of its members for whom all neighbors are also in the coalition.

Our approach is therefore close to the literature on permission structure initiated by Gilles

et al. (1992). It is even the particular case of the class of games with a local permission structure

introduced in van den Brink and Dietz (2014) when a player is a direct predecessor of another

player if and only if the reciprocal relation also holds. Hence, on this subclass of games with a local

permission structure, the Neighborhood value coincides with the local permission value studied

by van den Brink and Dietz (2014). The �rst properties that we exhibit are inherited from this

literature even if we keep the demonstrations for completeness.

Our main result is an axiomatic characterization of the Neighborhood value that rests on �ve

axioms. The �rst two axioms are classical: E�ciency imposes that the sum of distributed payo�s

equals the worth achieved by the grand coalition and Additivity requires that the payo�s allocated

in the sum of two games equals the sum of the payo�s distributed in these two games. The remaining

three axioms are new and take into account the neighborhood structure. Null neighborhood out

states that removing a null player whose neighborhood only contains null players as well does not

alter the payo�s of the other players. It is similar to the classical null player out axiom (Derks and

Haller, 1999). The axiom of Equal loss in an essential situation focuses on a situation in which

a single coalition has a non-null Harsanyi dividend and each other player is the neighbor of some

member of the aforementioned coalition. The axiom simply requires that removing any player yields

for each other player the same payo� variation. It should be noted that these �rst four axioms are

satis�ed by the classical Shapley value. The �nal axiom, called Two-player symmetry, is stated on

two-player games only. It imposes equal payo� for the two players if either they are symmetric (i.e.

they have the same contributions to coalitions) or if they are neighbors.

The rest of the article is organized as follows. Section 2 introduces cooperative games, graphs,

the Neighborhood value and provides examples in which the latter value is relevant. Section 3

presents and proves all results.

2. Preliminaries

2.1. Cooperative games

A cooperative game with transferable utility (simply a game) is a pair (N,v) such that, for

each coalition S ⊆ N , v(S) ∈ R is the worth of coalition S, i.e. the best result that the players in

S can achieve by cooperating without the help of the other players, and v(∅) = 0 by convention.

Denote by G the set of all games in which the player set is �nite. For each coalition S ⊆ N ,

s stands for the number of players in s. Players i, j ∈ N are symmetric in (N,v) if for each
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S ⊆ N/{i, j}, v(S ∪{i}) = v(S ∪{j}). Player i ∈ N is null in the game (N,v) if for each S ⊆ N/{i},
v(S ∪ {i}) = v(S). The sum of two games (N,v) and (N,w) is the game (N,v +w) such that, for

each S ⊆ N , (v +w)(S) = v(S) +w(S). For any S ⊆ N , the subgame of (N,v) induced by S is the

game (S, v∣S), where, for each T ⊆ S, v∣S(T ) = v(T ). Since Shapley (1953), it is known that any

function v can be uniquely expressed as:

v = ∑
S⊆N,S≠∅∆v(S)uS , (1)

where (N,uS) is the unanimity game on N induced by coalition S given by uS(T ) = 1 if T ⊇ S
and uS(T ) = 0 otherwise, and ∆v(S) is called the Harsanyi dividend (Harsanyi, 1959) of S.

Following Besner (2022), a coalition S is called essential is a game (N,v) if ∆v(S) ≠ 0.
The Shapley value Sh (Shapley, 1953) shares the dividend of each coalition equally among its

members:

Shi(N,v) = ∑
S⊆N,S∋i

∆v(S)
s

for each i ∈ N and each (N,v) ∈ G.
The Equal Division value ED is such, for each (N,v) ∈ G and each i ∈ N ,

EDi(N,v) = v(N)
n

.

2.2. Graph games

An undirected graph on N is a pair (N,L) such that N is the set of nodes and L is a subset of

the set LN of all unordered pairs {{i, j} ∶ i, j ∈ N, i ≠ j}. Each pair {i, j} ∈ L represents the bilateral

link between nodes i and j in N . The complete graph on N is the the pair (N,LN). Let L be the

set of all graphs that we can construct from any nonempty and �nite set of nodes. The subgraph

of (N,L) ∈ L induced by S ⊆ N/{∅} is the graph (S,L∣S) ∈ L where L∣S = {{i, j} ∈ L ∶ i, j ∈ S}. In
a graph (N,L) ∈ L a sequence of di�erent nodes (i1, . . . , ir), r ≥ 2, is a path from node i1 to node

ir if for q = 1, . . . , r − 1 it holds that {iq, iq+1} ∈ L. Two nodes i and j are connected in (N,L)
if either i = j or there exists a path between i and j. The graph (N,L) is connected if any two

nodes of N are connected. A coalition of nodes S ⊆ N/{∅} is connected in the graph (N,L) if
the induced subgraph (S,L∣S) is connected. If (N,L) is not connected, then it is partitioned into

components being maximal connected subsets of nodes with respect to set inclusion. Let N/L be

the set of components of (N,L).
A graph game is a triple (N,v,L) where (N,v) ∈ G and (N,L) ∈ L. A value on G × L is

a mapping f on G × L that assigns to each (N,v,L) ∈ G × L a payo� vector f(N,v,L) ∈ RN .

The most famous value for graph games is the Myerson value (1977) being the Shapley value of

a graph-restricted game constructed from (N,v) and (N,L). Precisely, let (N,v,L) ∈ G × L, the
graph-restricted game (N,vL) ∈ G is de�ned as:

∀S ⊆ N, vL(S) = ∑
C∈N/L v(C),
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that is, the worth of coalition S is de�ned as the sum of the worths of its connected components

in the subgraph induced by this coalition. This means that only connected coalitions are able to

cooperate.

The Myerson value (Myerson, 1977) on G × L, denoted by My, is then de�ned as:

My(N,v,L) = Sh(N,vL).
It is characterized by Component e�ciency (each connected component of the associated graph

obtains a total payo� equal to its worth) and Fairness (deleting any link from the graph yields

the same payo� variations for the two associated players). Since (N,vL) = (N,v) if L = LN , the

Myerson value can be considered as a generalization of the Shapley value.

2.3. The Neighborhood value

For any (N,L) ∈ L and any i ∈ N , Li = {j ∈ N ∶ {i, j} ∈ L}} is the neighborhood of node i ∈ N .

Set L+i = {i} ∪ Li and for any nonempty S ⊆ N , L+S = ∪i∈SL+i . In what follows, we assume that a

player needs the permission from her neighbors before it can cooperate. For any (N,L) ∈ L and

any S ⊆ N , following Gilles et al. (1992), we can call coalition S autonomous if LS ⊆ S. The

structure of the set of autonomous is clear: an autonomous coalition is either empty of the union of

connected components.1 For any coalition S ⊆ N , and in particular the non-autonomous coalitions,

de�ne the sovereign part σL(S) of S in (N,L) and the subset of S for whom all neighbors are

also members of S:

σL(S) = {i ∈ S ∶ Li ⊆ S}.
From any (N,v,L) ∈ G × L, de�ne the neighborhood-restricted game (N, rL(v)) ∈ G as:

∀S ⊆ N, rL(v)(S) = v(σL(S)).
In words, the worth of a coalition S in (N, rL(v)) is the worth achieved in (N,v) by the subset of

players in S for whom all neighbors are also members of S. The Neighborhood value on G × L,
denoted by NV , is then de�ned as:

NV(N,v,L) = Sh(N,rL(v)).
Two comments are in order. If the graph is empty, i.e. if L = ∅, then σ∅(S) = S for each S ⊆ N ,

which implies that r∅(v) = v and thus that NV (N,v,∅) = Sh(N,v). If the graph is complete,

i.e. if L = LN , then σLN (S) = ∅ for each S ⊊ N and σLN (N) = N , which implies that rLN (v) is
a symmetric game such that rL(v)(N) = v(N) and thus that NV (N,v,LN) = ED(N,v). As a

consequence, the neighborhood value can be seen as a generalization of both the Shapley value and

the Equal Division value.

Furthermore, for each non-empty coalition S, the unique smallest coalition whose sovereign part

is S is obviously L+S , even if it is often the case that L+S is not autonomous. Hence the role played

by L+S is di�erent from the so-called authorizing set of S in Gilles et al. (1992), which represents a

�rst di�erence with this literature.

1Hence the set of autonomous coalition is trivially both closed under union and closed under intersection.
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Example 1. (Resource pooling) A resource pooling problem can be described by a tuple P =(N,R, (Ri)i∈N , b) where:
� O is the �nite set of resource owners;

� R is the �nite set of resources;

� for each resource owner j ∈ O, Rj ⊆ R is the subset of resources owned by j. Multiple

ownership is allowed: it is possible that Rj ∩Rj′ ≠ ∅ for some distinct j, j′ ∈ O;
� b ∶ 2R Ð→ R is a bene�t function which assigns to each subset of resources Q ⊆ R the bene�t

b(Q) obtained by pooling the resources from Q.

Examples of such resources are patents that must be pooled to construct a smartphone (which

is made up of around 250 000 patents), an hotel chain made up of numerous hotels, data that are

gathered within a SIEF in order to better understand the impact of a chemical substance in the

context of the REACH legislation (Béal and Deschamps, 2016), etc.

To the resource problem P , we can associate a graph game (NP , vP , LP ) such that

� the set NP of players is the set of pairs (j, k) where j is a resource owner and k is a resource

owned by j, i.e.

NP = {(j, k) ∶ j ∈ O,k ∈ Rj}.
� for each coalition S ⊆ N of players, vP (S) is the bene�t obtained if resources in S are pooled,

i.e.

vP (S) = b( ⋃(j,k)∈S k);
� Lp contains a link between (j, k) and (j′, k′) if and only if j ≠ j′ and k = k′, i.e. if j and j′
are the co-owners of the same resource.

In this context, the neighborhood restricted game is relevant: it indicates that the agreement of

all the owners of a resource is needed to e�ectively mobilize the resource. For a game (NP , vP , LP ),
the Neighborhood value will specify a payo� for each pair (j, k) ∈ NP describing two things: �rst,

how important is resource k in the pooling of all resources and second, how important is the fact

that j owns this resource. ◻
Example 2. (Non-point source pollution) Béal et al. (2024) model the problem of sharing the

cost of cleaning up non-point source pollution as a triple (N, c,L) where
� N is a set of �rms,

� c = (ci)i∈N is a cost vector specifying, for each �rm i ∈ N , the cost ci ≥ 0 of cleaning up

pollution on the site of �rm i,

� L is a set of links such that {i, j} ∈ L means that i's activity can also harm j' site and vice

versa. It is therefore considered that pollution is bilateral and L+i indicates the potential

polluters of site i.
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They construct the polluters game, which assigns to each triple (N, c,L), the game vc,L on N such

that, for each S ⊆ N , vc,L(S) = ∑i∈L+S ci. It is easy to prove that the Polluters game coincides with

the neighborhood-restricted game (N, rL(v)) if one sets v as the additive game induced by c, i.e.

v(S) = ∑i∈S ci for each S ⊆ N . ◻
3. Results

We split the results in two parts. Firstly, we provide results regarding the neighborhood-

restricted game, which leads to an alternative formulation of the Neighborhood value. Secondly,

we prove an axiomatic characterization of the Neighborhood value.

3.1. Properties

The following property connects the neighborhood-restricted game to the dividends of the orig-

inal game and is inspired by some results obtained by Gilles et al. (1992). First, for any graph(N,L), de�ne
A(L) = {S ⊆ N ∶ S = L+T for some T ⊆ N}.

Proposition 1. For each (N,v,L), it holds that
rL(v) = ∑

S∈A(L)( ∑
T⊆N ∶L+T =S

∆v(T ))uS . (2)

Proof. As a start, for each nonempty coalition S ⊆ N , we show that

rL(uS) = uL+S . (3)

Pick any T ⊆ N , Then rL(uS)(T ) = uS(σL(T )) = uS({i ∈ T ∶ Li ⊆ T}). Therefore, for each

nonempty T ⊆ N ,

rL(uS)(T ) = { 1 if {i ∈ T ∶ Li ⊆ T} ⊇ S
0 otherwise,

= { 1 if L+i ⊆ T for all i ∈ S
0 otherwise,

= { 1 if L+S ⊆ T
0 otherwise,

= uL+S(T ),
as desired. Next, from (3), we can write that

rL(v) = rL( ∑
S⊆N,S≠∅∆v(S) ⋅ uS)

= ∑
S⊆N,S≠∅∆v(S) ⋅ rL(uS)
= ∑

S⊆N,S≠∅∆v(S) ⋅ uL+S
= ∑

S∈A(L)( ∑
T⊆N ∶L+T =S

∆v(T ))uS ,
which completes the proof. ∎
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The previous result allows to provide the following relevant alternative form of the Neibhorhood

value in terms of the dividends of the original game.

Proposition 2. For each (N,v,L) ∈ G × L and each i ∈ N , it holds that

NVi(N,v,L) = ∑
S⊆N ∶i∈L+S

∆v(S)∣L+S ∣ (4)

Proof. For each (N,v,L) ∈ G × L and each i ∈ N , using (2), we can write

NVi(N,v,L) = Shi(N, rL(v))
= Shi(N, ∑

S∈A(L)( ∑
T⊆N ∶L+T =S

∆v(T ))uS)
= ∑

S∈A(L)Shi(N, ∑
T⊆N ∶L+T =S

∆v(T ) ⋅ uS)
= ∑

S∈A(L)∶S∋i( ∑
T⊆N ∶L+T =S

∆v(T ))1
s
.

Since S ∋ i and L+T = S imply that i ∈ L+T , the previous expression can rewritten as:

NVi(N,v,L) = ∑
S⊆N ∶i∈L+S

∆v(S)∣L+S ∣ ,

as desired. ∎
3.2. Axiomatic characterization

We list below axioms for a value f on G × L. The �rst two are classical.

E�ciency (EFF). For each (N,v,L) ∈ G × L, it holds that ∑i∈N fi(N,v,L) = v(N).
Additivity (ADD). For each (N,v,L), (N,w,L) ∈ G×L, it holds that f(N,v+w,L) = f(N,v,L)+
f(N,w,L).

The next two axioms describe the e�ect of the neighborhood of a player on the allocation

process. Both are based on two dimensions of the model: productivity, measured by v, and the

neighbourhood role, measured by L. The �rst one states that if a player and all her neighbors are

null in a game, then removing this player from the game should not change the payo� of any other

player. Hence, the removed player is inconsequential on both the productivity (it is null) and the

neighborhood (its agreement as a neighbor only concerns null players).

Null neighborhood out (NNO). For each (N,v,L) ∈ G ×L and each i ∈ N such that each j ∈ L+i
is a null player in (N,v), it holds that fk(N,v,L) = fk(N/{i}, v∣N/{i}, L(N/{i})) for each k ∈ N/{i}.
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The second axiom describing the in�uence of the neighborhood considers a case in which a

unique coalition is essential and in which each player outside this coalition is the neighbor of some

player in the coalition. In such a situation, the axiom requires that the departure of any player

results in identical payo� variations for the remaining players.

Equal loss in an essential situation (ELES). For each (N,v,L) ∈ G × L such that there is a

unique essential coalition S ⊆ N and each player in N/S is the neighbor of some member of S,

for each triple i, j, k ∈ N of distinct players, it holds that fj(N,v,L) − fj(N/{i}, v∣N/{i}, L∣N/{i}) =
fk(N,v,L) − fk(N/{i}, v∣N/{i}, L∣N/{i}).

The �nal axiom that we invoke focuses on two-player games. It requires equal payo�s for the

two players if at least one of the two symmetrical conditions is met: the two players are symmetric

in the cooperative game and/or they share the same neighborhood.

Two-player symmetry (TPS).) For each (N,v,L) ∈ G × L such that N = {i, j}, if i and j are

symmetric players in (N,v) or L = {{i, j}}, it holds that fi(N,v,L) = fj(N,v,L).
Proposition 3. The Neighborhood value is the unique value on G × L that satis�es E�ciency

(EFF), Additivity (ADD), Null neighborhood out (NNO), Equal loss in an essential situation

(ELES) and Two-player symmetry (TPS).

Proof. Existence. We prove that NV satis�es all axioms on G × L.
(EFF). For each (N,v,L) ∈ G×L, we have rL(v)(N) = v(σL(N)) = v({i ∈ N ∶ Li ⊆ N}) = v(N).

Since the Shapley value satis�es (EFF) on G, it holds that
∑
i∈N NVi(N,v,L) = ∑

i∈N Shi(N, rL(v)) = rL(v)(N) = v(N),
as desired.

(ADD). It is obvious that NV inherits (ADD) from the Shapley value and the fact that the

mapping rL is linear.

(NNO). Consider a game (N,v,L) ∈ G × L and a player i ∈ N such that i and each of her

neighbors j ∈ Li are null players in (N,v). It is known that the Harsanyi dividend of a coalition

is null if this coalition contains a null player. Hence, it holds that ∆v(S) = 0 for each S ⊆ N such

that S ∩L+i ≠ ∅. Since i ∈ L+S if and only if S ∩L+i ≠ ∅, from (4), we obtain for each j ∈ N/{i},
NVj(N,v,L) = ∑

S⊆N ∶j∈L+S
∆v(S)∣L+S ∣ = ∑

S⊆N/{i}∶j∈L+S
∆v(S)∣L+S ∣ = NVj(N/{i}, v∣N/{i}, L∣N/{i}).

(ELES). Consider any (N,v,L) ∈ G × L such that there is a unique essential coalition S ⊆ N
and each player in N/S is the neighbor of some member of S. Hence, (N,v,L) is such that

v = c ⋅ uS for some real c ≠ 0 and N = L+S . Therefore, there are two types of players: the
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players in S are necessary in (N,v), i.e. if any i ∈ S is outside a given coalition, this coali-

tion has a null worth, and each player in N/S is null but the neighbor of some player in S.

We consider successively the departure of each type of player. Firstly, pick i ∈ S. Then, for each

j ∈ N/{i}, we have NVj(N,v,L)−NVj(N/{i}, v∣N/{i}, L∣N/{i}) = NVj(N,v,L) since (N/{i}, v∣N/{i})
is the null game on N/{i} and NV assigns null payo�s in the null game. Hence, the equality

NVj(N,v,L) −NVj(N/{i}, v∣N/{i}, L∣N/{i}) = NVk(N,v,L) −NVk(N/{i}, v∣N/{i}, L∣N/{i}) holds for
each j, k ∈ N/{i}, as desired. Secondly, pick i ∈ N/S. For each j ∈ N/{i}, we have

NVj(N,v,L) −NVj(N/{i}, v∣N/{i}, L∣N/{i}) = c ⋅∆v(S)
n

− c ⋅∆v(S)
n − 1 ,

which means that the equality NVj(N,v,L) −NVj(N/{i}, v∣N/{i}, L∣N/{i}) = NVk(N,v,L) −NVj =
k(N/{i}, v∣N/{i}, L∣N/{i}) also holds for each j, k ∈ N/{i}. This proves that NV satis�es ELES.

(TPS). Consider (N,v,L) ∈ G × L such that N = {i, j}. Firstly, suppose that i and j are

symmetric players in (N,v). Then ∆v({i}) =∆v({j}), which implies that that

NVi(N,v,L) =∆v({i}) + 1

2
∆v({i, j}) =∆v({j}) + 1

2
∆v({i, j}) = NVj(N,v,L)

if L = ∅ or

NVi(N,v,L) = 1

2
(∆v({i}) +∆v({j}) +∆v({i, j})) = NVj(N,v,L) (5)

if L = {{i, j}}. Secondly, assume that L = {{i, j}}, which yields L+i = L+j = {i, j}. Then, whatever
v, equality (5) holds again. We proved that NV satis�es TPS.

Uniqueness. Consider any value f on G × L that satis�es the �ve axioms. We proceed by

induction on the size of N .

Initialisation. If ∣N ∣ = 1, then f(N,v,L) is uniquely determined by EFF. If ∣N ∣ = 2, letN = {i, j}.
We distinguish two cases. If L = {{i, j}}, f(N,v,L) is uniquely determined by TPS and EFF. If

L = ∅, by ADD, we have

f(N,v,L) = f(N,∆v({i}) ⋅ u{i}) + f(N,∆v({j}) ⋅ u{j}) + f(N,∆v({i, j}) ⋅ u{i,j})
Players i and j are symmetric in (N,∆v({i, j}) ⋅ u{i,j}) so that f(N,∆v({i, j}) ⋅ u{i,j}) is uniquely
determined by TPS. In (N,∆v({i}) ⋅u{i}, L), player j is a null player and has no neighbor. Hence,

NNO can be applied to get fi(N,∆v({i})⋅u{i}, L) = fi({i},∆v({i})⋅u{i}, L) =∆v({i}). From EFF

in (N,∆v({i}) ⋅ u{i}, L), we also obtain fj(N,∆v({i}) ⋅ u{i}, L) = 0. In (N,∆v({j}) ⋅ u{j}, L), we
proceed as before except that the roles of i and j are inverted. All in all, we proved that f(N,v,L)
is uniquely determined.

Induction hypothesis. Assume that f(N,v,L) is uniquely determined for all (N,v,L) ∈ G × L
such that ∣N ∣ ≤ q, q ≥ 2.
Induction step. Consider any (N,v,L) ∈ G × L such that ∣N ∣ = q + 1. Since f satis�es ADD,

from (1) we have that

f(N,v,L) + ∑
S⊆N ∶∆v(S)<0

f(N,−∆v(S) ⋅ uS , L) = ∑
S⊆N ∶∆v(S)≥0

f(N,∆v(S) ⋅ uS , L), (6)
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which implies that, for a given player set N , it is enough to show that f is uniquely determined in

any game (N, c ⋅ uS) such that S ⊆ N is nonempty and c ∈ R+. If c = 0, the additivity of f implies

that f is an odd function so that EFF yields that fi(N, c ⋅ uS , L) = 0 for each i ∈ N . So suppose

that c ≠ 0. We distinguish two cases.

Firstly, consider any (N, c ⋅ uS , L) such that L+S ⊊ N . Pick any i ∈ N/L+S and note that i and

each player in Li are null players in (N, c ⋅ uS). Therefore, NNO can be applied to obtain, for

each j ∈ N/{i} that fj(N, c ⋅ uS , L) = fj(N/{i}, v∣N/{i}, L∣N/{i}). Since fj(N/{i}, v∣N/{i}, L∣N/{i}) is
uniquely determined by the induction hypothesis, so is fj(N, c ⋅ uS , L). By EFF, fi(N, c ⋅ uS , L) is
uniquely determined as well.

Secondly, consider any (N, c ⋅ uS , L) such that L+S = N . Remark that S is the unique essential

coalition and since L+S = N , each player in N/S is the neighbor of some player in S. Therefore,

ELES can be applied to get, for each triple {i, j, k} of distinct players:
fj(N, c ⋅uS)− fk(N, c ⋅uS) = fj(N/{i}, (c ⋅uS)∣N/{i}, L∣N/{i})− fk(N/{i}, (c ⋅uS)∣N/{i}, L∣N/{i}). (7)
From the induction hypothesis, the right member of (7) is uniquely determined. Hence, the col-

lection of n2(n − 1)/2 such equations and the equation provided by EFF form a system of linear

equations with n unknowns. This system possesses at most one solution and we already proved

in the existence part that NV (N, c ⋅ uS , L) is a solution. Conclude that f(N, c ⋅ uS , L) is uniquely
determined, which completes the proof. ∎

The logical independence of the axioms invoked in Proposition 3 can be demonstrated as follows.

� The null value satis�es all axioms except EFF.

� For any game (N,v), denote by γ(N,v) the set of non-null players. The value on G ×L such

that, for each (N,v,L) ∈ G × L,
fi(N,v,L) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩

v(N)∣γ(N,v)∣ if i ∈ γ(N,v),
0 otherwise,

satis�es all axioms except ADD.

� The Equal Division value (de�ned on G × L) satis�es all axioms except NNO.

� The value on G × L such that, for each (N,v,L) ∈ G × L,
fi(N,v,L) = ∑

S⊆N ∶i∈L+S
∣L+i ∣∑j∈L+S ∣L+j ∣∆v(S)

satis�es all axioms except ELES.

� The Shapley value (de�ned on G × L) satis�es all axioms except TPS.

10



References

Béal, S., Deschamps, M., 2016. On compensation schemes for data sharing within the european REACH legislation.

European Journal of Law and Economics 41, 157�181.

Béal, S., Lowing, D., Munich, L., 2024. Sharing the cost of cleaning up non-point source pollution. Working Paper

CRESE 2024-13.

Besner, M., 2022. Disjointly productive players and the Shapley value. Games and Economic Behavior 133, 109�114.

Derks, J., Haller, H.H., 1999. Null players out? Linear values for games with variable supports. International Game

Theory Review 1, 301�314.

Gilles, R., Owen, G., van den Brink, R., 1992. Games with permission structures: The conjunctive approach.

International Journal of Game Theory 20, 277�293.

Harsanyi, J.C., 1959. A bargaining model for cooperative n-person games, in: Tucker, A.W., Luce, R.D. (Eds.),

Contribution to the Theory of Games vol. IV, Annals of Mathematics Studies 40. Princeton University Press,

Princteon, pp. 325�355.

Myerson, R.B., 1977. Graphs and cooperation in games. Mathematics of Operations Research 2, 225�229.

Shapley, L.S., 1953. A value for n-person games, in: Kuhn, H.W., Tucker, A.W. (Eds.), Contribution to the Theory

of Games vol. II, Annals of Mathematics Studies 28. Princeton University Press, Princeton, pp. 307�317.

van den Brink, R., Dietz, C., 2014. Games with a local permission structure: separation of authority and value

generation. Theory and Decision 76, 343�361.

11


