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Abstract. A buyer (the principal) procures a good or service from a risk-neutral seller (the
agent). The seller, protected by limited liability, has private information on his marginal
cost of production (adverse selection), and exerts a non-verifiable effort that increases surplus
(moral hazard). Even when the effort and production technologies are separable, the optimal
contract always mixes features that are found separately under with pure moral hazard or
pure screening. Screening distortions are mitigated in comparison with the pure screening
scenario with the possibility of bunching for the least efficient types even in contexts where
full separation would be obtained with pure screening. Effort distortions are also used as a
screening device. In comparison with a pure moral hazard scenario, those distortions may be
lessened for the most efficient types, up to the point of possibly allowing implementation of
the first-best effort, while they are worsened for the worst types. Although our analysis is cast
in a simple procurement setting, we illustrate our findings in other economic environments
of general interest including economic and environmental regulation, financial contracting,
provision of quality in services, and price discrimination.
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1. INTRODUCTION

Adverse selection (hidden information) and moral hazard (hidden action) have been
the two dominant paradigms of the Theory of Contracts over the last few decades.1 As
testimonies of their successes, those paradigms have illuminated our understanding of
many contracting environments.

Adverse selection models have informed us on the design of nonlinear prices in various
environments (Mussa and Rosen (1978), Maskin and Riley (1984), Wilson (1993)), the
structure of regulatory and procurement policies (Baron and Myerson (1982), Laffont
and Tirole (1986), Armstrong and Sappington (2007)), the nature of financial contract-
ing (Freixas and Laffont (1990), Bolton and Scharfstein (1990)) and insurance provision
(Stiglitz (1977), Chade and Schlee (2012)) or the shape of optimal taxation schemes
(Mirrlees (1971), Diamond (1998)) among other major advances. Equipped with the
analytical tools offered by the Revelation Principle (Myerson (1982)), modelers have
studied at length how contracts are constrained by the fundamental trade-off between
efficiency and rent extraction that pervades this screening literature. Principals are ready

*We thank Javier Gonzales-Morin, Liam Lods, François Maréchal as well as seminar participants at
ESEM 2023 and AFSE 2023 for useful comments on an earlier version. This paper has been funded by
the Agence Nationale de la Recherche under grant ANR− 17−EURE− 0010(Investissements d’Avenir
program). The usual disclaimer applies.
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bUniversité de Montpellier, MRE, Montpellier, France,jean-christophe.poudou@umontpellier.fr
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1See Hart and Holmström (1987) for a seminal overview and Laffont and Martimort (2002) and Bolton

and Dewatripont (2004) for textbook treatments.
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to concede inefficiency when trading with their agents as a mean to extract the infor-
mation rent that those agents withdraw from having private information.

On their side, moral hazard models have shed light on the design of managerial com-
pensations (Ross (1973), Holmström (1979), Shavell (1979), Mirrlees (1999)), the rela-
tionships between firms and their financiers (Jensen and Meckling (2019), Holmström
and Tirole (1997), Dewatripont, Legros, and Matthews (2003), Chaigneau, Edmans,
and Gottlieb (2018)), the theory of agrarian contracts (Stiglitz (1974)) or the incen-
tive purposes of various legal rules and regulation (Shavell (1984)) to select a few areas
of significant interest. On that front, the literature has foreshadowed two main issues.
First, principals fail to provide enough insurance to risk-averse agents in order to pro-
vide incentives for effort provision: a well-known trade-off between risk and incentives
(Holmström (1979), Shavell (1979), Grossman and Hart (1983)). Second, principals may
also have to forego efficient effort provision to reduce their risk-neutral agents’ liability
rent that they view as costly (Innes (1990), Poblete and Spulber (2012), Jewitt, Kadan,
and Swinkels (2008), Matthews (2001)).

Although the body of existing literature related to each of those paradigms when
taken separately is significant, the lessons of those paradigms that still prevail in richer
environments where both adverse selection and moral hazard are simultaneously at play
remain to a large extent still unknown. This paper stands on that front.

The Model. We consider a simple archetypical model of procurement in the spirit of
Baron and Myerson (1982). A buyer (the principal, she) buys a good or service from a
risk-neutral seller (the agent, he). The seller has private information on his marginal cost
(the adverse selection side of the model). The seller can also undertake a non-verifiable
and costly effort which reduces his fixed cost of production (the moral hazard side).
Contracting takes place once the seller has already learned his cost parameter. The
seller is protected by limited liability; his profit from providing the service must always
remain non-negative.

Importantly, the two sources of agency problems, adverse selection and moral hazard,
are a priori unrelated. On the one hand, the effort does not affect the marginal cost of
production in sharp contrast with Laffont and Tirole (1986)’s seminal model of incentive
regulation for instance. On the other hand, the marginal cost of production does not
affect neither the seller’s disutility of effort nor the probability of a fixed cost reduction
in contrast with Faynzilberg and Kumar (2000) and Castro-Pires, Chade, and Swinkels
(2024) among many others.

In such a context with strong separability, intuition might suggest that the two sources
of agency costs should be treated separately. Extracting the adverse selection information
rent could thus be handled by means of downward distortions in output; with the stan-
dard screening result that all types, except the most efficient one, produce less than the
first-best level. Those distortions are certainly attractive in our context as well because
they allow to reduce the seller’s information rent. Remember indeed that, in a screening
environment, a low-cost seller may be attracted by the allocation of a high-cost one;
producing the same quantity at a lower marginal cost and pocketing extra payments
when doing so. Downward output distortions make those strategies less attractive.
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Pursuing on this intuition that the two agency problems could be potentially fixed
separately, we might also think that the solution to the moral hazard problem is indepen-
dent of the adverse selection parameter. Because of limited liability, the seller cannot be
punished too harshly once his effort fails and no reduction of the fixed cost is observed.
Incentives for fixed cost reduction can only be provided with bonuses in case such an
event is observed. Therefore, the seller also withdraws some liability rent. This liabil-
ity rent is also viewed as being costly by the buyer. Reducing this rent calls for lower
bonuses and underprovision of effort. Yet, since the disutility of effort does not depend
on the seller’s type, his liability rent does not either. A rough intuition could thus sug-
gest that the corresponding downward reduction in effort should be made independent
of the marginal cost.

Surprisingly, it turns out that none of those intuitions is actually correct.

Findings. The key reason for the de facto non-separability between the adverse selection
and moral hazard sides of the incentive problem in our context comes from the seller’s
limited liability. The condition that profits cannot be negative implies that the seller’s
information rent associated to his private information on cost has necessarily to be
greater than his liability rent coming from moral hazard. In other words, extracting
the seller’s information rent might thus also require to decrease bonuses to reduce his
liability rent. To understand why it is so, remember that, under adverse selection, a seller
would like to exaggerate his cost to pocket higher prices for the service. To make this
strategy less attractive, the seller’s payment and output should be reduced if he were
to claim a high cost. Those distortions harden the seller’s liability constraint; which in
turn exacerbates the moral hazard problem. Effort should thus be reduced and lower
bonuses should be offered to higher types.

The flip side of this argument is that, when the seller is sufficiently cost-efficient in
providing the service, he may also receive a large payment as a reward for truthtelling.
The seller has thus enough cash to post a bound equal to the moral hazard liability
rent. This rent is recouped in case effort succeeds and a fixed cost reduction arises. The
seller’s effort, when sufficiently efficient, thus exerts first-best effort. At the same time,
output distortions for those sufficiently efficient types are the usual screening distortions,
captured by a virtual cost whose expression is familiar from Baron and Myerson (1982).
For the most productive types of the seller, moral hazard and adverse selection can be
treated separately.

For a seller with a less efficient type, output distortions take a much less familiar
shape. First, those output distortions are mitigated in comparison with a pure screening
scenario. The intuition is simple. Increasing the seller’s output indeed increases his
information rent from adverse selection and thus relaxes his limited liability constraint.
In turn, those milder distortions allow to raise the seller’s effort. For the least productive
types of the seller, moral hazard and adverse selection cannot thus be disentangled.

Second, remember that, when binding, the liability constraint links together the seller’s
information rent and his liability rent; which itself depends on his effort. Extracting the
former means reducing the later. The familiar result of the screening literature that the
seller with the highest cost parameter would obtain zero rent cannot hold unless this
seller is also asked to exert no effort; a significant efficiency loss if the marginal return
on even a tiny effort is sufficiently valuable. Leaving a positive information rent to the
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seller even with the highest cost means that there should not be any output distortion
for the highest type either; a result in sharp contrast with the received lessons from pure
screening models.

There is thus a tension between ensuring adverse selection incentive compatibility
and implementing a positive effort for the least productive types. The former calls for
reducing output for all but the most efficient type. The latter requires limiting output
inefficiency for inefficient types. From this tension, it follows that the output monotonic-
ity condition imposed by incentive compatibility in screening models may be binding for
those worst types. This is so even in regular screening environments where the monotone
hazard rate property (Bagnoli and Bergstrom (2005)) would suffice to ensure that the
solution to the relaxed screening problem, omitting a priori this monotonicity condition,
ends up satisfying it. Bunching is pervasive in our contracting environment; leading to
simple contractual forms.

Literature Review. Models that mix adverse selection and moral hazard already
abound in the literature. They mostly differ in terms of the timing of information learning
and actions, and the posited assumptions on how those two agency problems enter into
the agent’s preferences.2 Given this richness, it would be somehow illusive to make even
a brief overview of this literature and we will just content ourselves with stressing a few
earlier findings that are relevant for our specific results.

The closest paper to ours is certainly Hiriart and Martimort (2006). As we do there-
after, those authors consider a procurement model à la Baron and Myerson (1982) and
append to it a moral hazard problem. The seller needs to exert an effort to avoid some
environmental damage. Our model below generalizes their work along two directions.
First, we consider a richer adverse selection environment with a continuum of types
instead of a two-types information structure as they do. With two types, there is only
one binding (upward) truthtelling constraint and thus only the high-cost seller’s output
needs to be distorted. The possibility of bunching that prevails in our context also dis-
appears. A richer pattern of output distortions, eventually exhibiting bunching arises
with a continuum of types. Second, Hiriart and Martimort (2006) make the simplifying
assumption that the environmental damage is so severe that the seller can never pay
for the damage. In other words, his limited liability constraint is always binding. Our
analysis demonstrates that, here also, a richer set of configurations is possible with the
most efficient types of the seller being able to use their significant adverse selection rent
to relax those liability requirements and implements first-best incentives.

Taking a broader perspective, a burgeoning line of research has analyzed whether
lessons of pure moral hazard models carry over when private information is added up.
The concomitant presence of both agency issues introduces the possibility that the
agent could potentially deviate both in terms of his report but also in terms of the
recommended action. On this front, Faynzilberg and Kumar (2000), Faynzilberg and
Kumar (1997), Ollier (2007), and Castro-Pires, Chade, and Swinkels (2024) have pro-
posed decoupling techniques that delineate circumstances under which those deviations
can be treated separately. In contrast with us, those authors allow for risk aversion on
the agent’s side3 and consider that his private information may enter into either the

2See Laffont and Martimort (2002), Chapter 7, for an earlier overview.
3An exception is Ollier (2007).
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production technology or the disutility function. Maybe more surprisingly, even when
assuming a strong separability between the moral hazard and adverse selection tech-
nological sides of the model as we do thereafter in the context of risk neutrality, the
solutions to both agency problems are necessarily linked.

An extreme form of interaction between moral hazard and adverse selection actually
arises when the optimal contract cannot depend on the adverse selection parameter.
Robust contracts exhibit such bunching in contexts with arbitrarily rich private infor-
mation about the distribution of outputs and the cost of effort as in Gottlieb and Moreira
(2022). Along the same vein, Lewis and Sappington (2001), Ollier and Thomas (2013),
Escobar and Pulgar (2017) and Castro-Pires and Moreira (2021a) have derived inflexible
contracts in environments that entail more structured preferences with non-separabilities
between the adverse selection and moral hazard sides of the agency problem; and some-
times ex post participation rather than limited liability constraints. Bunching is also
found in a variety of applications to financial contracting (At and Thomas (2019)),
sharecropping (At and Thomas (2017)), R&D or managerial compensations (Rietzke
and Chen (2020)) or health economics (Maréchal and Thomas (2021)). Its sources vary
across models and depend in fine details of the contracting instruments available and
on how stringent limited liability constraints are.4 One possibility is that, because it
constrains payments, limited liability makes it difficult to screen the agent’s type as in
Lewis and Sappington (2001), At and Thomas (2019) and Ollier and Thomas (2013).
Risk aversion may have a similar effect as shown by Maréchal and Thomas (2018). An-
other possibility is that moral hazard requires bonuses that should ideally vary with
the adverse selection parameters in opposite directions to the monotonicity required
for incentive compatibility; an instance of non-responsiveness à la Guesnerie and Laf-
font (1984) that is found in Escobar and Pulgar (2017) and Castro-Pires and Moreira
(2021b). In our paper, the source of bunching is radically different. It comes from the
existing conflict between the principal’s desire to extract the agent’s information rent
and her willingness to implement a positive effort even for the worst type.

From a technical viewpoint, the limited liability constraint is a mixed constraint link-
ing the agent’s information rent (a state variable) and his liability rent which itself
depends on the bonus for fixed cost reduction (a control variable).5 Such a constraint
imposes no terminal condition on the state variable, in sharp contrast with the case of
pure screening. This implies that the associated costate variable is zero at both ends
of the type space; which in turn implies no output distortions at those points unless
the monotonicity condition is binding. This possibility of bunching induced by a free
transversality condition is certainly reminiscent of the optimal taxation literature as ex-
emplified by Lollivier and Rochet (1983), the nonlinear pricing literature with random
outside options as in Rochet and Stole (2002) or the regulation of a risk-averse firm
as in Salanie (1990) and Laffont and Rochet (1998). To characterize the bunching area
without a priori imposing any continuity assumption on the agent’s output (only mono-

4A contrario, a related literature has shown that, when the agent has private information on his
performance and has to be induced to report such, the principal can disentangle adverse selection and
moral hazard provided that she has enough instruments (audit, payments contingent on some verifiable
outcomes and the like...). This point is made in Mookherjee and Png (1989), Gromb and Martimort
(2007), Malcomson (2009), Krähmer and Strausz (2011), Roger (2013) among others.

5Mixed constraints have received less attention in the contracting literature in comparison with the
pure state constraints studied in Lewis and Sappington (1989), Jullien (2000) and Martimort and Stole
(2022) among others.
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tonicity should matter), we follow and adapt ironing techniques that were developed
earlier on by Myerson (1981) and Toikka (2011). In contrast with those papers where
the virtual cost is entirely determined by the exogenous distribution of types, ironing
the virtual cost now requires consideration of a costate variable which is endogenous to
the optimization problem since it depends on where the liability constraint binds. This
endogeneity implies that ironing is needed even in contexts where the monotone hazard
rate property, familiar from screening models, would suffice to ensure monotonicity in
pure screening environments.

Organization of the Paper. Section 2 presents the model and some basic results.
Section 3 describes the set of incentive-feasible allocations in our context mixing adverse
selection and moral hazard. Section 4 analyzes two benchmarks. In Section 4.1, moral
hazard is the sole incentive problem. In Section 4.2, adverse selection is added but the
agent has no limited liability. Section 5 considers the more complete scenario with ad-
verse selection, moral hazard, and limited liability. Section 5.1 first focuses on simple
scenarios where the monotonicity condition for incentive compatibility holds and char-
acterizes fully separating allocations. Section 5.2 provides sufficient conditions for this
scenario. Section 5.3 develops ironing techniques to handle the monotonicity condition
when binding. Section 6 briefly analyzes the shape of payments. Finally, Section 7 devel-
ops other applications and extensions of our framework, showing its broad applicability.
Proofs are relegated to an Appendix.

2. THE PROCUREMENT MODEL

We consider the following procurement model. A buyer (the principal, thereafter some-
times referred to as she) contracts with a seller (the agent, thereafter he) for the provision
of a good or service on her behalf. Both parties are risk neutral and the cashless seller
is protected by limited liability. Our analysis below thus heavily relies on the textbook
models for adverse selection and moral hazard as it can be found in Laffont and Marti-
mort (2002) (Chapters 2 and 5) but merges those two models in a very simple way.

By purchasing q units of the good, the buyer enjoys a benefit S(q) where S is increasing
and strictly concave (S′ > 0, S′′ < 0) with S(0) = 0. To ensure positive production
under all circumstances below, we assume that the following Inada conditions hold
lim
q→0

S′(q) = +∞ and lim
q→+∞

S′(q) = 0. We will sometimes refer to the demand function

D = S′−1 which is thus decreasing from the fact that S is strictly concave. For technical
reasons, we also assume that q ∈ Q = [0, q] where q < +∞.6

Technology and Information. When producing q units, the seller incurs a variable
cost θq. The marginal cost parameter θ is his private information. This parameter is
drawn from a common knowledge cumulative distribution function F that is assumed
to be atomless and has a positive density function f on the support Θ = [θ, θ] (we
sometimes denote by ∆ = θ − θ the spread of cost uncertainty).

Following Bagnoli and Bergstrom (2005) and most of the screening literature, we

6Alternatively, q can be viewed as a quality index in which case, the buyer only needs at most one
unit of service. Although they might apply in different economic contexts, those two interpretations of
the model are of course equivalent.
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assume that the Monotone Hazard Rate Property holds, i.e.,

(MHRP)
F − κ
f

is non-decreasing for κ ∈ {0, 1}.

On top of its marginal cost, the seller also incurs a fixed cost K for providing the
service. This fixed cost is common knowledge.

Moral Hazard. By exerting an effort e, the seller can reduce this fixed cost by an
amount B; an event which arises only with probability e ∈ [0, 1]. Whether a reduction
in fixed cost occurs or not is an observable event.7

When exerting effort e, the seller incurs a disutility ψ(e) which is increasing (ψ′ ≥ 0)
and strictly convex (ψ′′ > 0). More precisely, we assume that ψ is three times con-
tinuously differentiable with ψ(0) = 0, and lim

e→1
ψ′(e) = +∞ so as to ensure interior

solutions to all incentive problems that are considered below. For future reference, we
define ϕ = ψ′−1 and the seller’s liability rent as R(e) = eψ′(e) − ψ(e). Observe that
R(e) is itself non-negative, increasing with R′(0) = 0 and convex when ψ′′′ ≥ 0; an
assumption that is maintained throughout.

Payoffs. The buyer’s and the seller’s payoffs are respectively written as

V = S(q)− t̃+ ew̃,

and

U = t̃− θq −K + e(B − w̃)− ψ(e).

In the above formulas, t̃ stands for a base-payment for delivery of the good while w̃ is
a rebate made to the buyer in case a fixed cost reduction is observed. Observe that not
contracting yields zero reservation payoff to both players. For ease of presentation, it
might be useful to define the seller’s net payments and a (non-negative) bonus for a fixed
cost reduction respectively as t = t̃−K and w = B − w̃. With these pieces of notations
at hands, we may rewrite the buyer’s and the seller’s payoffs in a more compact form
respectively as

V = S(q)−K − t+ e(B − w),

and

U = t− θq + ew − ψ(e).

Contracts. The buyer has all bargaining power and makes a take-it-or-leave-it offer
to the seller. Following the Revelation Principle (Myerson (1982)), there is no loss of
generality in focusing on direct and truthful revelation mechanisms. Such a mechanism

7The fact that effort induces only two outcomes (cost-reduction or not) is not really restrictive. To
see why, suppose that there are n possible outcomes (n finite), we know that, with limited liability, the
agent should receive a positive bonus only for those states having the highest likelihood ratio and should
not be paid otherwise. Such contract would thus have a similar bang-bang structure.
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is a triplet (q(θ̂), t(θ̂), w(θ̂)) which stipulates an output, a base-payment and a bonus in
terms of the agent’s report θ̂ on his type.

Timing. The game unfolds as follows. First, the agent learns his cost parameter θ.
Second, the principal proposes a contract. Third, the agent accepts or refuses this offer,
in which case the game ends with zero payoff to all players. Fourth, the agent chooses
an output (or reports his type in the direct mechanism version of the game) and exerts
an effort. Finally, payments and bonuses are made according to the realized output (or
report) and whether the fixed cost has been reduced or not.

The Complete Information Scenario. Suppose, as a benchmark, that both θ and e
are observable and verifiable. The buyer can dictate which effort the seller should exert
and can use a forcing contract to induce the requested quantity. Because the buyer has
all bargaining power, she can reduce the base payment for the seller’s services till she
captures all of his surplus

Ufb(θ) = 0.

The buyer thus chooses production and effort so as to maximize the following expression
of the overall surplus which, of course, exhibits a separability between its output and
effort components

S(q)− θq −K + eB − ψ(e).

The first-best output and effort (qfb(θ), efb) are then readily characterized. The buyer’s
marginal benefit of output should be equal to the seller’s marginal cost

(2.1) S′(qfb(θ)) = θ ∀θ ∈ Θ,

while the marginal benefit of effort in terms of reduced fixed cost should be equal to its
marginal disutility

(2.2) B = ψ′(efb)

which leads to an expression of first-best effort independent of the cost parameter; as
expected in this framework with separability between effort and production.

For simplicity, we shall also assume that gains from trade are large enough to always
warrant production. This condition puts an upper bound on possible values of the fixed
cost, namely

(2.3) S(qfb(θ))− θqfb(θ) +R(efb) ≥ K.

In other words, the overall surplus of production and effort should exceed the fixed
cost even in the worst scenario where the seller has the highest possible marginal cost
and the net surplus from output is at its minimum.

3. INCENTIVE FEASIBILITY

Preliminaries. Our contracting environment entails both adverse selection and moral
hazard. We follow Laffont and Martimort (2002) (Chapter 7) in reducing this so called
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mixed model into a simpler setting with pure screening only. To do so, we use an in-
direct utility approach; first looking for the optimal effort for a given pair (θ, θ̂) and,
second, computing indirect payoffs accordingly. Incentive compatibility constraints are
then written solely in terms of this indirect utility function.

Fix the bonus w(θ̂) that the seller receives when the additional benefit of trade has
been realized and he has reported being of type θ̂. His optimal effort is readily obtained
as maximizing with respect to e the following expression

t(θ̂)− θq(θ̂) + ew(θ̂)− ψ(e).

Because of strict concavity of this objective with respect to e and thanks to the Inada
condition on ψ, the optimal effort e(θ̂), that only depends on the non-negative bonus,
is also non-negative and given by the following first-order condition

(3.1) e(θ̂) = ϕ(w(θ̂)).

Accordingly, we may rewrite the seller’s payoff for an arbitrary choice within the offered
menu (t(θ̂), q(θ̂), w(θ̂))θ̂∈Θ as

R(ϕ(w(θ̂))) + t(θ̂)− θq(θ̂).

Incentive Compatibility. We now define the seller’s information rent as his equilib-
rium payoff when truthtelling, i.e.,

(3.2) U(θ) = R(ϕ(w(θ))) + t(θ)− θq(θ).

This expression showcases that the seller’s information rent is the addition of a liability
rent R(ϕ(w(θ))) associated to the moral hazard problem and the more standard rent
t(θ)− θq(θ) which is familiar from pure screening environments.

From the Revelation Principle, we must have

(3.3) U(θ) = max
θ̂∈Θ
R(ϕ(w(θ̂))) + t(θ̂)− θq(θ̂) ∀θ ∈ Θ.

In addition, we may rewrite the moral hazard incentive constraint (3.1) when the seller
adopts a truthful strategy as

(3.4) e(θ) = ϕ(w(θ)) ∀θ ∈ Θ.

As usual, it is useful to recast the contracting problem in terms of the allocation
(U(θ), e(θ), q(θ)) that is induced by an incentive compatible contract (t(θ̂), w(θ̂), q(θ̂))θ̂∈Θ.
The next fundamental Lemma characterizes such incentive compatible allocations.

Lemma 1 The seller’s information rent U(θ) is convex, absolutely continuous and sat-
isfies the following integral representation

(3.5) U(θ) = U(θ) +

∫ θ

θ
q(θ̃)dθ̃.
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Modulo the addition of the effort specification in (3.4), Lemma 1 is a fundamental
result which is standard in the mechanism design literature. It relates any non-increasing
output profile q that the buyer may want to implement with the seller’s payoff U that
it induces. This Lemma is the source of the infamous trade-off between efficiency and
rent extraction that we will repeatedly encountered under various degrees of complexity
in the rest of our analysis.

We may rewrite the integral representation (3.5) using an envelope condition. U being
absolutely continuous, it is actually almost everywhere differentiable with the following
condition holding at any point of differentiability

(3.6) U̇(θ) = −q(θ).

To understand the envelope condition (3.6), it is useful to consider the benefits that
a seller with cost θ gets when he claims having a marginally higher cost θ̂ = θ + dθ.
Doing so means that this seller can produce the requested output q(θ+ dθ) at a slightly
lower cost and accordingly save q(θ+ dθ)dθ ≈ q(θ)dθ. To induce information revelation,
a type θ must thus receive an extra marginal rent q(θ)dθ beyond what is already left
to a type θ + dθ. The integral representation (3.5) shows how those marginal rents are
compounded.

Remark. The convexity requirement can also be written as a familiar monotonicity
condition on output, namely

(3.7) q non-increasing.

As we will see below, and it is a striking fact of our environment, this monotonicity
constraint generally cannot be omitted when looking for an optimal contract.

Participation Constraints. The seller participates whenever he makes a non-negative
profit

(3.8) U(θ) ≥ 0 ∀θ ∈ Θ.

When taken in tandem with the incentive compatibility requirement (3.6), it is straight-
forward to check that this participation constraint holds whenever it holds for the seller
having the highest possible cost, i.e.,

(3.9) U(θ) ≥ 0.

Limited Liability Constraint. The seller is protected by limited liability. Even in
the worst scenario where his effort has not induced any fixed cost reduction, he cannot
be punished beyond the value of his existing assets. Assuming, for simplicity, that the
seller has no assets to start with, this limited liability requirement can be written as

(3.10) t(θ)− θq(θ) ≥ 0 ∀θ ∈ Θ.8

8This condition can also be viewed as an ex post participation constraint that would prevent the seller
to walk away from contracting once he has already completed his effort. On this interpretation of the
liquidity constraint, see Ollier and Thomas (2013) and Krähmer and Strausz (2024).
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Using (3.2), a more compact expression is then obtained as

(3.11) U(θ) ≥ R(e(θ)) ∀θ ∈ Θ.

Notice that the right-hand side of (3.11) is non-decreasing with the agent’s effort e(θ),
and thus indirectly so with the bonus w(θ) that implements this effort.9

It turns out that this limited liability constraint can be rewritten by means of an extra
control variable as

U(θ) = R(e(θ)) + z(θ) where z(θ) ≥ 0 ∀θ ∈ Θ.

The new non-negative control variable z so defined can be viewed as the mere share of
the overall information rent of the seller that accrues to his private information on his
cost parameter.

Moving forward, and in view of preparing for the optimization below, we may define
effort in terms of the rent profile as

(3.12) e(θ) = E(U(θ)− z(θ)) ∀θ ∈ Θ

where E = R−1.10

Principal’s Problem. The buyer wants to maximize, over all incentive-feasible allo-
cations, her expected payoff, namely∫ θ

θ
(S(q(θ))−K − t(θ) + e(θ)(B − w(θ))) f(θ)dθ;

an expression that we may rewrite as∫ θ

θ
(S(q(θ))− θq(θ)−K + e(θ)B − ψ(e(θ))− U(θ)) f(θ)dθ.

The above integrand stands for the overall expected social surplus less the seller’s in-
formation rent. This expression of the buyer’s expected payoff highlights a trade-off
between efficiency and rent extraction which is familiar from the screening and moral
hazard literatures. This optimization problem is denoted as (P) in the sequel.

4. TWO POLAR SCENARIOS

This section considers two polar scenarios. Each of those entails only one kind of in-
centive problem as a source of agency frictions; either moral hazard or adverse selection.
The important take-away hereafter is that, thanks to the separability of the effort and
production technologies, incentive distortions on one side of the problem never trickle
down to the other. A strong form of incentive dichotomy always arises when only one
side of the agency problem matters.

9Indeed, R′(e) = eψ′′(e) ≥ 0 and e(θ) is itself increasing with the bonus w(θ) from (3.4) and ϕ′ > 0.
10Observe that E′ > 0, E′(0) = +∞ and E′′ ≤ 0 because of the assumptions made on ψ.
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4.1. Moral Hazard

Suppose now that effort is non-observable while the seller’s cost parameter remains
common knowledge. The sole contracting problem for the principal is now to induce
effort. The solution to the buyer’s contracting problem is thus straightforward.

Proposition 1 Under pure moral hazard, the optimal allocation (Umh(θ), emh(θ), qmh(θ), zmh(θ))
entails the following features.

• The optimal output is always efficient

(4.1) qmh(θ) = qfb(θ) ∀θ ∈ Θ.

• Effort is downward distorted below the first-best level and it remains independent of
types

(4.2) B = ψ′(emh) +R′(emh).

• The seller gets a non-negative liability rent worth

(4.3) Umh(θ) = R(emh)⇔ zmh(θ) = 0 ∀θ ∈ Θ.

• Contracting is always valuable when

(4.4) S(qfb(θ))− θqfb(θ) + emhR′(emh) ≥ K.

It is useful to interpret the moral hazard distortion in terms of the shadow cost of the
limited liability constraint (3.11). Because transferring one unit of util to the seller to
relax this constraint also costs one util to the buyer, this shadow cost is equal to one.
On the other hand, reducing the effort to e− de relaxes this limited liability constraint
by R′(emh)de. This marginal change of effort has thus a benefit 1×R′(emh)de while the
cost for the buyer in terms of lost expected surplus is (B−ψ′(emh))de. At the optimum,
the cost and benefit of such a perturbation should be the same; which yields (4.2).

When the cost parameter is observable, the principal can force the agent to trade
efficiently. The separability between the effort and the production technologies now
implies that output has no consequences whatsoever on the moral hazard problem. On
the other hand and because he is protected by limited liability, the buyer can only be
rewarded when his effort pays off and the fixed cost is reduced but he cannot be punished
otherwise. The seller must thus give up some costly liability rentR(e) to induce a positive
effort e. Reducing this liability rent calls for implementing a lower effort by means of a
lower bonus

wmh = B −R′(emh) < B.

The buyer’s payment in this pure moral hazard scenario just covers the seller’s ob-
servable cost

tmh(θ) = θqfb(θ)⇔ zmh(θ) = 0.

Finally, Condition (4.4) for valuable contracting is now strictly harder to satisfy than
its complete information counterpart, namely Condition (2.3). It is so because

emhR′(emh) = emhB − ψ(emh)−R(emh) < efbB − ψ(efb) = R(efb).
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Intuitively, the seller’s liability rent is an extra cost that reduces the surplus of the
transaction and makes it more difficult to be carried on than under complete information.

For future reference, we now introduce the following variable

ρ(B, e) =
B − ψ′(e)
R′(e)

To understand the meaning of this variable, it is useful to view the buyer’s expected
benefit of the seller’s effort, namely V = eB − ψ(e) −R(e) as a function of the seller’s
limited liability rent U = R(e) ⇔ e = E(U). In other words, the function V (U) so
implicitly defined represents the frontier of the set of incentive-feasible payoffs induced
by the agent’s effort. Over the range

[
0, Umh

]
, this function is increasing, reaches its

maximum at Umh = R(emh) and is decreasing thereafter. The slope of this function is
ρ(B,E(U)) − 1, namely the marginal rate of transformation between the agent’s and
the principal’s payoffs. Accordingly, ρ(B,E(U)) − 1 is the shadow cost of the liability
constraint: Raising the agent’s payoff by dU costs (ρ(B,E(U))−1)dU to the principal.11

Finally, observe that ρ(B, e) is non-decreasing in B and non-increasing in e,12 with
ρ(B, efb) = 0 and ρ(B, emh) = 1.

4.2. Adverse Selection, Moral Hazard and No Limited Liability

Suppose now that effort remains non-verifiable but that the seller keeps private infor-
mation on his marginal cost parameter. We also assume that the firm has no liability
constraint. As we will see below, the sole contracting problem for the buyer consists in
inducing information revelation of this cost parameter. Moral hazard is not an issue in
this context.

Proposition 2 Under adverse selection, moral hazard and no limited liability, the
optimal allocation (Uas(θ), eas(θ), qas(θ)) entails the following features.

• The optimal output is non-increasing, downward distorted with respect to the first best,
qas(θ) ≤ qfb(θ) (for all θ ∈ Θ, with equality at θ only) with

(4.5) S′(qas(θ)) = θ +
F (θ)

f(θ)
.

• The first-best level of effort is always implemented

(4.6) eas(θ) = efb ∀θ ∈ Θ.

• The rent profile is decreasing and convex with

(4.7) Uas(θ) =

∫ θ

θ
qas(θ̃)dθ̃.

11By the same token, ρ(B,E(U)) is also the marginal rate of transformation between the seller’s
payoff U and overall welfare U + V (U). Another interpretation is also worth to be made. Define the
overall surplus from effort as γ(e) = eB − ψ(e). With those notations at hands, we may compute

γ′(e) = B − ψ′(e) and R′(e) = −eγ′′(e). In other words, we get ρ(B, e) = − γ′(e)
eγ′′(e) , and ρ(B, e) is the

inverse elasticity of that surplus with respect to effort.
12It is straightforward to prove that ∂ρ

∂B
(B, e) = 1

R′(e) > 0 and ∂ρ
∂e

(B, e) = −ψ
′′(e)

R′(e) − ρ(B, e)R′′(e)
R′(e) ≤ 0

whenever ρ(B, e) ≥ 0.
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• Contracting is always valuable when

(4.8) S(qas(θ))− θqas(θ) +R(efb) ≥ K.

Here, the buyer obtains information revelation by leaving some information rent to
the seller. This rent is costly and output distortions are needed to reduce this cost.
Increasing production qas(θ) for all types within a small interval [θ, θ + dθ] by a positive
amount dq increases expected surplus by an amount

(S′(qas(θ))− θ)f(θ)dθdq.

On the other hand, making trade more likely also increases the costly information rent
left to all infra-marginal types by an amount F (θ)dθdq. Hence, the optimal quantity
balances those two effects whenever (4.5) holds.

As standard in the screening literature, the Monotone Hazard Rate Property ensures
that the optimal output qas always satisfies the monotonicity condition (3.7).

Condition (4.8) ensures that production is always valuable for all possible types. Be-
cause production is now downward distorted and the overall surplus decreases in com-
parison with the first best, Condition (4.8) is harder to satisfy than (2.3). Of course,
that condition prevails when K is small enough.

In this scenario with no liability constraint, the separability between effort and pro-
duction technologies implies that the additional expected surplus from effort plays no
role whatsoever on the screening side. As a result, the buyer can make the seller residual
claimant for the choice of effort with a bonus that perfectly reflects the marginal benefit
of the seller’s effort

(4.9) wfb = B.

This bonus allows the seller to capture a rent R(efb) that is entirely recouped by
the buyer if she reduces the base payment for the service precisely by that amount.
Everything happens as if the seller was offering upfront a rebate R(efb) to the buyer.
Later, the seller enjoys a bonus wfb = B if the fixed cost has been successfully reduced.
From (4.9), this bonus induces a first-best level of effort. Formally, the base payment
now satisfies

tas(θ) = θqas(θ) +

∫ θ

θ
qas(θ̃)dθ̃ −R(efb).

Observe that, since (3.9) is binding, (3.10) is violated at θ,

tas(θ)− θqas(θ) = −
(
efb B − ψ(efb)

)
< 0.

In other words, the seller’s liability constraint would always be violated with the pro-
posed solution if his cost is large enough. It suggests that the liability constraint, when
taken consideration, will bind on the upper tail of the types distribution.
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5. ADVERSE SELECTION, MORAL HAZARD AND LIMITED LIABILITY

Suppose now that adverse selection and moral hazard both impede contracting but
that the seller is protected by limited liability. Some preliminary remarks are worth to
be made.

First, notice that, whenever a non-negative effort e(θ) is implemented, the limited
liability constraint (3.12) implies the participation constraint (3.8). Therefore, (3.9) is
necessarily satisfied and can thus be omitted in the description of the set of incentive-
feasible allocations.

Second, notice that, whenever (3.11) is slack (i.e., z(θ) > 0), the seller receives an
information rent due to his private knowledge on cost that goes beyond the sole limited
liability rent due to moral hazard. When (3.11) is instead binding (i.e., z(θ) = 0), the
seller receives no extra rent for his private information. As it will soon become clearer,
it does not mean at all that effort is as in the pure moral hazard scenario. Distortions
might be needed to extract more information rent from the seller.

5.1. Solution to the Relaxed Problem

In a first pass, we consider the so called relaxed problem (Pr) obtained when omitting
the monotonicity condition (3.7).

Quantity and Effort Profiles. We start by analyzing distortions on output and
effort.

Proposition 3 The solution (U r(θ), er(θ), qr(θ), zr(θ)) to the relaxed problem (Pr),
entails the following features.

• The optimal quantity satisfies

(5.1) S′(qr(θ)) = h(θ) ∀θ ∈ Θ.

where

(5.2) h(θ) = θ +
λr(θ)

f(θ)
∀θ ∈ Θ

and

(5.3) λr(θ) = F (θ)−
∫ θ

θ
ρ
(
B, er(θ̃)

)
f(θ̃)dθ̃ ≥ 0 ∀θ ∈ Θ.

• This optimal quantity is distorted downwards with respect to the first-best level and
upwards with respect to the pure screening scenario

(5.4) qas(θ) ≤ qr(θ) ≤ qfb(θ) ∀θ ∈ Θ.

In particular, the optimal quantity is efficient at both ends of the types distribution

(5.5) qr(θ) = qfb(θ) = qas(θ) and qas(θ) < qr(θ) = qfb(θ).

• The optimal effort satisfies

(5.6) er(θ) = min
{
efb, E(U r(θ))

}
∀θ ∈ Θ
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where the seller’s rent U r is defined as in (5.9) below.

• Contracting is always valuable when

(5.7) S(qfb(θ))− θqfb(θ) + er(θ)B − ψ(er(θ))−R(er(θ)) ≥ K.

The optimality condition (5.1) looks familiar and bears some resemblance with the
similar condition when only screening matters (4.5). Here also, the marginal benefit
of output must equal its virtual cost h(θ) at the optimum. Yet, the expression of this
virtual cost is novel. It depends on the expression of the costate variable λ(θ) for (3.6),
which in turn depends on the profile of rent that is implemented at the optimum.

More precisely, to determine the optimal quantity, it is indeed useful to come back on
the marginal argument we made in Section 4.2. Consider again a perturbation consisting
in increasing output qr(θ) for all types within a small interval [θ, θ + dθ] by a small
amount dq. Suppose also for the sake of the argument that the liability constraint is
binding everywhere; in other words, U r(θ) = R(er(θ)) for all θ ∈ Θ. Such a perturbation
again increases expected surplus by

(S′(qr(θ))− θ)f(θ)dθdq.

As in the pure screening scenario, raising production for type θ again increases the costly
information rent of all inframarginal types by an amount

F (θ)dθdq.

Yet, with this perturbation, payments to all those inframarginal types must also be
increased and uniformly so to preserve incentive compatibility. The liability constraint
is accordingly relaxed for all those types. Building on the insights developed in Section
4.1, the cumulative social benefit of relaxing this liability constraint for all inframarginal
types is thus ∫ θ

θ
(B − ψ′(er(θ̃)))f(θ̃)de(θ̃)dθ̃

where de(θ̃) is type θ̃’s effort increment which is induced by a perturbation dq. Using
the fact that R′(er(θ̃))de(θ̃) = dq, the overall social benefit of such a perturbation can
finally be written as (∫ θ

θ
ρ
(
B, er(θ̃)

)
f(θ̃)dθ̃

)
dq.

When both adverse selection and moral hazard are present, output qr(θ) is chosen when-
ever

(5.8) (S′(qr(θ))− θ)f(θ) = F (θ)−
∫ θ

θ
ρ
(
B, er(θ̃)

)
f(θ̃)dθ̃.

It immediately follows from comparing the right-hand sides of (4.5) and (5.8) that quan-
tity distortions are now mitigated when moral hazard is also present. By increasing out-
put and thus payments, the buyer guarantees more cash to the seller. This cash is used
to relax the liability constraint and thus indirectly boosts effort.
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Although now mitigated, output distortions are still present. The form taken by those
distortions somewhat contrasts with the pure screening setting of Section 4.2. Output
is efficient for the most efficient type (i.e, θ = θ); a familiar expression of the so called
“no distortion at the top” result of the screening literature.13 Yet, output is also set at
the first-best level for the worst type as well (i.e., at θ) as it can be seen from (5.5).
Because U r(θ) = R(er(θ)) around θ (see (5.11)), the seller’s rent is positive and, in
sharp contrast with the pure screening scenario, rent extraction is no longer the buyer’s
main concern. If it was, fully extracting the rent of the worst type θ would also mean
implementing zero effort; a strategy which entails a significant efficiency loss.

To see why in more details, first observe that keeping the same rent profile as that
implemented under pure screening would now mean implementing zero effort for the
worst type θ and thus no fixed cost reduction when moral hazard is a concern. Starting
from that profile and slightly increasing the worst-type seller’s information rent has thus
a second-order impact on the virtual surplus from trade enjoyed by the buyer but it as
also a first-order effect in terms of the fixed cost reduction that is generated by the
seller’s effort.

Information and Liability Rents. Of course, the seller’s information rent U r(θ)
again satisfies the integral representation

(5.9) U r(θ) = U r(θ) +

∫ θ

θ
qr(θ̃)dθ̃.

Proposition 4 provides more properties of the rent profile.

Proposition 4 The seller’s information rent U r(θ) satisfies the following properties.

• U r(θ) > 0 is implicitly defined by the condition

(5.10) 1 =

∫ θ

θ
ρ

(
B,E

(
min

{
U r(θ) +

∫ θ

θ
qr(θ̃)dθ̃;R(efb)

}))
f(θ)dθ.

• The seller’s information rent exceeds his liability rent only for the most efficient types
θ < θ̂r

(5.11) zr(θ) = max
{
U r(θ)−R(efb), 0

}
.

where θ̂r is defined as

(5.12) U r(θ̂r) = R(efb)

when θ̂r ∈ (θ, θ] and θ̂r = θ when (5.12) has no solution.

• In particular, a seller with a sufficiently high cost parameter gets less rent than in the
scenario with pure moral hazard since

(5.13) U r(θ) < R(efb).

13See for instance Laffont and Martimort (2002), Chapter 2.
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The solution to this relaxed problem can be best understood by observing that in-
creasing output, beyond the pure screening scenario, yields profits that can be used to
relax the seller’s limited liability constraint and thus facilitate effort implementation.

In the more extreme scenario, inducing cost revelation from the seller requires to give
him enough information rent to pay for the liability rent that is necessary to induce
first-best effort even if effort is here no longer verifiable. The dichotomy between output
distortions and effort provision already highlighted in Section 4.2 holds true; at least
when the seller’s cost parameter is below a threshold θ̂r and the adverse selection rent
is sufficiently large. Effort remains at the first-best level.

Unfortunately, this possibility no longer arises when the seller’s cost parameter is be-
yond the threshold θ̂r. Extracting the seller’s information rent when he has a low cost
indeed requires making unattractive allocations targeted to less efficient types. There-
fore, output is reduced with those types and, accordingly, their payments diminish. For
those types, the limited liability constraint is thus now binding. Relaxing this constraint
calls for reducing the bonus and implementing an effort below the first-best level. The
dichotomy between output distortion and effort provision now fails. The buyer can no
longer extract information rent without worsening the moral hazard problem. In partic-
ular, as the cost parameter θ increases, less of the seller’s rent comes from his private
information on cost and thus more effort distortion is needed. This last point is illus-
trated by Condition (5.13) which shows that the worst types of the seller necessarily
get less than the first-best level of liability rent R(efb) needed to implement first-best
effort.

Bonus and Effort. In contrast with the pure moral hazard scenario of Section 4.1,
bonuses and efforts are now type-dependent, and more precisely non-increasing with the
seller’s type. When the seller has private information on his cost, inducing information
revelation is facilitated by giving high (resp. low) rewards for the most (resp. least)
efficient types. When the limited liability constraint is binding, which arises on the
interval [θ̂r, θ], greater bonuses are offered to the most efficient types within this interval
while lower bonuses target highest types. Low-cost types are thus induced to exert more
effort than in the pure moral hazard scenario while high-cost types exert less. This result
is formalized in next Proposition.

Proposition 5 There exists θmh ∈ (θ̂r, θ) such that

(5.14) er(θ) ≥ emh ⇔ wr(θ) ≥ wmh ⇔ θ ≤ θmh.

5.2. Sufficient Conditions for Monotonicity

Next proposition provides sufficient conditions so that the omitted output monotonic-
ity condition (3.7) holds for the solution to the relaxed problem (Pr).

Proposition 6 Suppose that ḟ(θ) ≤ 0 for all θ ∈ Θ. Then, qr is non-increasing if

(5.15) U r(θ) ≥ U i = R(ei)

where ei is such that

(5.16) ρ(B, ei) = 2.
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Figures 1a and 1b below represent the rent profile respectively when (5.15) holds and
when it does not. In this latter scenario, U r is first convex before being concave for θ
such that U r(θ) ≤ U i.

[ Insert Figure 1a here]

[ Insert Figure 1b here]

Running Example. Suppose that F is uniform on Θ (with θ = θ + 1, i.e., ∆ = 1 and
thus F (θ) = θ− θ), that the demand function is linear, D(p) = a− bp, with a, b > 0 and

that the disutility of effort is quadratic, ψ(e) = e2

2 so that R(e) = e2

2 , efb = B, emh = B
2 ,

ei = B
3 , Umh = B2

8 and U i = B2

18 .14

Those specifications allow us to refine our previous findings and provide a sufficient
condition for monotonicity which is almost explicit.

Proposition 7 For the specifications of our Running Example, qr is non-increasing
(i.e., U r is convex) if

(5.17) Γ(U i) > 1

where Γ is defined through

(5.18)

Γ(U) =

∫ U(U)

U

dŨ√
D2(θ) + 2(Ω(Ũ)− Ω(U))

, Ω(U) = b

∫ U

0
min

{
2, 3− B√

2Ũ

}
dŨ

and U satisfies

(5.19) D(θ) =

√
D2(θ) + 2(Ω(U(U))− Ω(U)).

Figure 1c illustrates the shape of the optimal (relaxed) solution when B = 1, b =
1
7 , θ̄ = 1, and a = 2

7 . Indeed in this parameters’ configuration, the relaxed solution is
monotonic as Γ(U i) = 1.004 > 1. Quantity profiles are depicted as

[ Insert Figure 1c here]

5.3. Ironing

It is well known, at least from the work of Myerson (1981) and Guesnerie and Laffont
(1984), that the solution to the relaxed problem might not always solve the output
monotonicity condition. To illustrate, it can be readily verified that, when B is small,
U i converges to zero and Ω(U) ≈ 2bU so that U(0) = 1

4b(D
2(θ)−D2(θ)). Then, Γ(0) ≈ 1

2
and Condition (5.17) cannot hold. More generally, this monotonicity failure always arises

14The reader might have noticed that ψ does not satisfy the Inada assumption at e = 1. We shall con-
sider parameter values, especially B, such that the optimal effort remains in [0, 1] under all circumstances
below.
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when the solution to the relaxed problem entails a very low level of utility for the worst-
type seller θ, namely U r(θ) < U i.15 Ironing techniques are then needed to characterize
the optimal monotonic output. This section develops those techniques.

Quantity and Effort Distortions. The ironed solution, that respects the mono-
tonicity constraint (3.7), remains rather simple in our context. Provided the virtual cost
is conveniently modified, it remains true that, at the optimum the marginal benefit of
output is equal to this ironed virtual cost as stated in next proposition.

Proposition 8 The optimal allocation (Um(θ), em(θ), qm(θ), zm(θ)) entails the follow-
ing features.

• The optimal output satisfies

(5.20) S′(qm(θ)) = h(θ) ∀θ ∈ Θ.

where

(5.21) h(θ) = Ż(F (θ)), Z(F (θ)) = co

(∫ θ

θ
f(θ̃)h(θ̃)dθ̃

)
, h(θ) = θ +

λm(θ)

f(θ)
, 16

and

(5.22) λm(θ) = F (θ)−
∫ θ

θ
ρ
(
B, em(θ̃)

)
f(θ̃)dθ̃ ≥ 0 ∀θ ∈ Θ.

• The optimal effort satisfies

(5.23) em(θ) = min
{
efb;E (Um(θ))

}
∀θ ∈ Θ

where the rent profile satisfies

(5.24) Um(θ) = Um(θ) +

∫ θ

θ
qm(θ̃)dθ̃ ∀θ ∈ Θ.

Ironed virtual cost and bunching. To understand the main features of the solution,
it is useful to come back on the ironing techniques. A first step of the analysis consists
in ironing the virtual cost h(θ) to obtain a non-decreasing version of this virtual cost
h(θ). This first step is familiar from the work of Myerson (1981) and Toikka (2011). This
ironed virtual cost is the non-decreasing function that comes “closer” to the possibly
non-monotonic virtual cost; where the notion of proximity is in terms of the buyer’s
expected payment.

In the contracting/auction contexts analyzed by Myerson (1981) and Toikka (2011),
the virtual cost is entirely determined by the hazard rate of the type distribution and its
ironed version inherits this property. In our more complex model, the expression of the

15To see why, observe that ḣ(θ) = 2− ρ(B,E(Ur(θ))). Therefore, h is decreasing in the neighborhood
of θ whenever Ur(θ) < U i.

16We define co(f), the convexification of f as the highest convex function below f . Formally, standard
techniques from convexity theory can be used to prove that co(f)(x) = maxy {yx+ {minz f(z)− yz}}.



MORAL HAZARD, ADVERSE SELECTION, LIMITED LIABILITY 21

virtual cost encapsulates the interaction between adverse selection and moral hazard.
More precisely, the virtual cost now depends on the costate variable λm for (3.6), which
in turn depends on the rent profile Um that is implemented at the optimum. Ironing
the virtual cost thus requires to take carefully into account that this rent profile should
remain convex to satisfy output monotonicity, which eventually entails flat parts on
bunching areas where output is kept constant. Since output is kept constant when the
ironed virtual cost is itself constant, the whole process of finding a bunching area relies
on solving a complex fixed-point problem.

Running Example. Remember that here F (θ) = θ−θ. From there, we may first define

Z(θ − θ) =

∫ θ

θ
h(θ̃)dθ̃.

Z so defined is thus first strictly convex and then concave when h is non-monotonic.
In particular, at a point θi where Z̈(θi − θ) = 0, we thus have ḣ(θi) = 0 and, finally,
Um(θi) = U i.

Henceforth, Z = co(Z) is first strictly convex on an interval [θ, θ0] and then linear
on
[
θ0, θ

]
where necessarily θ0 < θi.17 Because Z is continuously differentiable, it must

thus be that

Ż(θ0 − θ) =
Z(1)− Z(θ0 − θ)

θ − θ0

.

This condition can also be rewritten as

(5.25) h(θ0) =
1

θ − θ0

∫ θ

θ0

h(θ)dθ.

From there, it also follows that

h(θ) =

{
h(θ) for θ ∈ [θ, θ0],

h(θ0) for θ ∈
[
θ0, θ

]
.

We are now ready to state the following result.

Proposition 9 For the specifications of our Running Example, Um is strictly con-
vex on [θ, θ0] and linear on

[
θ0, θ

]
of the form

(5.26) Um(θ) = Um(θ) + q0(θ − θ) ∀θ ∈
[
θ0, θ

]
where q0 = D(h(θ0)), Um(θ), Um(θ) and θ0 altogether solve

(5.27) Ω(Um(θ) + q0(θ − θ0)) =
1

θ − θ0

∫ θ

θ0

Ω(Um(θ) + q0(θ − θ))dθ,

(5.28) S′(q0) = θ − Ω(Um(θ)) + Ω(Um(θ) + q0(θ − θ0)),

17Eventually, the corner solution θ0 = θ arises when h is everywhere non-decreasing.
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(5.29) D(θ) =

√
q2

0 + 2(Ω(Um(θ))− Ω(Um(θ) + q0(θ − θ0))),

(5.30)

∫ Um(θ)

Um(θ0)

dU√
q2

0 + 2(Ω(U)− Ω(Um(θ) + q0(θ − θ0)))
= θ0 − θ.

The nonlinear system (5.26) to (5.30) can only be solved numerically. To illustrate,
let us take B = 1, b = 1

2 , θ̄ = 1, and a = 2b, then the relaxed solution is such that

θ̂r = 0.102 and it is non-monotonic.18 Indeed Γ
(
U i
)

= Γ
(

1
18

)
= 0.69 < 1. The ironed

solution entails19

q0 = 0.376 > qr(θi) = 0.375

Um(θ) = 0.0105 < U i =
1

18
' 0.05

Um(θ) = 0.6 > U r(θ) = 0.59 > Uas(θ) =
1

2
θ0 = 0.799⇒ Um(θ0) = 0.08

θ̂m = 0.106 > θ̂r = 0.102

For B = 1
2 , b = 1

7 , θ̄ = 1, and a = 2
7 , with Γ(U i) = 0.67 < 1, we have

q0 = 0.131 > qr(θi) = 0.1

Um(θ) = 0.04 > U i =
1

72
' 0.0138

Um(θ) = 0.22 > U r(θ) = 0.167 > Uas(θ) =
1

7
θ0 = 0.52⇒ Um(θ0) = 0.11

θ̂m = θ = 0 < θ̂r = 0.16

Figures 2a, 2b, 2c below represent this construction and the corresponding output and
rent profiles when bunching arises.

[ Insert Figure 2a here]

[ Insert Figure 2b here]

[ Insert Figure 2c here]

The following figures depict our two simulation cases. For B = 1, b = 1
2 , θ̄ = 1, and

a = 1, the output profiles are as follows

[ Insert Figure 3a here]

For B = 1
2 , b = 1

7 , θ̄ = 1, and a = 2
7 , output profiles are depicted as

[ Insert Figure 3b here]

18Quantity profiles for theses simulations can be found at the end of the Appendix
19The threshold type θ̂m is the ironed counterpart of θ̂r and defined in the next proposition.
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Information and Liability Rents. For completeness, next proposition characterizes
the profiles of information rent in this context with bunching. It echoes our earlier
findings in the scenario without bunching.

Proposition 10 The optimal allocation (Um(θ), em(θ), qm(θ), zm(θ)) that solves prob-
lem (P) entails the following features.

• Um(θ) is implicitly defined by the condition

(5.31) 1 =

∫ θ

θ
ρ (B, em(θ)) f(θ)dθ.

• The seller’s information rent exceeds his liability rent only for the most efficient types
θ < θ̂m only

(5.32) zm(θ) = max
{
Um(θ)−R(efb); 0

}
where

(5.33) Um(θ̂m) = R(efb)

when θ̂m ∈ (θ, θ] and θ̂m = θ otherwise.

6. THE SHAPE OF PAYMENTS AND BONUSES

Focusing on the relaxed solution for simplicity, the expression of the seller’s payment
is readily obtained as

tr(θ)− θqr(θ) = zr(θ) =

{
U r(θ) +

∫ θ
θ q

r(θ̃)dθ̃ −R(er(θ)) > 0 if θ ∈ [θ, θ̂r],

0 otherwise.

Observe that the seller is reimbursed for the cost of operating the service when θ ≥ θ̂r.
The liability constraint is binding and, in that case, effort is below the first-best level.
This is similar to what would arise with a cost-plus contract even though, in our context,
costs are not observable. Following the seminal works of Laffont and Tirole (1986),
Rogerson (2003), Chu and Sappington (2007), Bajari and Tadelis (2001) and Garrett
(2014) (among others) the incentive regulation literature has already pointed out the
virtues of fixed-price contracts to incentivize cost reduction when effort impacts marginal
costs and while. It has also recognized the benefits of using cost-plus contracts to better
extract information rent. Interestingly, in our framework, the same qualitative features
that would arise with fixed-price and cost-plus contracts are also present even though
costs are not observable and effort affects fixed costs and not marginal costs.

For types θ ≤ θ̂r, the effort is first best and the bonus is thus wr(θ) = B. This feature
would also be found had costs been observable and a fixed price contract had been
offered. For types θ ≥ θ̂r, this bonus is determined as wr(θ) = ψ′(E(U r(θ))) and, taking
derivatives, we obtain

ẇr(θ) = −q
r(θ)

er(θ)
.

The bonus, and the induced effort, are thus decreasing functions of θ. Rewards for effort
performances covary with output and less incentives for fixed cost reduction are provided
as the seller’s marginal cost increases.
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7. OTHER APPLICATIONS

This section illustrates the broad applicability of our framework in a number of eco-
nomic environments of interest for applied researchers. Most often, we can directly im-
port our previous findings to shed new lights on contracting issues in those environments.
In a few cases below, simple extensions are needed; in which case, we present some key
results without providing formal proofs.

7.1. Regulation and Investment

In many regulated sectors, the regulated firm may enjoy the stream of stable profits on
its core activities and use those profits to invest in adjacent markets or various add-ons.
To illustrate, a highway franchisee may have to use toll revenues to finance additional
infrastructures (bridges, highway ramps, and the like). Similar issues arise also for water
provision, train transportation, energy, and telecommunications. A key question in those
contexts is how to modify contracts on core activities to facilitate financing.

To illustrate those issues, we now suppose that the firm, which is regulated on its
core activities, may also need to undertake an investment I to provide an add-on. This
add-on generates some extra profit worth B > 0 with probability e and zero otherwise.
Effort is non-verifiable. The public authority in charge provides funding and asks for
repayments R and R depending on whether the add-on is a success or not. Of course,
this principal still represents consumers for the core activities. The public authority has
thus the following objective function

V = S(q)− t̃+ eR+ (1− e)R− I

where t̃ is the payment for core activities. Assuming that there is no fixed cost, the firm’s
profit can now be written as

U = t̃− θq + e(B −R)− (1− e)R− ψ(e).

Following Arve and Martimort (2024) who analyze procurement contracts in a related
context, we now assume that profits on core activities can be used as collateral for
financing the add-on. Accordingly, we shall write the firm’s limited liability constraint
as

t̃− θq −R ≥ 0.

This condition becomes (3.11) when expressed in terms of the firm’s information rent
and effort. Formally, our analysis then applies mutatis mutandis provided we define the
bonus as w = B − (R − R) and the payments on the base service as t = t̃ − R. Our
findings in Section 6 then suggest that the regulation of core activities should be tilt
towards cost-plus contracts and that repayments in case of a successful add-on should
be larger for those firms with less efficient technologies than for more efficient firms.

7.2. Financial Contracting

Consider a borrower (the agent) with no liquidity who needs funding for a first project
with stable returns. Following Freixas and Laffont (1990), we assume that the project
returns θg(k) (with g′ > 0, g′′ < 0 and the Inada conditions g′(0) = +∞, g(0) = 0)
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depend not only on the loan size k but also on a technology shock θ which is private
information to the borrower. Financiers (the principal) provide funding and, in return,
ask for a repayment t on this stable project.

The borrower is also willing to undertake another investment that requires some extra
funding K from financiers and whose return is risky. As in Section 7.1 above and much
in spirit of Innes (1990), this risky project generates some extra profit B > 0 with
probability e and zero otherwise. Effort is non-verifiable. Financiers ask for repayments
R and R depending on whether the project succeeds or fails. Financiers have thus the
following objective function

V = t+ eR+ (1− e)R− r(k +K)

where r is the rental rate of capital.

The borrower’s payoff can instead be written as

U = θg(k)− t+ e(B −R)− (1− e)R− ψ(e).

Under complete information, the first-best effort level is still given by (2.2). The op-
timal loan size kfb(θ) trades off its marginal return against the rental rate of capital r
and we obtain

θg′(kfb(θ)) = r.

The techniques that were developed throughout this paper can again be readily applied
to this framework. The main difference here is that incentive compatibility now implies
that the rent profile is increasing; a borrower who has a high productivity shock is willing
to report a low shock to save on repayments. Standard techniques allow us to obtain
the derivative of the borrower’s information rent as

U̇(θ) = g(k(θ)).

In the pure screening environment, the loan size is thus distorted downward for all types
except for the top θ. Those distortions undermine the borrower’s incentives to under-
report the productivity shock. The optimal loan size depends on a virtual productivity
shock by means of the following familiar expression(

θ − 1− F (θ)

f(θ)

)
g′(kas(θ)) = r.20

The borrower’s limited liability constraint now writes as

θg(k)− t−R ≥ 0.

From there, it is easy to replicate our previous approach when both adverse selection and
moral hazard are at play. The solution to the relaxed problem (Pr) entails a distortion
in the loan size that is expressed as(

θ − λr(θ)

f(θ)

)
g′(kr(θ)) = r

20We assume that θ is large enough so that a positive loan is always valuable even under asymmetric
information The condition θ− 1

f(θ)
> 0 is sufficient in this respect provided that the assumption MHRP

holds. Assumption MHRP also ensures that kas is non-decreasing; a monotonicity condition required
for incentive compatibility.
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where

(7.1) λr(θ) = 1− F (θ)−
∫ θ

θ
ρ
(
B, er(θ̃)

)
f(θ̃)dθ̃ ≥ 0 ∀θ ∈ Θ with λr(θ) = 0

and er still satisfies (5.6).

In particular, the stable project is financed with loans of a greater size than under
pure screening; kr(θ) ≥ kas(θ). This upward distortion relaxes the borrower’s liability
constraint and facilitates funding of the risky project. Interestingly, when the mono-
tonicity condition (that now requires k non-decreasing) binds and bunching also arises,
the optimal financial contract imposes a minimal loan size on the stable project.

Finally, comparing to a scenario of pure moral hazard as in Innes (1990), the addition
of private information implies that credit is more (resp. less) costly for borrowers with
low (resp. high) return opportunities on stable projects.

7.3. Price Discrimination and Quality

Consider a firm (the principal) that price discriminates her customers (the agent/the
tenant) with respect to quality in a context à la Mussa and Rosen (1978). This seller
rents to those customers one unit of a good of quality q at a price t. A customer’s
willingness to pay for one unit of quality q is θq where θ is a preference parameter.
Supplying one unit of the good of quality q costs c(q) to the seller (with c′ ≥ 0, c′′ > 0
and the Inada conditions c′(0) = c(0) = 0). The tenant must exert effort e to return
the good in proper shape at the end of the rental period; an event that arises with
probability e. With probability 1 − e, the good is damaged and the seller incurs a loss
worth B. Let P be the fine paid by the customer in that event.

The firm’s and the customer’s expected payoffs respectively write as

V = t− c(q) + (1− e)(P −B)

and

U = θq − t− (1− e)P − ψ(e).

The first-best effort efb(θ) here again satisfies (2.2). The first-best quality level qfb(θ)
is (assuming an interior solution) easily obtained as

c′(qfb(θ)) = θ.

With pure screening, the quality level entails a familiar downward distortion where,
again, the preference parameter has been replaced by a virtual type of a lower magnitude

c′(qas(θ)) = θ − 1− F (θ)

f(θ)
.21

21Here, we also assume that θ is large enough, namely θ− 1
f(θ)

> 0, to avoid a corner solution at zero
quality. Assumption MHRP again ensures that qas remains non-decreasing, as requested for incentive
compatibility.
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Consider now the scenario with both adverse selection and moral hazard. The cus-
tomers’ limited liability constraint now writes as

θq − t− P ≥ 0.

This condition can again be expressed in terms of the customers’ information rent and
effort as (3.11).

It can be readily checked that the quality level qr that solves the relaxed problem (Pr)
is now defined as

c′(qr(θ)) = θ − λr(θ)

f(θ)
.

where λr and er still satisfy (7.1) and (5.6).

One key lesson of this model is that quality distortions are less significant when moral
hazard is a concern since qas(θ) ≤ qr(θ). Moreover, the possibility of bunching may
induce a minimal quality standard and thus limits the spectrum of quality levels offered
by the seller.

7.4. Quality of Service

Procurement contracts commonly include targets for quality of service.22 Among the
most important such targets are on-time delivery requirements specifying the exact date
at which the good or service procured should be delivered. Obviously, on-time delivery
imposes efforts to the regulated firm.

To bring those issues into our framework, suppose that the good or service is only
consumed at date 2 if a delay in delivery arises. Denoting by δ the discount factor,
everything happens as if society was thus incurring a disutility of consumption (1−δ)S(q)
whenever a delay arises; an event that occurs with probability 1−e where e is the firm’s
effort in diligence. The public authority has thus an objective function that we write as

V = (e+ δ(1− e))(S(q)− t)− ew

where w now stands for some extra reward in case of earlier completion while t is the
basic payment. Assuming again that there is no fixed cost, the firm’s profit can now be
written as

U = (e+ δ(1− e))(t− θq) + ew − ψ(e).

Observe that, absent a bonus, the firm’s marginal benefit of early completion consists
of getting profit early.

It can be readily checked that, at the first best, the buyer’s marginal benefit of output
takes the by-now familiar expression (2.1). Turning to effort, the optimal effort balances
the social benefit of enjoying early consumption against the marginal disutility

(1− δ)(S(qfb(θ))− θqfb(θ)) = ψ′(efb), ∀θ ∈ Θ.

22See for instance Lewis and Sappington (1992), Laffont and Tirole (1993) Chapter 4, and Weisman
(2005).
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When effort is non-verifiable, the marginal benefit for early delivery entails not only
the opportunity benefit of getting profit earlier but also the bonus. We have

w(θ) + (1− δ)(t(θ)− θq(θ)) = ψ′(e(θ)).

From there, we can easily check that the liability constraint (3.12) can here also be
expressed in terms of the firm’s information rent and effort as (3.11). Relaxing the
liability constraint (when binding) again calls for further reductions in effort.

To see this point in more details, we again focus on the solution to the relaxed problem
(Pr). The optimal output now satisfies

(7.2) (er(θ) + δ(1− er(θ)))(S′(qr(θ))− θ) =
λr(θ)

f(θ)
, ∀θ ∈ Θ

where er and U r still satisfy respectively (5.6) and (5.9) while λr now solves

λr(θ) = F (θ)−
∫ θ

θ
ρ
(

(1− δ)(S(qr(θ̃))− θ̃qr(θ̃)), er(θ̃)
)
f(θ̃)dθ̃ ≥ 0 ∀θ ∈ Θ with λr(θ) = 0.

This formula is again familiar provided that one is ready to now view the marginal benefit
of effort as the gain from earlier completion in terms of social surplus. Qualitatively,
we observe that pushing output further away from the first-best level decreases this
marginal benefit of effort, increases λr and thus contributes to reduce output further
through (7.2). In other words, low output is expected in such setting.

7.5. Environmental Regulation

Laffont (1995) and Hiriart and Thomas (2017) have studied the potential conflict
between cost minimization and safety care in the context of major environmental risks.
A regulated firm may undertake a non-verifiable effort to reduce the probability of an
environmental damage. Yet, doing so increases the marginal disutility of a cost-reducing
effort and, as in Laffont and Tirole (1993), costs are observable. The intricacy of having
moral hazard, adverse selection and limited liability elements altogether in this model
with cost observability forces these authors to focus on the discrete scenario where safety
care effort is a 0− 1 decision.

Our model, which assumes away cost observability and follows Baron and Myerson
(1982)’s seminal model of regulation in this respect, is much more tractable. To see why,
consider the following simple variation of our model. A regulator (who buys the firm’s
services or good) maximizes a consumer surplus and takes into account the risk of an
environmental disaster for society. Formally, we state her objective function as

V = S(q)− t− (1− e)Bq − ew

where, for simplicity, the regulator gives no weight to the firm’s profit and Bq stands for
an environmental damage that arises with probability 1− e. Observe that this damage
depends on the scale of production. With this formulation, the firm receives t + w for
its services in case no damage occurs while its payment is reduced to t otherwise.

To capture the fact that inducing safety care increases production costs, we posit
that the disutility of effort is counted per unit of output so that the firm’s perceived
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cost of production encapsulates non-monetary elements and writes now (θ+ψ(e))q. For
simplicity, we also assume away any fixed cost. The firm’s payoff can thus be written as

U = t− (θ + ψ(e))q + ew.

At the first best, output is set so that marginal surplus, now including the marginal
damage is equal to the firm’s marginal cost which now includes its disutility of effort

(7.3) S′(qfb(θ))−B(1− efb) = θ + ψ(efb), ∀θ ∈ Θ.

Turning to effort, the marginal benefit of safety care in terms of reduced expected
damage is again equal to marginal disutility of effort but now both are counted per
unit of output. This leads to the familiar expression of the first-best effort (2.2). The
optimality condition (7.3) showcases a fundamental substitutability between effort and
output. More safety care effort increases the firm’s marginal cost of production and thus
reduces production.23

When effort in safety care is non-verifiable, the bonus w(θ) is used to providing in-
centives. The corresponding incentive constraint writes as

w(θ) = ψ′(e(θ))q(θ).

The firm’s liability constraint still writes as in (3.12); a condition that can be now
expressed in terms of the firm’s information rent, output and effort as

(7.4) U(θ) ≥ q(θ)R(e(θ)).

Although details differ, the analysis of this scenario would bear much resemblance with
our main analysis. The new expression (7.4) shows that relaxing the binding liability
constraint would call for reductions in both effort provision and output. Yet, reducing
output makes it less attractive to reduce effort (and reciprocally).

To see this point in more details, we again focus on the solution to the relaxed problem
(Pr). Proceeding as in our main analysis, it is straightforward to show that the optimal
output now satisfies

(7.5) S′(qr(θ))−B(1− er(θ)) = θ +
λr(θ)

f(θ)
+ ψ(er(θ)) + ρ (B, er(θ))

U r(θ)

qr(θ)
, ∀θ ∈ Θ

where λr and U r again satisfy (5.3) and (5.9) while er now solves

(7.6) er(θ) = min

{
E

(
U r(θ)

qr(θ)

)
, efb

}
, ∀θ ∈ Θ.

The output distortion (7.5) not only comes from a by-now familiar addition of a virtual

cost but also from a novel extra cost ρ (B, er(θ)) U
r(θ)
qr(θ) which stems for the (positive)

shadow cost of the liability constraint (7.4). In this respect, decreasing further output
becomes more attractive than in our basic model. In other words, with limited liability
and asymmetric information, the substitutability between effort and output is exacer-
bated. Providing more incentives on safety care also means a significantly more depressed
output and thus higher prices for consumers.

23Finally, note that the gains from trade are always large enough to warrant production in this context
when

S(qfb(θ))− (B + θ)qfb(θ) +R(efb)qfb(θ) ≥ 0.
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APPENDIX: PROOFS OF THE MAIN RESULTS

Proof of Lemma 1: Although, as stated in the text, Lemma 1 provides only necessary con-
ditions. There is a sufficiency part also that we present below.

Necessity. First, observe that U defined in (3.3) is convex as a maximum of linear functions
of θ. Second, it immediately follows from Theorem 2 and Corollary 1 in Milgrom and Segal
(2002), that U is absolutely (in fact Lipschitz) continuous and almost everywhere differentiable
with (3.6) holding at any point of differentiability. From there, the integral representation (3.5)
follows.

Sufficiency. Reciprocally, any allocation (U(θ), e(θ), q(θ)) such that U(θ) is absolutely con-
tinuous and convex, with (3.2), −q(θ) ∈ ∂U(θ)24 and (3.4) being satisfied, is such that (3.3)
holds.

To prove this, consider any pair (θ, θ̂) ∈ Θ2. We may then rewrite the integral representation
(3.5) as

U(θ) = U(θ̂) +

∫ θ̂

θ

q(θ̃)dθ̃.

24∂U(θ) denotes the subdifferential of the convex function U at θ, namely ∂U(θ) ={
−q such that U(θ̂)− U(θ) ≥ −q(θ̂ − θ) ∀θ̂ ∈ Θ

}
.
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Because U is convex, it admits a sub-differential ∂U and, since −q(θ̂) ∈ ∂U(θ̂), we have

U(θ) ≥ U(θ̂)− q(θ̂)(θ − θ̂).

From there and the definition of U as in (3.2), (3.3) follows. Lastly, (3.4) implies

R(ϕ(w(θ̂))) ≥ ew(θ̂)− ψ(e), e ∈ [0, 1] .

Q.E.D.

Proofs of Propositions 1 and 2: We notice that the set of incentive-feasible allocations
under pure screening is

Aas = {(U(θ), e(θ), q(θ)) s.t. q(θ) ∈ Q, (3.6), (3.7), (3.9)} .

Under pure moral hazard, the set of incentive-feasible allocations is instead

Amh = {(U(θ), e(θ), q(θ), z(θ)) s.t. q(θ) ∈ Q, z(θ) ≥ 0, (3.6), (3.7), (3.12)} .

The proofs consist in maximizing the buyer’s expected payoff over those sets of incentive-feasible
allocations. They are routine and thus omitted.

There are two points we want to point out here. First, qas is non-increasing when Assumption
MHRP holds. Second, condition for contracting to be valuable for Proposition 1. Given that the
productive surplus is lowest at θ, this condition writes as

S(qfb(θ))− θqfb(θ) + emhB − ψ(emh)−R(emh) ≥ K,

that can be simplified as (4.4) using (4.2).
Q.E.D.

Proofs of Propositions 3 and 4: We now define the set of incentive-feasible allocations A
under both adverse selection and moral hazard as

A = {(U(θ), e(θ), q(θ), z(θ)) s.t. q(θ) ∈ Q, z(θ) ≥ 0, (3.4), (3.6), (3.7), (3.9), (3.12)} .

In the sequel, we first consider a larger space of incentive-feasible allocations Ar which is obtained
by omitting the monotonicity condition (3.7), namely

Ar = {(U(θ), e(θ), q(θ), z(θ)) s.t. q(θ) ∈ Q, z(θ) ≥ 0, (3.4), (3.6), (3.9), (3.12)} .

Consider thus the maximization problem (Pr) which consists in maximizing the buyer’s ex-
pected payoff over Ar. We denote by λr the co-state variable for (3.6), we can now write the
Hamiltonian for this optimization problem as

(A.1) H(U, q, z, λr, θ) = (S(q)− θq −K +BE(U − z)− ψ(E(U − z))− U) f(θ)− λrq

Let (Ur(θ), qr(θ), zr(θ)) denote an optimal arc.

Necessity. We use Pontriagyn Principle to get necessary conditions for optimality of such an
arc. (See Chapter 2, Theorem 2 in Seierstad and Sydsaeter (1986).) Those conditions are listed
below.

• Costate variable. There exists λr, continuous and piecewise differentiable, such that

(A.2) −λ̇r(θ) = f(θ) (ρ(B,E(Ur(θ)− zr(θ)))− 1)
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• Transversality conditions. Because there is no boundary condition on U at both θ and θ
(remember that (3.9) is automatically satisfied at a non-negative effort level), the transver-
sality conditions are given by

(A.3) λr(θ) = λr(θ) = 0.

• Optimality condition with respect to z. We find

(A.4) zr(θ)

{
> 0 iff B = ψ′(E(Ur(θ)− zr(θ)))⇔ er(θ) = efb

0 if B > ψ′(E(Ur(θ)))⇔ er(θ) < efb.

• Optimality condition with respect to q.H(U, q, z, λr, θ) being separable in q, we immediately
find (5.1).

• End-point condition at θ.

(A.5)
(
S(qr(θ))− θqr(θ)−K +Ber(θ)− ψ(er(θ))−R(er(θ))

)
f(θ)− λr(θ)qr(θ) ≥ 0.

Sufficiency. Those necessary conditions are also sufficient. To prove this, we apply Arrow’s
Sufficiency Conditions. (See Chapter 2, Theorem 5 in Seierstad and Sydsaeter (1986).) We con-
struct the maximized Hamiltonian as

H∗(U, λr(θ), θ) = max
q∈Q,z≥0

H(U, q, z, λr(θ), θ).

Observe that the maximizer z∗∗(U) satisfies

(A.6) z∗∗(U) = max
{
U −R(efb), 0

}
.

We may compute

H∗(U, q, λr(θ), θ) = (S(q)− θq −K + ζ(U))f(θ)− λr(θ)q

where

ζ(U) = max
{
R(efb);BE(U)− ψ(E(U))

}
− U.

It is straightforward to observe that H∗(U, λr(θ), θ) is twice continuously differentiable in U , flat
for U ≥ R(efb) and strictly concave for U < R(efb) since then

∂2H∗

∂U2
(U, λr(θ), θ) = f(θ)

∂ρ
∂E (B,E(U))

R′(E(U))
< 0.

where the last inequality follows from ∂ρ
∂E < 0 for E < efb (as shown in Footnote 12). From this,

it follows that the necessary conditions above are also sufficient.

Implications. We now use those necessary and sufficient conditions to derive more specific
results.

• The expression (5.9) is nothing more than the integral representation (3.5) expressed for
the optimal output profile qr.

• Condition (5.11) follows from (A.4).
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• Integrating (A.2) and using the first boundary condition in (A.3) yields

λr(θ) = −
∫ θ

θ

(
ρ(B,E(Ur(θ̃)− zr(θ̃)))− 1

)
f(θ̃)dθ̃.

Using (5.11) and integrating, this expression becomes (5.3).

Observe also that λr so defined is quasi-concave. Indeed, (A.2) implies

d

dθ

(
−λ̇r(θ)
f(θ)

)
=

{
0 if θ ∈ [θ, θ̂),

−
∂ρ
∂E (B,E(Ur(θ)))

R′(E(Ur(θ))) qr(θ) ≥ 0 if θ ∈ (θ̂r, θ].

where ∂ρ
∂E ≤ 0 is shown in footnote 12.

Because λr is quasi-concave and (A.3) holds, we have

(A.7) λr(θ) ≥ 0 ∀θ ∈ Θ.

From there, it follows that

θ ≤ S′(qr(θ)) = θ +
λr(θ)

f(θ)
∀θ ∈ Θ

and thus

qr(θ) ≤ qfb(θ) ∀θ ∈ Θ.

From (5.3) and the fact that er(θ) = R−1(Ur(θ)) ∈
[
0, efb

]
, we deduce that ρ(B,E(Ur(θ)−

zr(θ))) ≥ 0 for all θ ∈ Θ. Hence,

λr(θ) ≤ F (θ) ∀θ ∈ Θ.

From there, it follows that

S′(qr(θ)) ≤ θ +
F (θ)

f(θ)
∀θ ∈ Θ

and thus

qr(θ) ≥ qas(θ) ∀θ ∈ Θ

which ends the proof of (5.4).

• Inserting the transversality conditions (A.3) into (5.1) and taking into account the as-
sumption MHRP yields (5.5). Inserting now the second transversality condition λr(θ) = 0
(see (A.3)) into (5.3) yields

1 =

∫ θ

θ

ρ(B,E(Ur(θ̃)− zr(θ̃)))f(θ̃)dθ̃.

Using (5.11), we find (5.10).

To prove (5.13), suppose to the contrary that Ur(θ) > R(efb). Then, we get

min
{
Ur(θ);R(efb)

}
= R(efb) ∀θ ∈ Θ

and thus ∫ θ

θ

ρ
(
B,min

{
E(Ur(θ)); efb

})
f(θ)dθ = 0;

which is a contradiction with (5.10).
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• Observe that ψ′(E(U)) is non-decreasing in U and Ur(θ) is non-increasing in θ from (3.6).
Hence, if B > ψ′(E(Ur(θ))), at some θ ∈ Θ, it must be that B > ψ′(E(Ur(θ̃))) for all

θ̃ ≥ θ. It implies that Ω = {θ ∈ Θ|zr(θ) = 0} is of the form [θ̂r, θ] as stipulated in (5.11).
Condition (5.6) immediately follows.

• Observe now that ρ(B, e) ≈ B
eψ′′(0) − 1 when e is sufficiently close to zero. Because

U(θ) ≥ R(e(θ)) with an equality on [θ̂r, θ], this approximation implies that the in-

tegral
∫ θ
θ
ρ
(
B,E

(
min

{
Ur(θ̃);R(efb)

}))
f(θ̃)dθ̃ would not converge when θ → θ had

Ur(θ) = R(er(θ)) also converges towards Ur(θ) = 0 since then, we would have er(θ)→ 0.
This would mean a contradiction with Condition (5.10). Hence, necessarily Ur(θ) > 0.

• Using the boundary condition (A.3) at θ and the fact that qr(θ) = qfb(θ), we rewrite
Condition (A.5) as (5.7).

Q.E.D.

Proof of Proposition 5: We first rewrite (5.10) as

(A.8) 1− F (θ̂r) =

∫ θ

θ̂r
ρ(B,E(Ur(θ)))f(θ)dθ.

Observe that Ur is non-increasing from (3.6) and thus ρ(B,E(Ur(θ))) is non-decreasing since
∂ρ
∂E ≤ 0 for Ur(θ) ≤ R(efb) when θ ≥ θ̂r. Moreover, ρ

(
B, emh

)
= 1. Hence, (A.8) implies that

there must exist θmh ∈ (θ̂r, θ) such that

(A.9) Ur(θ) ≥ R(emh)⇔ θ ≤ θmh.

On [θ̂r, θ], zr(θ) = 0 and thus Ur(θ) = R(er(θ)). Inserting into (A.9) yields (5.14). Q.E.D.

Proof of Proposition 6: Let define

(A.10) h(θ) = θ +
λr(θ)

f(θ)
.

Equipped with this notation and using (5.1), we may rewrite (3.6) as

(A.11) U̇(θ) = −D(h(θ)).

Hence, Ur is convex whenever h(θ) is non-decreasing.

Differentiating (A.10) and using (A.2), we obtain

(A.12) ḣ(θ) = 2− ρ(B,E(Ur(θ)))− (h(θ)− θ) ḟ(θ)

f(θ)
.

Because of (A.7), we have h(θ) ≥ θ and the second term on the right-hand side of (A.12) is
positive when ḟ ≤ 0. Because ρ(B,E(Ur(θ))) is non-decreasing and Ur(θ) is non-increasing, the
first term on the right-hand side of (A.12) is positive when

(A.13) ρ(B,E(Ur(θ))) ≤ 2

which amounts to (5.15), and (5.16) comes from ei = E(U i) when (A.13) is an equality. Q.E.D.
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Proof of Proposition 7: With our functional forms, (A.12) simplifies as

ḣ(θ) = ω(Ur(θ))

where ω(U) = min
{

2, 3− B√
2U

}
. Notice that ω is non-decreasing and concave, and satisfies

ω(U i) = 0 and ω(U) = 2 for U ≥ R(efb). For future reference, let Ω(U) = b
∫ U
0

min

{
2, 3− B√

2Ũ

}
dŨ

be a primitive for ω.

The autonomous system of ordinary differential equations (A.11) and (A.12), together with
the boundary conditions (which follow from expressing (A.3) in terms of h)

(A.14) h(θ) = θ and h(θ) = θ

define the pair (Ur(θ), h(θ)).

Differentiating (A.11) with respect to θ, using D′ = −b, this system can be transformed into
a second-order differential equation in Ur as

(A.15) Ür(θ) = b ω(Ur(θ))

together with the boundary conditions

(A.16) U̇r(θ) = −D(θ) and U̇r(θ) = −D(θ).

Multiplying both sides of (A.15) by U̇r(θ) and integrating yields a first quadrature

(U̇r(θ))2

2
− (U̇r(θ))2

2
= Ω(Ur(θ))− Ω(Ur(θ)).

Taking into account the boundary condition (A.16) at θ and taking the negative (because Ur is
non-increasing) root of (A.15) viewed as a second-degree equation in U̇r(θ) yields

(A.17) U̇r(θ) = −
√
D2(θ) + 2(Ω(Ur(θ))− Ω(Ur(θ))).

Using the boundary condition (A.16) at θ yields a condition that implicitly defines Ur(θ) in
terms of Ur(θ), namely

(A.18) D(θ) =

√
D2(θ) + 2(Ω(Ur(θ))− Ω(Ur(θ))).

Let denote by Ur(θ) = U(Ur(θ)) this relationship. Observe that

(A.19)
dU(Ur(θ))

dUr(θ)
=
ω(Ur(θ))

ω(Ur(θ))
≤ 1

because Ur(θ) < Ur(θ) and ω is non-decreasing.

We can further integrate the differential equation (A.17) to get Ur(θ) as an implicit function
that solves∫ Ur(θ)

Ur(θ)

dU√
D2(θ) + 2(Ω(U)− Ω(Ur(θ)))

= θ − θ.

In particular, we have

(A.20)

∫ U(Ur(θ))
Ur(θ)

dU√
D2(θ) + 2(Ω(U)− Ω(Ur(θ)))

= 1.
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Using the definition of Γ in (5.18), we can use (A.18) to compute

Γ′(Ur(θ)) =
ω(Ur(θ))

D(θ)ω(Ur(θ))
− 1

D(θ)
< 0

where the inequality follows from (A.19) and D(θ) > D(θ). Hence, (A.20), that writes as

Γ(Ur(θ)) = 1,

has at most one solution Ur(θ) and this solution is greater than U i when (5.17) holds In that
case, Proposition 6 applies and Ur is convex. Q.E.D.

Proofs of Propositions 8 and 10: Consider now the maximization problem (P) where the
buyer’s expected payoff is maximized over the set A of incentive-feasible allocations. The Hamil-
tonian H(U, q, z, λm, θ) for this optimization problem writes again as in (A.1). Yet, a pertur-
bation is now admissible only when U is convex, i.e., when q also satisfies (3.7). Let us now
(Um(θ), qm(θ), zm(θ), em(θ)) denote an optimal arc.

Fixing the costate variable λm that will be soon defined, and following steps similar to those
in the Proof of Propositions 3, we now construct the (partially) maximized Hamiltonian
(with respect to z only) as

H∗∗(U, q, λm(θ), θ) = max
z≥0
H(U, q, z, λm(θ), θ).

We may compute

H∗∗(U, q, λm(θ), θ) = (S(q)− θq −K + ζ(U))f(θ)− λm(θ)q.

From this, it follows that the sub-gradient of H∗∗ in U exists everywhere and, in fact,

∂UH∗∗(Um(θ), qm(θ), λm(θ), θ) = f(θ)ζ ′(Um(θ)) = f(θ) (ρ(B,E(Um(θ), z∗∗(Um(θ))− 1))) .

We want to prove the optimality of (Um(θ), em(θ), qm(θ), zm(θ)) against any admissible arc
(U(θ), e(θ), q(θ), z(θ)) where q satisfies (3.7), U satisfies (3.6) almost everywhere, e(θ) = E(U(θ)−
z(θ)), and z(θ) ≥ 0. To this end, we first define

(A.21) Φ(U, q, z, θ) = H(U, q, z, λm(θ), θ) + λm(θ)q

where the costate variable λm(θ) (that will be soon defined) is, at this stage, given.

Second, we form the difference

∆m =

∫ θ

θ

(Φ(Um(θ), qm(θ), zm(θ), θ)− Φ(U(θ), q(θ), z(θ), θ)) dθ.

Using (A.21) yields

∆m =

∫ θ

θ

(H(Um(θ), qm(θ), zm(θ), λm(θ), θ)−H(U(θ), q(θ), z(θ), λm(θ), θ)) dθ

+

∫ θ

θ

λm(θ)(qm(θ)− q(θ))dθ.

By definition of H∗∗, we have

H(Um(θ), qm(θ), zm(θ), λm(θ), θ) = H∗∗(Um(θ), qm(θ), λm(θ), θ)
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and

H(U(θ), q(θ), z(θ), λm(θ), θ) ≤ H∗∗(U(θ), q(θ), λm(θ), θ).

Henceforth, we obtain

(A.22) ∆m ≥
∫ θ

θ

(H∗∗(Um(θ), qm(θ), λm(θ), θ)−H∗∗(U(θ), q(θ), λm(θ), θ)) dθ

+

∫ θ

θ

λm(θ)(qm(θ)− q(θ))dθ.

To find a lower bound for the right-hand side, several steps are needed.

Convexification. Let us first define Z as

(A.23) Z(F (θ)) =

∫ θ

θ

(
θ̃f(θ̃) + λm(θ̃)

)
dθ̃.

with

h(θ) = Ż(F (θ)) = θ +
λm(θ)

f(θ)
.

Let the convexification of Z be now denoted as

Z(y) = co(Z(y)) ∀y ∈ [0, 1] .

By definition, we have

Z(y) ≥ Z(y) ∀y ∈ [0, 1]

with

(A.24) Z(0) = Z(0) = 0 and Z(1) = Z(1).

Because λm (to be defined in (A.25) and (A.26) below) is continuously differentiable, Z is
also twice-continuously differentiable and its convexification Z inherits this property. Define
accordingly the corresponding derivative of Z as

h(θ) = Ż(F (θ)).

Observe that, whenever Z(y) < Z(y) over an interval I ⊆ [0, 1], we necessarily have Ż(y)
constant on that interval. Hence, h(θ) remains constant over F−1(I). Moreover, we notice that

Z convex implies that Ż is non-decreasing. Hence, ḣ(θ) = f(θ)Z̈(F (θ)) ≥ 0 as requested.

Sufficient Conditions. We define an arc (Um(θ), qm(θ), zm(θ)) together with a costate vari-
able λm(θ) by means of the following conditions.

• Optimal quantity. qm(θ) satisfies (5.20). Because h defined in (5.21) is non-decreasing, qm

is also non-decreasing as requested.

• Information rent. The optimal quantity (5.20) induces a absolutely continuous profile of
an information rent Um given by

Um(θ) = Um(θ) +

∫ θ

θ

qm(θ̃)dθ̃

where Um(θ) is implicitly defined by the condition

1 =

∫ θ

θ

ρ
(
B,min

{
E (Um(θ)) ; efb

})
f(θ)dθ,
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• Costate variable and transversality conditions. Let λm be the solution to

(A.25) −λ̇m(θ) = f(θ)ζ ′(Um(θ)) = f(θ)
(
ρ
(
B,min

{
E(Um(θ)); efb

})
− 1
)

together with the transversality conditions

(A.26) λm(θ) = λm(θ) = 0.

It is straightforward to check that λm is continuously differentiable since Um is itself
continuous. Integrating (A.25) and using the second transversality condition in (A.26)
yields (5.22). That λm remains non-negative (right-hand side inequality in (5.22)) follows
from observing that λm is quasi-concave and satisfies (A.26) (by an argument similar to
that made in the Proof of Proposition 3).

• Slack. Using (A.6) yields

zm(θ) = z∗∗(Um(θ)) = max
{
Um(θ)−R(efb), 0

}
.

• Effort. We have

(A.27) em(θ) = min
{
efb;E(Um(θ))

}
.

• End-point condition at θ. All types are asked to produce whenever the free-end point
condition H(Um(θ), qm(θ), zm(θ), λ(θ), θ) ≥ 0 holds. We rewrite this condition as(

S(qm(θ))− θqm(θ)−K +Bem(θ)− ψ(em(θ))−R(em(θ))
)
f(θ)−λm(θ)qm(θ) ≥ 0.

Taking into account the second transversality condition in (A.26) finally yields

S(qm(θ))− θqm(θ)−K +Bem(θ)− ψ(em(θ))−R(em(θ)) ≥ 0.

As we will check below, those conditions turned out to be sufficient for optimality of the arc
(Um(θ), qm(θ), zm(θ), em(θ)).

Equipped with our previous notations, we now rewrite the maximized Hamiltonian as

H∗∗(U(θ), q(θ), λm(θ), θ) = (S(q(θ))−h(θ)q(θ))f(θ)+(h(θ)−h(θ))f(θ)q(θ)+f(θ)ζ(U(θ)).

Accordingly, we form

H∗∗(Um(θ), qm(θ), λm(θ), θ)−H∗∗(U(θ), q(θ), λm(θ), θ) =
[
(S(q)− h(θ)q)f(θ)

]qm(θ)

q(θ)

+
[
(h(θ)− h(θ))f(θ)q

]qm(θ)

q(θ)
+ [f(θ)ζ(U)]

Um(θ)
U(θ) .

Integrating over Θ yields

(A.28)

∫ θ

θ

(H∗∗(Um(θ), qm(θ), λm(θ), θ)−H∗∗(U(θ), q(θ), λm(θ), θ)) dθ

(A.29) =

∫ θ

θ

[
(S(q)− h(θ)q)f(θ)

]qm(θ)

q(θ)
dθ
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(A.30) +

∫ θ

θ

[
(h(θ)− h(θ))f(θ)q

]qm(θ)

q(θ)
dθ

(A.31) +

∫ θ

θ

[f(θ)ζ(U)]
Um(θ)
U(θ) dθ.

We know evaluate the sign of each term (A.29), (A.30) and (A.31).

• Fact 1. Because S(q)− h(θ)q is strictly concave and qm(θ) maximizes this expression, we
have ∫ θ

θ

[
(S(q)− h(θ)q)f(θ)

]qm(θ)

q(θ)
dθ ≥ 0,

i.e., the term on the right-hand side of (A.29) is non-negative

• Fact 2. We also compute∫ θ

θ

[
(h(θ)− h(θ))f(θ)q

]qm(θ)

q(θ)
dθ =

∫ θ

θ

(Ż(F (θ))− Ż(F (θ)))(qm(θ)− q(θ))f(θ)dθ

(A.32) =
[
(Z(F (θ))− Z(F (θ)))(qm(θ)− q(θ))

]θ
θ
−
∫ θ

θ

(Z(F (θ))−Z(F (θ)))(dqm(θ)−dq(θ))

where the equality comes from integrating by parts and where dqm and dq are negative
measures since both qm and q satisfy (3.7).

Using (A.24), we observe that the first bracketed term on the right-hand side of (A.32) is
zero.

Turning now to the second term on the right-hand side of (A.32), we notice that it is
zero whenever Z(F (θ)) = Z(F (θ)). Denote I =

{
F (θ) s.t.Z(F (θ)) > Z(F (θ))

}
. From a

remark above, we necessarily have Ż(y) constant on that interval; which means that h(θ)
remains constant over F−1(I). It then follows from (5.20) that qm is constant on such
interval and thus∫ θ

θ

(Z(F (θ))−Z(F (θ)))(dqm(θ)−dq(θ)) = −
∫
F−1(I)

(Z(F (θ))−Z(F (θ)))dq(θ) ≤ 0

for any admissible q satisfying (3.7). Hence,∫ θ

θ

[
(h(θ)− h(θ))f(θ)q

]qm(θ)

q(θ)
dθ ≥ 0.

• Fact 3. Because ζ is concave, we also have

ζ(U(θ))− ζ(Um(θ)) ≤ ζ ′(Um(θ))(U(θ)− Um(θ)) = −λ̇m(θ)(U(θ)− Um(θ))

where the last equality uses (A.25).

Hence, we get∫ θ

θ

[f(θ)ζ(U)]
Um(θ)
U(θ) dθ +

∫ θ

θ

λ̇m(θ)(Um(θ)− U(θ))dθ ≥ 0.
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Gathering all Facts above and inserting into (A.28) yields

(A.33)

∫ θ

θ

(H∗∗(Um(θ), qm(θ), λm(θ), θ)−H∗∗(U(θ), q(θ), λm(θ), θ)) dθ

≥ −
∫ θ

θ

λ̇m(θ)(Um(θ)− U(θ)))dθ.

Integrating by parts and using the transversality conditions (A.26) the right-hand side of (A.33)
can be written as

(A.34) −
∫ θ

θ

λm(θ)(qm(θ)− q(θ))dθ.

Gathering (A.33) and (A.34) and inserting into (A.22) finally yields

∆m ≥ 0

which proves that (Um(θ), qm(θ), zm(θ), em(θ)) is an optimal arc.

Implications.

• Integrating (A.25) and using the second transversality condition in (A.26) yields (5.22).

• The seller’s information rent Um(θ) satisfies

Um(θ) = Um(θ) +

∫ θ

θ

qm(θ̃)dθ̃

where Um(θ) is implicitly defined by the condition

1 =

∫ θ

θ

ρ
(
B,min

{
E(Um(θ̃)); efb

})
f(θ̃)dθ̃.

which is obtained from (5.22) and the first transversality condition in (A.26).

Following the same steps as in the Proofs of Propositions 3 and 4, we also obtain a
condition similar to that found in the case of the solution to the relaxed problem

Um(θ) < R(efb).

• Finally and again mimicking results obtained in the Proofs of Proposition 4, the
optimal effort satisfies (A.27) with Um(θ̂m) being defined as in (5.33).

Q.E.D.

Proof of Proposition 9: Using (A.10) in the case of a uniform distribution, the virtual cost
can be here expressed as

(A.35) h(θ) = θ + λm(θ).

Differentiating (A.35) and using (A.2), we obtain

(A.36) ḣ(θ) = ω(Um(θ))
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to which, we again append the boundary conditions (A.14). It is straightforward to check that
h(θ) so defined is concave. When h is non-monotonic, the only scenario is thus for h to be first
increasing before being decreasing in a left-neighborhood of θ.

Using (5.20), we may also rewrite (3.6) as

U̇m(θ) = −D(h(θ)) =

{
−D(h(θ)) for θ ∈ [θ, θ0],

−D(h(θ0)) for θ ∈
[
θ0, θ

]
.

Hence, Um is linear on
[
θ0, θ

]
and thus (5.26) holds.

Using (A.36) and the boundary condition (A.14) at θ thus yields

(A.37) q0(θ − h(θ)) = Ω(Um(θ))− Ω(Um(θ) + q0(θ − θ)) ∀θ ∈
[
θ0, θ

]
.

Inserting into (5.25) and simplifying yields (5.27). Inserting (A.37) into (5.20) yields (5.28).

Proceeding as in the Proof of Proposition 7, we form a first quadrature for Um and get

U̇m(θ) = −
√
q20 + 2(Ω(Um(θ))− Ω(Um(θ) + q0(θ − θ0))) ∀θ ∈ [θ, θ0] .

Using the boundary condition (A.14) at θ, that we write as U̇m(θ) = −D(θ), we then obtain the
following expression for Um(θ) as (5.29).

Finally, a second quadrature yields the following (almost) closed form for Um(θ)

(A.38)

∫ Um(θ)

Um(θ0)

dU√
q20 + 2(Ω(U)− Ω(Um(θ) + q0(θ − θ0)))

= θ0 − θ ∀θ ∈ [θ, θ0]

and thus (5.30) holds. Altogether, the system (5.27)-(5.28)-(5.29)-(5.30) determines (Um(θ), Um(θ), q0, θ0).
Q.E.D.
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Figure 3b.— Quantity profiles: Simulation B
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