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Abstract
We consider the problem of constructing con�dence intervals (CIs) for non-

linear functions of the parameters. The classical approaches for constructing
CIs are the Delta and the Fieller methods. These methods can be implemented
in any context in econometrics and statistics.
There are two main reasons for the failure of these two methods. The �rst

is the bias of the parameters estimator. In many econometric and statistical
applications, the estimator of the nonlinear functions of the parameters is bi-
ased. The second problem is that the estimated parameters have non-normal
and asymmetric distributions.
Using the Edgeworth expansion, we extended the Delta method to obtain

a better approximation. We then proposed a new interval by correcting the
skewness in the Edgeworth expansion. Such bias-corrected con�dence intervals
are easy to compute and the coverage probability converges to the nominal level
at a rate of O(n�1=2) where n is the sample size.
We also de�ne the bias of the nonlinear functions of the parameters and we

propose a bias-corrected estimator that is identical to the almost unbiased ratio
estimator proposed by Tin (1965). We then correct the CIs according to the
Delta method and the Edgeworth expansion. Thus, we develop new methods
for constructing con�dence intervals that take into account both the bias and
the skewness of the distribution of the nonlinear functions of the parameters.
We conduct a simulation study to compare the con�dence intervals of our

new methods with the two classical methods. The methods evaluated include
Fieller�s interval, Delta with and without the bias correction interval, and Edge-
worth expansion with and without the bias correction interval. The results show
that our new methods with bias correction generally have good performance
in terms of controlling the coverage probabilities and average length intervals.
They should be recommended for constructing con�dence intervals for nonlinear
functions of estimated parameters.

Keywords: Ratio parameters, Con�dence intervals, Bias, Almost unbiased
ratio estimator, Edgeworth expansion, Cornish-Fisher expansion, Delta method,
Fieller method, Coverage probability.
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JEL Classi�cation, C12; C13.

1 Introduction

Many econometric and statistical applications are interested in tests of the non-
linear functions of the parameters, which can be expressed as the ratio of two
unknown parameters including the ratio of regression coe¢ cients, the ratio of
the two linear functions such as the ratio of a¢ ne transformations of random
variables and generally the ratio of the two nonlinear functions.
A non-exhaustive list of examples of econometric models where inferences

for the ratio of parameters are used as follows: the long-run elasticities and
�exibilities in dynamic models, (Li and Maddala 1999; Dorfman et al. 1990;
Bernard et al. 2007; Hirschberg et al. 2008); the willingness to pay value, i.e,
the maximum price an agent would pay to obtain an improvement in a par-
ticular attribute of a desired good or service, (Lye and Hirschberg 2018); the
turning point in a quadratic speci�cation model where the estimated relation-
ship is either a U-shaped or an inverted U-shaped curve for example Kuznet
and Beveridge curves, in applications to dynamic panel data, (Bernard et al.
2019; Lye and Hirschberg 2018); the determination of the non-accelerating in-
�ation rate of unemployment ( NAIRU), for example a Phillips curve, (Staiger
et al. 1997,Hirschberg and Lye 2010a; Lye, and Hirschberg, 2018); the struc-
tural parameter in an exactly identi�ed system of equations as estimated by the
two-stage least squares method (Hirschberg and Lye 2017, Lye, and Hirschberg,
2018, Andews et al..2019); the notion of weak instruments in econometric mod-
els (Woglom 2001); inequality indices, (Dufour et al. 2024; Dufour et al. 2018);
structural impulse responses, (Olea et al. 2021). Lye and Hirschberg (2018)
give some other examples of econometric models.
Other examples of statistical applications, include cost-e¤ectiveness analysis

(Briggs and Fenn (1998); and the comparison of health outcomes across spa-
tial domains (Beyene and Moineddin 2005); bioequivalence assessment, dose-
response analysis, (Sitter and Wu 1993; Faraggi, et al. 2003, Wang et al. 2015).
For other statistical applications, see Franz (2007) .
However, the statistical properties of the ratio of parameters can be prob-

lematic because the analytical expressions of the moments are generally not
available, e.g. the ratio of asymptotically normally distributed random vari-
ables is a non-central Cauchy distribution. Moreover, if the denominator of the
ratio is not signi�cantly di¤erent from zero, the probability distribution of the
ratio shows unusual behaviour, and the con�dence intervals are unbounded. An-
other problem worth highlighting is the bias of the estimator in a �nite sample
when studying a nonlinear function of parameters.
To test the null hypothesis of the nonlinear functions of parameters which

can be expressed as the ratio of two unknown parameters, we use con�dence
intervals (CIs). The two widely used approaches for constructing CIs are the
Fieller method and the Delta method. The advantage of these methods is that
they can be implemented in any context and are easy to compute, they do
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not require the use of intensive calculation and sampling strategies as would be
needed when using a Bootstrap or Bayesian method, (Hirschberg and Lye, 2010,
2017; Lye and Hirschberg 2018).
Fieller (1954) proposed a method to derive the con�dence interval (CI) of

the ratio of two random variables. In Fieller�s method, it assumes that both
the numerator and the denominator of the ratio follow normal distribution.
The method is based on the inversion of the pivotal t�statistic, it gives an
exact CI for achieving the required coverage probability. The Fieller�s CI is
asymmetric around the ratio estimate, which is a good property, as it can be
re�ects the skewness of the small sample distribution of the ratio. However, if the
denominator of the ratio is not signi�cantly di¤erent from zero, Fieller�s CI will
be unbounded, being either the entire real line or the union of two disconnected
in�nite intervals. It has a positive probability to produce CI with in�nite length.
Furthermore, Fieller�s interval requires �nding roots of a quadratic equation and
these can be imaginary. In addition, if this quadratic equation has one root, the
con�dence interval will be half-open.
The Delta method is based on the �rst-order Taylor expansion by consid-

ering nonlinear functions of parameters. By assuming asymptotic normality in
large samples, this method produces a symmetric and bounded CI, unlike the
Fieller method. However, the Delta method often has an inaccurate coverage
probability (Dufour 1997) and unbalanced tail errors even at moderate sample
sizes (Hirschberg and Lye 2010a). A geometric interpretation of the Fieller and
Delta methods can be found in von Luxbur and Franz (2009); Hirschberg and
Lye,( 2010a). According to Hirschberg and Lye,( 2010a), if the true value of
the ratio has the same sign as the correlation coe¢ cient between the numerator
and the denominator then the Delta and Fieller intervals may be very similar
even if the denominator has a high variance. However, if the signs are opposite
and the precision of the denominator is low, then the Delta method has poorer
performance.
Moreover, there are two potential problems with these Fieller and Delta

methods; �rst, the parameter esimator is biased for nonlinear parameter func-
tions. Second, the estimated parameters have non-normal and asymmetric dis-
tribution. Thus the variance of the estimated parameters is not useful in con-
structing con�dence intervals, Dorfman et al. (1990); Li and Madalla (1999).
In order to overcome the disadvantage of the previous methods, some numer-

ical procedures have been proposed in the literature such as the parametric boot-
strap method and the nonparametric bootstrap method ( bootstrap standard,
bootstrap t�statistic; bootstrap percentile, bootstrap bias-corrected, bootstrap
bias-corrected and accelerated) see (Krinsky and Robb (1986); Dorfman et al.
(1990), Li and Madalla (1999), among others. The CIs obtained from these
iterative procedures are bounded and are more computationally intensive.
Dorfman et al. (1990) compared the Delta and Fieller methods and three

types of the single bootstrap and found that the bootstrap did not achieve
nominal coverage and that all methods performed reasonably well.
The bootstrap percentile-t and the Delta methods con�dence intervals are

very close to each other in many cases in terms of the length of the con�dence
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intervals, Li and Madalla (1999).
It should be noted that all the previous methods do not take into account the

bias of the estimator which should be a prerequisite for constructing a reliable
con�dence interval.
In this regard, the paper has �ve main contributions. First, we propose a

novel analytical approach that modi�es the Delta method to reduce the e¤ect of
skewness. The method is based on the Edgeworth expansion (Hall 1992a). We
then propose a new easy to compute con�dence interval for the ratio of parame-
ters and the interval has the coverage probability converging to the nominal level
at a rate of O(n�1=2) where n is the sample size. Second, the source of potential
bias is due to the nonlinearity of the ratio b� = b�1= b�2 in terms of b�1 and b�2. It is
well known that even when exact unbiased estimators of b�1 and b�2 are available,
the ratio estimator b� could still be badly biased in �nite samples. We consider
a second-order term in the Taylor series expansion to bias estimation that eval-
uates the nonlinearity of the ratio estimator b� and we propose a bias-corrected
estimator which is identical to the almost unbiased ratio estimator proposed by
Tin (1965). Third, we investigate the problem of approximating the variance
of a nonlinear function of parameters based on a second-degree Taylor series
expansion. Unfortunately, when calculating the variance of the second-degree
Taylor expansion, most authors (Parr (1983), Hayya et al. (1975), Wang et
al. (2015)) did not take into account the possible covariances between the ran-
dom variables which is indispensable because it provides a better approximation.
This variance is none other than the variance of the bias-corrected estimator (or
the variance of the almost unbiased ratio estimator of Tin (1965)). Fourth, we
de�ne a modi�ed version of the Delta method, correct the estimator of the bias,
and calculate the corresponding variance. This can be helpful in terms of more
accurate coverage probabilities for the CIs. Fifth, we propose a novel analytical
approach to construct the CI for the ratio estimate. Our method, Edgeworth ex-
pansion with bias-corrected estimator uses the Edgeworth expansion but adopts
an estimator corrected for the bias and its variance. The method always pro-
duces a bounded CI. Simulation results show that it generally outperforms the
Edgeworth expansion in terms of controlling the coverage probabilities and the
average width and is particularly useful when the data are skewed.
The rest of this paper is organised as follows. Section 2 presents some high-

lights. Section 3 studies the di¤erent methods for constructing CIs, the Fieller
and Delta methods and we will develop the Edgeworth expansions for the Delta
method. Section 4 provides an analytical form of the bias that can be used
to construct the bias-corrected estimator and to calculate the variance of the
bias-corrected estimator. Section 5 presents the con�dence intervals with the
bias-corrected estimator. Section 6 presents some econometric applications.
The simulation study and the results are presented in Section 7 and Section 8
concludes the paper.

4



2 Some highlights

2.1 De�nitions, notation.

Let X and Y be two random variables, we assume that the �rst and second
moments exist, then the expected value of X is denote by E(X) = x, the
variance of X by V (X), the square of the coe¢ cient of variation of X is de�ned

by CV (X)2 = V (X)
x2 and the coe¢ cient of variation of X by CV (X) =.

p
V (X)

x :
A similar notation will be used for the random variable Y: We assume that
E(X) = x and E(Y ) = y are non- zero. The covariance of X and Y is de�ned
by Cov(X;Y ) = E(XY )�E(X)E(Y ), the correlation coe¢ cient betweenX and
Y is de�ned by � = Cov(X;Y )�p

V (X)
��p

V (Y )
� so it satis�es j�j � 1 and Cov(X;Y ) =

�
p
V (X)

p
V (Y ) : The coe¢ cient of co-variation of X and Y is de�ned by

CV (X;Y ) = Cov(X;Y )
xy which can be expressed as the produit of the correlation

coe¢ cient and the coe¢ cients of variation ofX and Y respectively: CV (X;Y ) =

�

p
V (X)

x

p
V (Y )

y = �CV (X)CV (Y ):We use the notation [a� b] for the interval
[a� b; a+ b] (b � 0)

2.2 The ratio estimator is biased.

Let b�1 and b�2 are consistent estimators of �1 and �2,respectively, E(b�1) = �1 and
E(b�2) = �2 and the ratio estimator b� = b�1=b�2 is a consistent estimator of the
ratio � = �1=�2 . It is well known that the ratio of two unbiased estimators is not,
in general, itself an unbiased estimator, i.e E(b�1=b�2) 6= E(b�1)=E(b�2) = �1=�2
The expected value of the ratio between b�1 and b�2; provided that the appro-

priate moments exist, is given by

E(b�1=b�2) = E(b�1 � 1=b�2)
= E(b�1)� E(1=b�2) + Cov(b�1; 1=b�2)

If b�1 and b�2 are independent or if b�1 and 1=b�2 are uncorrelated, then
E(b�1 � 1=b�2) = E(b�1)� E(1=b�2):

It is well known that E(1=b�2) 6= 1=E( b�2); Jensen�s inequality implies that
E(1=b�2) � 1=E( b�2) because the function 1=z is convex for z � 0 or z � 0, then
we have

E(b�1=b�2) = E(b�1)� E(1=b�2) � E(b�1)=E(b�2)
and using that E(b�1) = �1 and E(b�2) = �2 we have

E(b�1=b�2) � �1=�2
E(b�) � �
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This result shows that the estimator of the ratio of two unbiased estimators
is, in general, biased.
We will now consider a more general framework which can be precise the

bias of the ratio estimator b�:
Note that the covariance of b�2 and the ratio b�1=b�2 is

Cov(b�2; b�1=b�2) = E(b�2 � b�1=b�2)� E(b�2)� E(b�1=b�2)
= E(b�1)� E(b�2)� E(b�1=b�2)

Then, by rearranging these terms, provided that E(b�2) 6= 0; we obtain the
expected value of the ratio between b�1 and b�2

E(b�1=b�2) = E(b�1)=E(b�2)� 1=E(b�2)� Cov(b�2; b�1=b�2)
This result shows that the expected value of a ratio of two random variables

is not the ratio of the expected values and using that E(b�1) = �1 and E(b�2) = �2
we get

E(b�1=b�2) = �1=�2 � 1=�2 � Cov(b�2; b�1=b�2)
E(b�) = � � 1=�2 � Cov(b�2; b�)

Then the bias of the ratio estimator b� is
Bias(b�) = E(b�)� � = �1=�2 � Cov(b�2; b�)

The ratio estimator b� is thus generally a biased estimator of the true value
of the ratio � even if its components b�1 and b�2 are themselves unbiased with the
size of the bias of b� depending on both �2 and the covariance between b�2 and
the ratio b�1=b�2:
The bias of b� can be written as

Bias(b�) = ���
q
V (b�2)qV (b�)
�2

where �� = Cov(b�2;b�)�p
V (b�2) ��pV (b�) � is the correlation coe¢ cient between b�2 and

the ratio estimator b� and qV (b�2)andqV (b�) are their standard errors respec-
tively.
Consequently, the absolute value of the bias is

���Bias(b�)��� = j���j
q
V (b�2)qV (b�)
�2

�

q
V (b�2)qV (b�)

�2

assuming �2 � 0 and the correlation coe¢ cient between b�2 and the ratio
estimator b� satis�es j��j � 1:
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Thus an upper bound to the ratio of the absolute value of the bias to its
standard error is given by������Bias(

b�)q
V (b�)

������ �
q
V (b�2)
�2

= CV (b�2)
where CV (b�2) is the coe¢ cient of variation of b�2.
The bias in the ratio estimator b� is negligible in relation to its standard

error if the coe¢ cient of variation of b�2 is small which is likely to be the case
when the sample size is su¢ ciently large. It is well known that the variance of
estimator V (b�2) is order O(n�1) then also the bias of b� is also order O(n�1):
Cochran (1977) has shown that if the coe¢ cient of variation of b�2 is less than 0:1,
then the bias in ratio estimator b� is small relative to its standard error. There
is, however, in econometrics and statistics models in which the bias may be
considerable and bias correction can often improve the �nite sample performace
of estimators.
Furthermore, the main di¢ culty in estimating the bias of b� in order to obtain

unbiased estimates of � is to estimate the covariance between b�2 and the ratiob�1=b�2:Thus, it is di¢ cult to obtain an analytical expression of the bias, as we will
see later in Section 4 that using an approximation of the ratio of the parameters
gives an analytical form of the bias and leads to a reduction of the bias from
order O(n�1) to order O(n�2):

3 Methods

3.1 The Delta method (or the Taylor�s series expansion)

The Delta method often referred to as the Taylor�s series expansion (Dorfman
et al. (1990), Briggs and Fenn (1998), Li and Madalla (1999), among others)
estimates the variance of a nonlinear function of two or more random variables
is given by taking a �rst-order Taylor expansion around the mean value of the
variables and calculating the variance for this expression. In the case of the
ratio of parameterss b� = g(b�1; b�2) = b�1=b�2 , the variance of b� is (Full derivation
details can be see in Appendix)

V (b�) = 1b�22
"
V (b�1)� 2 b�1b�2

!
Cov(b�1; b�2) + b�21b�22

!
V (b�2)#

which can also be written as

V (b�) = b�21b�22
h
CV (b�1)2 � 2CV (b�1; b�2) + CV (b�2)2i

where CV (b�i)2 is the square of the coe¢ cient of variation for a random
variable b�i for i = 1; 2 and CV (b�1; b�2) = �CV (b�1)CV (b�2) is the coe¢ cient of co-
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variation of b�1 and b�2 and � = Cov(b�1;b�2)�p
V (b�1) ��pV (b�2) � is the correlation coe¢ cient

between b�1 and b�2:
To construct a con�dence interval for the ratio � = �1=�2; we assume that

n1=2(b� � �) is asymptotically normal distributed with zero mean and variance
V (b�):
Let bV (b�) be a consistent estimator of V (b�); the Delta method 100(1� �)%

con�dence limits for the ratio �1=�2 is given by:

CID :
b�1b�2 � z�=2QD

where
b�1b�2 is namely the classical estimator

and QD =

qbV (b�) = b�1b�2
hdCV (b�1)2 � 2dCV (b�1; b�2) +dCV (b�2)2i1=2 ; the esti-

mated standard error of the classical estimator and z�=2 is the (�=2) th quantile
for standard normal distribution.
This method assumes that b� is normally distributed and thus symmetrical

around its mean. However, the assumption of normality is clearly strong as
there is no guarantee that b� is normally distributed.
However, for large sample sizes (or rather small coe¢ cients of variation) the

distribution of a ratio may be close to normal.
The assumption of a normal distribution may be justi�ed in the case of

large samples, but it is unlikely that the distribution of a ratio will generally
follow a well-behaved distribution. Furthermore, the assumption of a normal
distribution may be quite inaccurate if the data have a skewed distribution.

3.2 The Fieller method

Fieller (1954) proposed a general procedure for constructing con�dence limits
for the ratio of the means of two normal distributions. In Fieller�s method, the
ratio variable is transformed into a linear function. The con�dence interval of
the ratio variable can be obtained by solving out the quadratic roots of the
linear function.
For testing the null hypothesis H0 : �1�2 = 
 equivalently it is written as on

a linear combination of the parameters H 0
0 : �1 �
�2 = 0, the method assumes

that b�1and b�2 follow a joint normal distribution function such that b�1 � 
b�2 is
normally distributed. Hence, the pivotal statistic for this test is:

T =
b�1 � 
b�2qbV (b�1)� 2
dCov(b�1b�2) + 
2 bV (b�2)

which is t�distribution with df degrees of freedom under the null hypothesis.
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Let t�=2;df denotes the 100(1� �=2)th percentile of the t�distribution with
df degrees of freedom, we have

P
h
T 2 � t2�=2;df

i
= 1� �

By replacing the expression of square T and rearranging gives a quadratic
equation in 
:

a
2 + b
 + c � 0

where a = 1�t2�=2;df
bV (b�2)b�22 , b = �2 b�1b�2

�
1� t2�=2;df

dCov(b�1b�2)b�1b�2
�
; and c =

� b�1b�2�2 �1� t2�=2;df bV (b�1)b�21
�
.

Finding an explicit form for the con�dence intervals for 
 requires solving the
quadratic equation. The solution of this inequality depends on the sign of a
and d = b2 � 4ac; the discriminant of the quadratic equation. Through simple
calculation, we can expressed d as follows

d = 4

 b�1b�2
!2
t2�=2;df

�hdCV (b�2)� b�dCV (b�1)i2 + adCV (b�1)2(1� b�2)�

where b� is the estimate of the correlation coe¢ cient between b�1 and b�2:Hence,
a � 0 also implies d � 0:
If d � 0; let 
L and 
U (
L � 
U ) be the two real valued solutions to the

quadratic equation in 
 by changing the inequality into an equality. This gives
the bounds of the Fieller interval in the case a � 0.These two roots are the lower
and upper limits of the (1� �) con�dence interval. The bounds of the interval
are given by

CIF : [
L; 
U ] =

 b�1b�2
!
F

� t�=2;dfQF

where
� b�1b�2�F =

b�1b�2
h

1
1�h

�
1� hb�dCV (b�1)dCV (b�2)

�i
is the Fieller estimator and QF =

b�1b�2 1
1�h

hdCV (b�1)2 � 2dCV (b�1; b�2) +dCV (b�2)2 � hdCV (b�1)2(1� b�2)i1=2 the estimated
standard error of the Fieller estimator and h = t2�=2;df

dCV (b�2)2.
However, if a � 0 the Fieller CI will be unbounded. Hence, if d � 0 the

Fieller CI will be the complement of a �nite interval (�1; 
U )[ (
L;1) and if
d � 0 the Fieller CI will be the whole real line (�1;+1):
Other intervals may be considered when a = 0 , the Fieller CI will be�

�1; �c
b

�
if b � 0 otherwise, it will be

��c
b ; 1

�
if b � 0:

Remark 1 1) Following the Fieller estimator, the term 1
1�h

�
1� hb�dCV (b�1)dCV (b�2)

�
can be considered as a correction factor to the estimated ratio estimator.

2) If b�dCV (b�1)dCV (b�2) = 1 then the Fieller estimator
� b�1b�2�F is equal to the classical

estimator
b�1b�2 :
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3) In the case of �nite interval, the condition a � 0 is equivalent to
���� b�2pbV (b�2)

���� �
t�=2;df which means rejecting the null hypothesis H0 : �2 = 0; i.e: �2 is signif-
icantly di¤erent from zero. The test of this null hypothesis is the �rst step of
Sche¤é�s procedure, (Sche¤é, 1970).

4) The t�statistic
���� b�2pbV (b�2)

���� is equal to ��� 1dCV (b�2)
��� the absolute inverse of the

coe¢ cient of variation for b�2; so the null hypothesis is rejected if the coe¢ cient
of variation for b�2 is negligible. (A high coe¢ cient of variation for b�2 means a
low statistical value).
5) If h is close to zero the Fieller CI becomes the Delta CI.

It should be noted that the null hypothesis H 0
0 : �1 �
�2 = 0, was obtained

from the non-linear relationship �1
�2
= 
 only when �2 6= 0:However, Fieller�s

method does not take this information into account.Therefore, the Fieller CI
has the potential to overestimate the con�dence length.
Furthermore Fieller�s estimator is a linear combination of the ratio estimator

(or classical estimator). As we mentioned in Section 1 the ratio estimator is
generally biased, so Fieller�s estimator is also generally biased.
The advantage of Fieller�s method over the Delta method is that it takes into

account the potential skewness of the sampling distribution of the ratio estima-
tor and therefore may not be symmetric around the point estimate. Fieller�s
method provides an exact solution subject to the joint normality assumption.
However, it has been argued that the assumption of joint normality may be
di¢ cult to justify, particularly when sample sizes are small. In particular, the
random variable follows a skewed distribution, which may cause problems for
the normality assumption.

The normal approximation is a rather rough approximation, especially when
sample sizes are not large; it does not take into account the skewness of the
underlying distribution which is often the main source of error of the normal
approximation. To remove the e¤ect of the skewness, we develop the Edgeworth
expansion.

3.3 Edgeworth expansion

The Delta method-based con�dence interval is not very robust and can be quite
inaccurate in practice for non-normal data. It produces intervals that are sym-
metric around the point estimate, so it does not take skewness into account.
The correction for skewness used in our con�dence intervals is based on the
Edgeworth expansion.
We propose a method based on the Edgeworth expansion to modify the

Delta intervals to remove the e¤ect of skewness. The expansion provides a way
to correct for the skewness in the data and to derive new con�dence intervals
for the ratio parameters. Thus we consider two aspects: �rst an Edgeworth
expansion is derived for the Delta method for a ratio of parameters on a normal
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random variable and second by using the inverse of the Edgeworth expansions
which are the quantiles of the distribution that is the Cornish-Fisher expansion,
we construct an approximate con�dence interval which contains a n�1=2 order
correction for the e¤ect of skewness.
The Delta method can be easily extended for a better approximation by

using Edgeworth expansion .
Let U = bV (b�)�1=2pn(b� � �) where b� = b�1b�2 , � = �1

�2
and bV (b�) the estimate

of V (b�) in Delta method, we assume that the distriubtion of a random variable
U has the Edgeworth expansion (Hwang, 2019, Hall, 1992b)

F (x) = P (U � x) = �(x)� n�1=2�1
6
(x2 � 1)�(x) +O(n�1=2)

where �(x) and �(x) are the standard normal distribution and density func-
tions respectively, � is the skewness, and n is the sample size. This expansion
can be interpreted as the sum of the normal distribution �(x), and an error
due to the skewness of the distribution. When the error (the n�1=2 skewness
correction) in absolute value is small, U can be accurately approximated by
a normal distribution. Conversely, when the error in absolute value is large,
the second term in the formulation cannot be ignored and therefore the normal
approximation would not be as accurate. The n�1=2 skewness correction is an
even function of x which means that it changes the distribution function sym-
metrically about zero. Thus, the skewness of the distribution F has a signi�cant
e¤ect, especially when the sample size n is small.
To construct asymptotic con�dence intervals, we should invert the Edge-

worth expansions to obtain expansions of distribution quantiles. Such expan-
sions are known as Cornish-Fisher expansions.
For any 0 � � � 1; let �� be the �� th quantile of distribution F (:); which

is the solution to F (��) = �. This quantile of distribution �� = F�1(�) admits
a Cornish-Fisher expansion of the form (Hwang, 2019).

�� = z� + n
�1=2b�1

6
(z2� � 1) +O(n�1=2)

where b� is the estimate of � and z� is the � � th quantile of the standard
normal distribution.
The 100(1 � �)% Edgeworth expansion con�dence interval for the ratio �1

�2
is given by

CIE :

" b�1b�2 � �1��=2QD;
b�1b�2 � ��=2QD

#

whereQD =
b�1b�2
hdCV (b�1)2 � 2dCV (b�1; b�2) +dCV (b�2)2i1=2 ; and ��=2 and �1��=2

are the (�=2)th and (1� �=2)th quantiles of distribution F (:):
For positively skewed data, the true 1��=2 quantile �1��=2 is larger than the

associated standard normal quantiles z�=2 and similarly the true lower quantile
��=2 is larger than �z�=2.
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From the Cornish-Fisher expansion, we can state the asymptotic coverage
probability of the proposed intervals
The coverage probability of con�dence intervals is given by

P (
�1
�2
2 CIE) = 1� �+O(n�1=2):

4 Bias-correction analysis

4.1 Bias of estimator

In Section 1, we showed that the ratio estimator b� = b�1= b�2 is a biased estimator
of the ratio parameters. It�s essential to determine the expected direction and
magnitude of this bias.
The Fieller estimator and the classical estimator are strongly consistent (con-

verge to the ratio �1= �2 with probability one), and generally are biased.
In the following, we propose to correct the bias of the classic estimator. It

is well known in the literature that the ratio of the parameters uses only �rst-
order expansions to approximate asymptotic sampling distributions. However,
calculating higher-order expansions can also be useful given that they can be
used to estimate the bias of the ratio of the parameters and the analytical
form of the bias obtained can be used to construct the bias-corrected estimator.
(Furthermore, higher-order expansions are also useful because they can be used
to estimate the bias of the ratio parameters and the analytical form of the bias
obtained can be used to construct the bias-corrected estimator)
We consider a second-order term in the Taylor series expansion to bias es-

timation that evaluates the nonlinearity of the ratio of the parameters. This
additional second-order term can be helpful, in the sense of more accurate cov-
erage probabilities for the CIs.
Let � is g(�1; �2) = �1=�2 then from a second-order Taylor�s series expansion

g(b�1; b�2) = g(�1; �2)+G0 b�1 � �1b�2 � �2
!
+
1

2

 b�1 � �1b�2 � �2
!0
H

 b�1 � �1b�2 � �2
!
+Rn

where G is a Jacobian vector containing all the �rst-order partial derivatives
and H is a Hessian matrix containing all the second partial derivative for the
nonlinear function g(b�1; b�2) evaluated at �1 and �2; and the remainder Rn is of
order O

0@




 b�1 � �1b�2 � �2






2
1A i.e. Rn







b�1 � �1b�2 � �2







2 �! 0 as b�i �! �i for i = 1; 2:as

n �!1:
We de�ne the bias and variance of ratio estimator using the �rst and second

moments of the terms in this second-order Taylor�s series expansion.Taking the
expectation of this expansion and under the conditions E(b�i��i) = 0 for i = 1; 2
we obtain the bias of ratio estimator given in the following proposition.
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Proposition 2 For a ratio of parameters � = �1
�2
, a second-order Taylor�s series

expansion gives the approximation of bias

Bias(b�) = E(b�)� � = 1

2
(vecH)0vec(�) +O(n�2)

where � is the variance-covariance matrix of b�1 and b�2:
The estimate of bias is given by

[Bias(b�) = 1

2
(vec bH)0vecb�+O(n�2)

where bH and b� are the estimates of H and � respectively.
It which yields

[Bias(b�) = � 1b�22 dCov(b�1; b�2) +
b�1b�32 bV (b�2) +O(n�2)

which can also be written as

[Bias(b�) = b�1b�2
" bV (b�2)b�22 �

dCov(b�1; b�2)b�2b�1
#
+O(n�2)

where
bV (b�2)b�22 � dCov(b�1;b�2)b�2b�1 can be considered as a correction factor to the

estimated ratio estimator.
Proof. (see Appendix).
This bias is identical to Tin�s bias, Tin (1965). It uses the same information

as the correction factor formed by subtracting
bV (b�2)b�22 from

dCov(b�2;b�1)b�2b�1 . This bias

is order to O(n�2) Tin (1965). Our bias is derived by a di¤erent method. Tin
(1965) and David and Sukhatme (1974) used an asymptotic series expansion
of the ratio estimator under certain conditions. The high-order of Tin�s bias
formulation was given by David and Sukhatme (1974)
To obtain the sign of the bias, we express the bias as a function of the

coe¢ cient of variation and the coe¢ cient of co-variation

[Bias(b�) = b�1b�2
 dCV (b�1)dCV (b�2)"dCV ((b�2)dCV (b�1) � b�

#!
+O(n�2)

where b� is the estimate of the correlation coe¢ cient between b�1 and b�2:
Following this latter formula, if the coe¢ cient of variation of b�2 is close to

zero, then the bias may be negligible relative to the variation in b�: Furthermore,
if the coe¢ cient of variation of b�2 is greater than the coe¢ cient of variation
of b�1 the absolute value of the bias increases if the correlation between b�1 andb�2 becomes zero or negative. Similarly, if the coe¢ cient of variation of b�1 is
greater than the coe¢ cient of variation of b�2 the bias is negative for a high

13



positive correlation coe¢ cient. Moreover, if
dCV ((b�2)dCV (b�1) � b� then the absolute value

of the bias is positive, if
dCV ((b�2)dCV (b�1) � b� then the absolute value of the bias is

negative, and if
dCV ((b�2)dCV (b�1) = b� then the ratio estimator is unbiased.

4.2 The bias-corrected estimator

We have obtained an analytic form of the bias and the estimate bias of the ratio
parameters can be used to correct the estimator, the bias-corrected estimator is
given by

b�BC = b� �[Bias(b�) = b�1b�2 � 12(vec bH)0vecb�+O(n�2)
It which yields b�1b�2

!
BC

=
b�1b�2 + 1b�22 dCov(b�1; b�2)�

b�1b�32 bV (b�2) +O(n�2)
Following this result, the bias-corrected estimator is obtained by adjusting

the classical estimator by the term that is capable of reducing it from order
O(n�1) to order O(n�2):
The bias-corrected estimator can also be written as b�1b�2

!
BC

=
b�1b�2
(
1 +

"dCov(b�1; b�2)b�1b�2 �
bV (b�2)b�22

#)
+O(n�2)

where 1+
hdCov(b�1;b�2)b�1b�2 � bV (b�2)b�22

i
can be considered as a correction factor to the

estimated ratio estimator.
This bias-corrected estimator b�BC has the same structure as Tin�s (1965)

almost unbiased ratio estimator in the sense that its bias is of O(n�2); i.e. the

bias of
� b�1b�2�BC converges to zero at a fast rate than that of

b�1b�2 : Tin called
it a �modi�ed ratio estimator". He has shown that his estimator is better
than other competing estimators of population mean, up to the second order of
approximation and it is equivalent to the Beale (1962) estimator up to the �rst
order of approximation. Tin�s estimator has been studied theoretically and via
simulation by, Dalabehera and Sahoo (1995), Swain and Dash (2020) and they
found Tin�s estimator generally to be less biased and more e¢ cient compared
with other proposed ratio estimators.
The bias-corrected estimator b�BC in terms of coe¢ cient of variation and the

coe¢ cient of co-variation of b�1 and b�2 is b�1b�2
!
BC

=
b�1b�2
(
1 +dCV (b�1)dCV (b�2)"b�� dCV (b�2)dCV (b�1)

#)
+O(n�2)
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where 1 + dCV (b�1)dCV (b�2) hb�� dCV (b�2)dCV (b�1)
i
can be considered as a correction

factor to the estimated ratio estimator.
In the next, we examine the case where the numerator and denominator of

a ratio are independent. In this case, we will specify the bias and the bias-
corrected estimator in the following proposition:

Proposition 3 If b�1 and b�2 are independent, we have
(1) The estimate of the bias is [Bias(b�) = b�1b�2dCV (b�2)2 = b�1b�2 1

t(b�2)2
where t(b�2)2 denotes the square of t�statistic (or F1 statistic) for b�2 and

1

t(b�2)2 can be considered as a correction factor to the estimated ratio estimator.
The bias of the ratio parameter is the estimator of the ratio weighted by

the square of the coe¢ cient of variation of b�2 (the inverse of the square of
t�statistic for b�2 or the inverse of the F1 statistic).
(2) The bias-corrected estimator is

� b�1b�2�BC = b�1b�2
h
1�dCV (b�2)2i = b�1b�2

h
1� 1

t(b�2)2
i

The bias-corrected estimator of the ratio parameter is the estimator of the

ratio weighted by the simple statistic
h
1� 1

t(b�2)2
i
; this weight will be less than

one because dCV (b�2)2 is positive.
4.3 The variance of the bias-corrected estimator

As we have shown, the bias-corrected estimator b�BC corresponds to the Tin
(1965) almost unbiased ratio estimator, also known as the modi�ed ratio estima-
tor. The approximation of the variance of b� with a second-order term expressed
in terms of the coe¢ cient of variation and the coe¢ cient of co-variation of b�1
and b�2 is identical to the variance of the almost unbiased ratio estimator. We
therefore use this variance as the variance of the the bias-corrected estimator.

Proposition 4 The estimate of the variance of the bias-corrected estimatorb�BC is (Full derivation details can be see in Appendix.)
bV h(b�BC)i = bG0b� bG| {z }

�rst-order part

+
1

2
(vec bH)0(b�
 b�)vec bH| {z }

second-oder part

where the �rst order part bG0b� bG is the estimate of the variance of b� correspond-
ing to a �rst order approximation and the second order part corresponding to
an additional part from second-order approximation which permit to take into
account the correlation between the random variables.
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It which yields

bV h(b�BC)i = 1b�22
"bV (b�1)� 2 b�1b�2

! dCov(b�1; b�2) + b�21b�22
! bV (b�2)#| {z }

�rst-order approximation

+
1b�42 bV (b�2)

"bV (b�1)� 4 b�1b�2
! dCov(b�1; b�2) + 2 b�21b�22

! bV (b�2)#+ 1b�42 dCov(b�1; b�2)2| {z }
additional part from second-order approximation

which can also be written by

bV h(b�BC)i = b�21b�22

8>>>>>>>>><>>>>>>>>>:

" bV (b�1)b�21 � 2
dCov(b�1; b�2)b�1b�2 +

bV (b�2)b�22
#

| {z }
�rst-order approximation

+
bV (b�2)b�22

" bV (b�1)b�21 � 4
dCov(b�1; b�2)b�1b�2 + 2

bV (b�2)b�22
#
+
dCov(b�1; b�2)2b�21b�22| {z }

additional part from second-order approximation

9>>>>>>>>>=>>>>>>>>>;
Thus, this variance can be express in terms of coe¢ cient variation of b�1 andb�2 by

bV h(b�BC)i = b�21b�22

8>>>>><>>>>>:

hdCV (b�1)2 � 2b�dCV (b�1)dCV (b�2) +dCV (b�2)2i| {z }
�rst-order approximation

+dCV (b�2)2 hdCV (b�1)2 � 4b�dCV (b�1)dCV (b�2) + b�2dCV (b�1)2 + 2dCV (b�2)2i| {z }
additional part from second-order approximation

9>>>>>=>>>>>;
where b� is the estimate of the correlation coe¢ cient between b�1 and b�2:
This variance is identical to the variance of the almost unbiased ratio esti-

mator (or the variance of the modi�ed ratio estimator) of Tin (1965), see also
David and Sukhatme (1974).

Proposition 5 If b�1 and b�2 are independent, we have
(1) The estimate of the variance of the bias-corrected estimator b�BC is given

by

bV h(b�BC)i = 1b�22
"bV (b�1) + b�21b�22

! bV (b�2)#| {z }
�rst-order approximation

+
1b�42 bV (b�2)

"bV (b�1) + 2 b�21b�22
! bV (b�2)#| {z }

additional part from second-order approximation

which can also be written by
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bV h(b�BC)i = b�21b�22
8>>>><>>>>:
" bV (b�1)b�21 +

bV (b�2)b�22
#

| {z }
�rst-order approximation

+
bV (b�2)b�22

" bV (b�1)b�21 + 2
bV (b�2)b�22

#
| {z }

additional part from second-order approximation

9>>>>=>>>>;
(2) The variance bV h(b�BC)i can be express in terms of coe¢ cient variation

of b�1 and b�2
bV h(b�BC)i = b�21b�22

8>><>>:
hdCV (b�1)2 +dCV (b�2)2i| {z }
�rst-order approximation

+ dCV (b�2)2 hdCV (b�1)2 + 2dCV (b�2)2i| {z }
additional part from second-order approximation

9>>=>>;
5 Con�dence intervals with bias-corrected esti-

mator

In this section, we would construct new con�dence intervals that take into ac-
count the bias of the estimator for the Delta method, and both the bias of the
estimator and the asymmetry of the distribution for the Edgeworth expansion
method.

5.1 Delta method based con�dence interval with bias-
corrected estimator

Let us de�ne the estimated standard error of the bias-corrrected estimator b�BC
by

QBC =

rbV h(b�BC)i
And the bias-corrrected estimator is b�1b�2

!
BC

=
b�1b�2
(
1 +

"dCov(b�1; b�2)b�1b�2 �
bV (b�2)b�22

#)
or in terms of coe¤�cient of variation and coe¤�cient of co-variation b�1b�2

!
BC

=
b�1b�2
(
1 +dCV (b�1)dCV (b�2)"b�� dCV (b�2)dCV (b�1)

#)
The 100(1 � �)% con�dence limits of the Delta method bias-corrrected for

the ratio �1=�2 is given by:

CIDbc :

 b�1b�2
!
BC

� z�=2QBC

where z�=2 is the (�=2) th quantile for standard normal distribution.
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5.2 Edgeworth expansion based con�dence interval with
bias-corrected estimator

For the Edgeworth expansion based con�dence interval, we use the same correct
term for the estimator of the ratio parameters, then the 100(1��)% con�dence
interval for the ratio �1=�2 based Edgeworth expansion becomes

CIEbc :

" b�1b�2
!
BC

� �1��=2QBC ;
 b�1b�2

!
BC

� ��=2QBC

#

where ��=2 and �1��=2 are the (�=2)th and (1� �=2)th quantiles of distrib-
ution with

�� = z� + n
�1=2b�1

6
(z2� � 1)

where b� is the estimate of the skewness � and z� is the � � th quantile of
the standard normal distribution.

6 Some Econometric Applications

6.1 The ratio of two linear combinations of parameters.

Many of the nonlinear functions studied in economic applications are expressed
in the functional form of a ratio of two linear combinations of parameters. In
this section, we consider the test of one such nonlinear function.
We will specify the bias of the estimator, the bias-corrected estimator, and

its variance. Note that the formulations of the con�dence intervals are given in
the previous section. We will see that the calculations are quite simple and do
not require intensive computation.
Consider the general linear model

Y = X� + "

where Y is an n�1 vector of observations,X is a n�k full-rank design matrix,
� is a k � 1 vector of unknown parameters, and " is an n� 1 vector of normal
random errors with zero mean and variance �2I : " � N(0; �2I): The OLS
estimators of unknown parameters are b� = (X 0X)�1X 0Y and b�2 = b"0b"=n � k
where b" are the OLS residuals
Consider a null hypothesis for the ratio of two linear combinations of para-

meters
H0 : � = K0�

L0�
where K and L are k � 1 vectors of known constants.
We have the following di¤erent terms:
�1 = K

0�; �21 = (K
0�)2; bV (b�1) = K 0 bV (b�)K = b�2K 0(X 0X)�1K

�2 = L
0�; �22 = (L

0�)2 ; �32 = (L
0�)3; bV (b�2) = L0 bV (b�)L = b�2L0(X 0X)�1L

�1�2 = (K
0�)(L0�); �21�

2
2 = (K

0�)2(L0�)2; dCov(b�1; b�2) = dCov(K 0b�; L0b�) =b�2K 0(X 0X)�1L
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By replacing all these terms in the formulation of the bias for b�, the bias-
corrected estimator b�BC , and the variance of the bias-corrected estimatorbV (b�BC); we have the following proposition
Proposition 6 (i) The bias for b� is

[Bias(b�) = � 1

(L0�)2
b�2K 0(X 0X)�1L+

K 0b�
(L0b�)3 b�2L0(X 0X)�1L

which can also be written by

[Bias(b�) = K 0b�
L0b�

"b�2L0(X 0X)�1L

(L0b�)2 � b�2K 0(X 0X)�1L

(K 0b�)(L0b�)
#

where
h b�2L0(X0X)�1L

(L0b�)2 � b�2K0(X0X)�1L

(K0b�)(L0b�)
i
can be considered as a correction factor

to the estimated ratio estimator.
(ii) The bias-corrected estimator b�BC is given by b�1b�2

!
BC

=
K 0b�
L0b� +� 1

(L0�)2
b�2K 0(X 0X)�1L� K 0b�

(L0b�)3 b�2L0(X 0X)�1L

which can be written by b�1b�2
!
BC

=
K 0b�
L0b�

(
1 + b�2 "K 0(X 0X)�1L

(K 0b�)(L0b�) � L
0(X 0X)�1L

(L0b�)2
#)

where 1+b�2 hK0(X0X)�1L

(K0b�)(L0b�) � L0(X0X)�1L

(L0b�)2
i
can be considered as a correction factor

for the estimated ratio estimator.
(iii) The estimate of the variance of the bias-corrected estimator

bV h(b�BC)i = (K 0b�)2
(L0b�)2 (A1 +A2)

where A1 is the �rst-order approximation

A1 = b�2 "K 0(X 0X)�1K

(K 0b�)2 � 2K
0(X 0X)�1L

(K 0�)(L0�)
+
L0(X 0X)�1L

(L0b�)2
#

and A2 is the additional part from second-order approximation

A2 =
b�2L0(X 0X)�1L

(L0b�)2 b�4 "K 0(X 0X)�1K

(K 0b�)2 � 4K
0(X 0X)�1L

(K 0�)(L0�)
+ 2

L0(X 0X)�1L

(L0b�)2
#

+
b�4(K 0(X 0X)�1L)2

(K 0b�)2(L0b�)2
Next, we consider the case where the numerator and the denominator of the

ratio are independent.
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Proposition 7 (i) If b�1 and b�2 are independent, then the bias for b� becomes
[Bias(b�) = K 0b�

(L0b�)3 b�2L0(X 0X)�1L

which can be written by

[Bias(b�) = K 0b�
L0b�

"b�2L0(X 0X)�1L

(L0b�)2
#

where
h b�2L0(X0X)�1L

(L0b�)2
i
can be considered as a correction factor for the estimated

ratio estimator.

(ii) The bias-corrected estimator b�BC is given by b�1b�2
!
BC

=
K 0b�
L0b� � K 0b�

(L0b�)3 b�2L0(X 0X)�1L

which can be written by

 b�1b�2
!
BC

=
K 0b�
L0b�

"
1� b�2L0(X 0X)�1L

(L0b�)2
#

where 1� b�2L0(X0X)�1L

(L0b�)2 can be considered as a correction factor for the estimated

ratio estimator.

(iii) The variance of the bias-corrected estimator

bV h(b�BC)i = (K 0b�)2
(L0b�)2 b�2

8>>>>>>>>><>>>>>>>>>:

"
K 0(X 0X)�1K

(K 0b�)2 +
L0(X 0X)�1L

(L0b�)2
#

| {z }
�rst-order approximation

+
L0(X 0X)�1L

(L0b�)2 b�2 "K 0(X 0X)�1K

(K 0b�)2 + 2
L0(X 0X)�1L

(L0b�)2
#

| {z }
additional part from second-order approximation

9>>>>>>>>>=>>>>>>>>>;
We will illustrate this result with an econometric application to show the

simplicity of calculation for our method. Let�s take the case of the turning
point, which has been the subject of numerous economic applications.
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6.2 The turning point.

Consider a classical linear model described by the quadratic regression model

y = �0 + �1x+ �2x
2 + "

where y is the dependent variable and x the independent variable and " is
an unobserved random error term with expected value E(") = 0 and variance
V (") = �2: A common example of such model is the Kuznets (1955) curve
that proposes the relationship between income inequality and income, can be
represented by an inverted U shaped curve. Following the Kuznets hypothesis
the relation between a country�s income equality and economic development
is concave, with income equality �rst increasing and then decreasing as the
country�s economy is developing. See Bernard et al. (2019), Hirschberg and
Lye (2005), Lye and Hirschberg (2018) among others for the applications and
the extensions of this "Kuznets curve". The turning point (or extremum value)
is given by

� = � �1
2�2

assuming �2 6= 0, the extremum value � is a minimum value if �2 � 0 and a
maximum value if �2 � 0:
In this case K 0 = (0;�1; 0) and L0 = (0; 0; 2) and we have
�1 = ��1; �21 = �

2
1 ;

bV (b�1) = bV (b�1) = b�2�1
�2 = 2�2; b�22 = 4�22 , b�32 = 8�32 , bV (b�2) = 4bV (b�2) = 4b�2�2
�1�2 = �2�1�2; �21�

2
2 = 4�21�

2
2 ;

dCov(b�1; b�2) = 2dCov(b�1; b�2) =
�2b�b�1b�2
In the formulation of the bias for b� , the bias-corrected estimator b�BC and

its variance, by replacing all these terms, we have the following proposition:

Proposition 8 (i) The bias for b� is
[Bias(b�) = 1

2

"
1b�22 b�b�1b�2 �

b�1b�32 b�2b�2
#

which can be written as

[Bias(b�) = �1
2

b�1b�2
 b�2b�2b�22 �

b�b�1b�2b�1b�2
!

where
� b�2b�2b�22 �

b� b�1 b�2b�1b�2
�
can be considered as a correction factor to the esti-

mated ratio estimator.
(ii) The bias can be express in terms of the coe¢ cients of variation and the

coe¢ cient of co-variation of b�1 and b�2
[Bias(b�) = �1

2

b�1b�2
24 1

t(b�2)
!2
� b� 1

t(b�1)
! 

1

t(b�2)
!35
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where t(b�i) denotes the t � statistic for b�i for i = 1; 2, and b� is the esti-

mate of the correlation coe¢ cient between b�1 and b�2 and the term �
1

t(b�2)
�2
�

b�� 1

t(b�1)
��

1

t(b�2)
�
can be considered as a correction factor to the estimated ratio

estimator.
An another alternative form of the bias is

[Bias(b�) = �1
2

b�1b�2
( 

1

t(b�1)
! 

1

t(b�2)
!"

t(b�1)
t(b�2) � b�

#)

where
�

1

t(b�1)
��

1

t(b�2)
� h

t(b�1)
t(b�2) � b�i can be considered as a correction factor to

the estimated ratio estimator.
(iii) The bias-corrected estimator b�BC

b�BC = �1
2

b�1b�2 � 12
"
1b�22 b�b�1b�2 �

b�1b�32 b�2b�2
#

which can be written as

b�BC = �1
2

b�1b�2
"
1 +

 b�b�1b�2b�1b�2 �
b�2b�2b�22
!#

where 1 +
� b� b�1 b�2b�1b�2 �

b�2b�2b�22
�
can be considered as a correction factor to the

estimated ratio estimator
(iv) The bias-corrected estimator b�BC in terms of the

coe¢ cient of variation and the coe¢ cient of co-variation of b�1 and b�2 is
b�BC = �1

2

b�1b�2
"
1 +

 b� 1

t(b�1)
! 

1

t(b�2)
!
� 1

t(b�2)2
!#

where 1+
�b�� 1

t(b�1)
��

1

t(b�2)
�
� 1

t(b�2)2
�
can be considered as a correction fac-

tor to the estimated ratio estimator.
An another alternative form is

b�BC = �1
2

b�1b�2
"
1 +

 
1

t(b�1)
! 

1

t(b�2)
! b�� t(b�1)

t(b�2)
!#

where 1+
�

1

t(b�1)
��

1

t(b�2)
��b�� t(b�1)

t(b�2)
�
can be considered as a correction factor

to the estimated ratio estimator.
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(v) The estimate of the variance of the bias-corrected estimator b�BC

bV h(b�BC)i = 1

4

b�21b�22

8>>>>>>>>><>>>>>>>>>:

"b�2b�1b�21 � 2
b�b�1b�2b�1b�2 +

b�2b�2b�22
#

| {z }
�rst-order approximation

+
b�2b�2b�22

"b�2b�1b�21 � 4
b�b�1b�2b�1b�2 + 2

b�2b�2b�22
#
+
(b�b�1b�2)2b�21 b�22| {z }

additional part from second-order approximation

9>>>>>>>>>=>>>>>>>>>;
(vi)Thus this variance bV h(b�BC)i can be express in terms of coe¢ cient vari-

ation of b�1 and b�2 by

bV h(b�BC)i = 1

4

b�21b�22

8>>>>>>><>>>>>>>:

hdCV (b�1)2 � 2b�dCV (b�1)dCV (b�2) +dCV (b�2)2i| {z }
�rst-order approximation

+dCV (b�2)2 " dCV (b�1)2 � 4b�dCV (b�1)dCV (b�2) + b�2dCV (b�1)2
+2dCV (b�2)2

#
| {z }

additional part from second-order approximation

9>>>>>>>=>>>>>>>;
This variance is easily calculated using t� statistics for b�i fori = 1; 2

:bV h(b�BC)i = 1

4

b�21b�22

8>>>>>>>>>><>>>>>>>>>>:

"
1

t(b�1)2 � 2b�
 

1

t(b�1)
! 

1

t(b�2)
!
+

1

t(b�2)2
#

| {z }
�rst-order approximation

+
1

t(b�2)2
24 1

t(b�1)2 � 4b�� 1

t(b�1)
��

1

t(b�2)
�
+ b�2 1

t(b�1)2
+2 1

t(b�2)2
35

| {z }
additional part from second-order approximation

9>>>>>>>>>>=>>>>>>>>>>;
We have developed a new method for deriving analytical formulae for the

bias of the estimator ratios b�, the bias-corrected estimator b�BC , and the variance
of the bias-corrected estimator bV (b�BC): The advantage of this method is that
the calculations are quite simple and do not require intensive computations like
the bootstrap methods.

7 Simulation study

7.1 Overview

In this section, we carry out a simulation study to assess the coverage prob-
abilities of the methods presented in the previous section. We also examine,
the average length of the con�dence intervals. We evaluate the performance of
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the Fieller interval, the Delta method interval without and with bias correction
and the Edgeworth interval without and with bias correction. Let X1; :::; Xn
be i.i.d. observations from some distributions F with mean �X and variance
�2X , Y1; :::; Yn be i.i.d. observations from some distributions G with mean �Y
and variance �2Y and ��X�Y the covariance between X

0
is and Y

0
j s where � is the

correlation coe¢ cient. Let X = 1
n

Pn
i=1Xi and Y =

1
n

Pn
i=1 Yi and their ratiob� = X

Y
is a consistent estimator of � = �X

�Y
We generate data from three bivariate distributions: a bivariate normal dis-

tribution, and two positively skewed family of distributions. The two families
that we consider are the bivariate lognormal distribution and the bivariate mix-
ture (X 0

is are lognormal and Y
0
j s are normal) distribution. We choose three

correlation coe¢ cients between Xi and Yj (-0,8, 0,1, 0,8) and four sample sizes
(25, 50, 100, 1000). We use 10 000 data sets. The data are generated as follows:
(a) Bivariate Normal Distribution�
Xi
Yi

�
�i:i:d N2

��
�X = 7
�Y = 5

�
;

�
�2X = 2 ��X�Y
��X�Y �2Y = 1

��
(b) Bivariate Mixture Distribution
(Xi) = e

eXi

� eXi
Yi

�
�i:i:d N2

��
� eX = 5
�Y = 4

�
;

�
�2eX = 0; 2 �� eX�Y
�� eX�Y �2Y = 0; 5

��
(c) Bivariate Lognormal Distribution�
Xi
Yi

�
�i:i:d exp

�
N2

��
�X = 5
�Y = 4

�
;

�
�2X = 0; 2 ��X�Y
��X�Y �2Y = 0; 5

���

7.2 Results

The results of our simulation are presented in Table 1. The values presented in
the table are con�dence intervals based on the Fieller method, the Delta method,
the Delta method with the bias correction (denoted by Dbc), the Edgeworth
method, and the Edgeworth method with the bias correction (denoted by Ebc).
The values of the average width (denoted by Width) are the average lengths of
the corresponding intervals. For data generated from normal distribution, all
intervals give good performance. That is, all coverage probabilities are closer
to the nominal level. Average interval lengths (Width) are also comparable
for all methods. The Fieller and the Delta con�dence intervals are in many
cases very close to each other in terms of the coverage probabilities and we can
also observe that the average interval lengths for Delta method with the bias
correction (Dbc) are less wide than for the Delta method without the bias cor-
rection which means that the estimator is more accurate. We also observe that
the average interval lengths for the Edgeworth method with the bias correction
(Ebc) are narrower than for the Edgeworth method without the bias correction.
However, for data generated from bivariate mixture and bivariate lognormal
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distributions, Delta methods con�dence intervals are obviously inadequate, the
coverage probabilities are lower than the nominal level. Fieller�s intervals are
also insu¢ cient in terms of coverage probabilities. All the other methods give
coverage probabilities lower than the nominal level. The Dbc intervals outper-
form Delta intervals. The Dbc intervals give better coverage probabilities than
Delta intervals. They are comparable and sometimes better than the Fieller
intervals. Note that the Delta interval has the longest average width whereas
the Dbc interval has the shortest average width. The same applies to the Ebc
compared to the Edgeworth expansion. We also observe that the Ebc interval
performs much better than the Edgeworth interval. This can be explained by
the fact that the estimated ratio is biased. Overall, the Edgeworth and the
Edgeworth bias corrected appear to be best in terms of coverage probabilities
and average width (width). To explore how the correlation coe¢ cients a¤ect the
coverage probabilities we performed simulations for di¤erent values (-0.8, 0.1,
0.8) from Table 1. The simulation results showed that the correlation coe¢ cients
have an impact on the coverage probabilities. The sample sizes have a substan-
tial impact on the coverage probabilities for almost all methods. Among all the
methods, the Edgeworth bias-corrected ( Ebc) method seems to give a narrower
average than the others. The important conclusion from our simulation is that
one should use the Edgeworth bias corrected, rather than the Edgeworth ex-
pansion. We also consider other sample sizes and other correlation structures.
The results are similar and are not reported here.
In summary, the Edgeworth without and with the bias correction have good

performance in terms of coverage probability and average width and should be
recommended for constructing con�dence intervals when data are from skewed
distributions.
Table 1. Coverage probability and average width (Width) of 95% con�dence

intervals.
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� Fieller Width Delta Width Dbc Width Edgeworth Width Ebc Width
(a) Bivariate Normal Distribution

n = 25
0.8 0.9505 1.9625 0.9491 1.9455 0.9495 1.9364 0.9531 2.0523 0.9532 1.1935
0.1 0.9463 2.0572 0.9452 2.0443 0.9458 2.0115 0.9512 2.0365 0.9511 2.0136
-0.8 0.9485 2.4198 0.9482 2.4041 0.9473 2.1464 0.9528 2.0523 0.9529 2.0310

n = 50
0.8 0.9505 1.9625 0.9506 1.9485 0.9504 1.9275 0.9526 2.0497 0.9522 1.9210
0.1 0.9489 2.0577 0.9480 2.0443 0.9464 2.0324 0.9510 2.0342 0.9515 2.0387
-0.8 0.9476 2.4187 0.9469 2.4036 0.9478 2.1685 0.9521 2.0415 0.9519 2.0450

n = 100
0.8 0.9504 1.9753 0.9501 1.9753 0.9503 1.9212 0.9524 2.0520 0.9521 1.9215
0.1 0.9477 2.0678 0.9489 2.0621 0.9463 2.0218 0.9503 2.0365 0.9506 2.0240
-0.8 0.9504 2.3953 0.9468 2.3975 0.9475 2.2358 0.9506 2.0522 0.9505 2.0486

n = 1000
0.8 0.9501 1.9780 0.9501 1.9658 0.9500 1.9245 0.9520 2.0568 0.9520 1.9146
0.1 0.9476 2.0749 0.9469 2.0581 0.9460 2.0510 0.9504 2.0412 0.9500 2.0168
-0.8 0.9500 2.3763 0.9470 2.3860 0.9477 2.2045 0.9515 2.0495 0.9514 2.0475

(b) Bivariate Mixture Distribution
n = 25

0.8 0.8286 90.13 0.8214 86.48 0.8297 86.42 0.8674 85.86 0.8815 84.53
0.1 0.8713 107.30 0.8474 103.57 0.8512 103.45 0.8671 102.93 0.8705 102.49
-0.8 0.8970 139.34 0.8570 133.28 0.8980 132.51 0.9013 131.14 0.9051 130.57

n = 50
0.8 0.8485 91.70 0.8329 88.26 0.8496 87.57 0.8816 87.51 0.8898 86.76
0.1 0.8707 107.18 0.8430 103.78 0.8514 102.12 0.8904 101.45 0.9009 101.14
-0.8 0.8945 138.37 0.8553 132.36 0.8598 132.17 0.9002 130.78 0.9121 129.41

n = 100
0.8 0.8623 90.87 0.8610 89.24 0.8726 85.21 0.9002 86.45 0.9132 87.10
0.1 0.8798 106.87 0.8725 102.53 0.8798 101.21 0.9045 101.24 0.9187 102.25
-0.8 0.9015 137.21 0.9104 130.87 0.8805 130.54 0.9068 130.36 0.9208 129.21

n = 1000
0.8 0.8674 91.10 0.8735 90.13 0.8765 84.25 0.9165 88.12 0.9218 84.59
0.1 0.8723 105.34 0.8806 102.14 0.8725 102.22 0.9046 101.14 0.9284 101.21
-0.8 0.9001 136.21 0.9312 131.51 0.9422 130.57 0.9185 130.03 0.9298 129.25

(c) Bivariate Lognormal Distribution
n = 25

0.8 0.8119 1.5936 0.8076 1.4075 0.8121 1.2761 0.8618 1.4063 0.8715 1.2326
0.1 0.9027 2.6677 08546 2.4743 0.9037 2.4106 0.8934 2.4530 0.8963 2.2078
-0.8 0.9232 3.4301 0.8688 3.1422 0.8721 3.1256 0.9066 3.1047 0.9158 3.0985

n = 50
0.8 0.8472 2.8002 0.8351 1.4512 0.8486 1.4150 0.8845 1.4526 0.9005 1.4328
0.1 0.9055 2.6200 0.8610 2.4462 0.9065 2.3812 0.8981 2.4175 0.9002 2.4076
-0.8 0.9169 3.0737 0.8688 3.1422 0.8765 3.1027 0.9058 3.1107 0.9084 2.9615

n = 100
0.8 0.8417 1.1407 0.8427 1.0821 0.8612 1.1835 0.8766 1.0665 0.9106 1.1078
0.1 0.9130 1.8217 0.8819 1.7727 0.9139 1.6941 0.9078 1.7516 0.9178 1.6851
-0.8 0.9244 2.2228 0.8869 2.1603 0.8981 2.2844 0.9134 2.1281 0.9223 2.0675

n = 1000
0.8 0.8626 1.1691 0.8573 1.1126 0.8621 1.1076 0.8938 1.1010 0.9115 1.0981
0.1 0.9088 1.8157 0.8823 1.7375 0.9054 1.6975 0.9057 1.7434 0.9182 1.6896
-0.8 0.9248 2.2106 0.8965 2.2186 0.9045 2.2081 0.9146 2.1126 0.9268 2.0198
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Note: Dbc: Delta method with the bias correction; Ebc: Edgeworth method
with the bias correction; Width: average con�dence interval lenghts; � : corre-
lation coe¢ cients.

8 Conclusion

We have developed new methods for constructing con�dence intervals for the
nonlinear functions of parameters In many practical applications, the distribu-
tion of the data is not symmetric, in particular when the sample size is small.
We propose that the Edgeworth expansion to the statistics makes it possible
to remedy this inconvenience. Then the Delta method can be extended to ob-
tain a better approximation using the Edgeworth expansion. Furthermore, we
have shown that the nonlinear functions of the parameters are biased and we
have given an analytical expression of the bias of the ratio of the parameters.
This has allowed us to de�ne bias-corrected estimators and, more particularly,
to calculate the variance associated with these bias-corrected estimators. We
have therefore proposed two other new methods: the Delta method with bias
correction and the Edgeworth expansion with bias correction.The new meth-
ods we propose are straightforward to calculate and do not require intensive
calculations such as bootstrapping.
The results of the simulation study showed that our methods generally have

better coverage probabilities and con�dence width and are narrower than the
Delta method and Fieller�s method. In the case of bivariate normality, the
Delta with bias correction intervals gives better coverage probabilities than the
Delta intervals. They are comparable and sometimes better than Fieller�s in-
tervals. When the data have been generated from a skewed distribution, the
Edgeworth without and with the bias correction have good performance in terms
of controlling the coverage probabilities and average length intervals. Thus, we
recommend using our new methods with bias correction to construct a reliable
con�dence interval for nonlinear functions of the estimated parameters.
Finally, it should be noted that the method outlined in this paper for deriving

analytical formulae for the bias of ratio estimators, the bias-corrected estimator,
and the variance of the bias-corrected estimator can be useful in several econo-
metric and statistical applications, such as e.g., the long-run elasticities and
�exibilities in dynamic models, the willingness to pay value, structural impulse
responses, etc.
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APPENDIX
The Delta method is useful to approximate the moments of the nonlinear

functions of parameters by using Taylor�s series expansion. In the literature,
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only �rst-order expansions are used to approximate asymptotic sampling dis-
tributions. The Delta method provides a compromise to approximate the as-
ymptotic sampling distribution of the ratio parameters � = �1=�2 where �1 and
�2 are unknwon parameters. However, higher-order expansions are also useful
because they can be used to estimate the bias of the ratio parameters and the
analytical form of the bias obtained can be used to construct the bias-corrected
estimator. We begin with how the variance of the ratio of the parameters in the
main text can be approximated with the Delta method. We then extend this
approach to obtain the higher-order terms necessary to estimate the bias and
derive a bias-corrected estimator.

The variance of a �rst order Taylor�s series expansion,
Let � is g(�1; �2) = �1=�2: On the basis of Taylor�s series expansion, the Delta

method approximates the variance of a function of estimators of parametersb� = g(b�1; b�2) which estimates g(�1; �2). Since b�1 and b�2 are unbiased estimators
of �1 and �2 respectively i.e E(b�i) = �i for i = 1; 2; the variance of b� is

V (b�) = V (g(b�1; b�2) = G0�G A1

where G is a Jacobian vector containing all the �rst-order partial derivatives
of g(b�1; b�2) evaluated at �i for i = 1; 2:

G0 =

"
@g(b�1; b�2)
@b�1 ;

@g(b�1; b�2)
@b�2

#
=

�
1

�2
;
��1
�22

�
and � is the variance-covariance matrix of b�1 and b�2 de�ned as follows

� =

"
V (b�1) Cov(b�1b�2)
Cov(b�2b�1) V (b�2)

#

Solving Eq.A.1 and using the estimators b�1 and b�2 to replace for unknown
parameters �1 and �2 respectively, we get the variance of b�

V (b�) = 1b�22
"
V (b�1)� 2 b�1b�2

!
Cov(b�1; b�2) + b�21b�22

!
V (b�2)#

which can be written by

V (b�) = b�21b�22
"
V (b�1)b�21 � 2Cov(

b�1; b�2)b�1b�2 +
V (b�2)b�22

#

Thus, the variance V (b�) can be express in terms of the coe¢ cient of variation
and the coe¢ cient of co-variation of b�1 and b�2

V (b�) = b�21b�22
h
CV (b�1)2 � 2CV (b�1; b�2) + CV (b�2)2i
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where CV (b�i)2 is the square of the coe¢ cient of variation of b�i for i = 1; 2
and CV (b�1; b�2) = �CV (b�1)CV (b�2) is the coe¢ cient of co-variation of b�1 and b�2
and � = Cov(b�1;b�2)�p

V (b�1) ��pV (b�2) � is the correlation coe¢ cient between b�1 and b�2
Bias of estimator
The �rst-order Taylor�s series approximations may not be accurate in some

applications because of bias from truncation of the Taylor�s series or small-
sample bias in the asymptotic regression parameter variances used in the Tay-
lor�s series formulas. A second order Taylor�s series expansios of g(b�1; b�2) is
g(b�1; b�2) = g(�1; �2)+G0 b�1 � �1b�2 � �2

!
+
1

2

 b�1 � �1b�2 � �2
!0
H

 b�1 � �1b�2 � �2
!
+ Rn A2

where H is a Hessian matrix containing all the second partial derivatives of
g(b�1; b�2) evaluated at �i i = 1; 2:

H =

24 @2g(b�1;b�2)
@b�21 ; @

2g(b�1;b�2)
@b�1@b�2

@2g(b�1;b�2)
@b�2@b�1 ; @

2g(b�1;b�1)
@b�22

35 = " 0;� 1
�22

� 1
�22
; 2�1
�32

#

and the remainder Rn is of order O

0@




 b�1 � �1b�2 � �2






2
1A i.e Rn







b�1 � �1b�2 � �2







2 �! 0

as b�i �! �i for i = 1; 2:as n �!1:
By taking expectation of Eq. A2 and since E(b�i � �i) = 0 for i = 1; 2, and

E(Rn) = O(n
�2) we obtain

E(g(b�1; b�2)) = g(�1; �2) + 1
2
tr fH�g+O(n�2)

E(b�) = � + 1
2
tr fH�g+O(n�2)

where tr(:) denotes the trace of matrix, then the bias for b� is de�ned by
Bias(b�) = E(b�)� � = 1

2
tr fH�g = 1

2
(vecH)0vec�+O(n�2)

where vec(:) denotes the vectorisation operator which stacks the columns of the

matrix and the matrix H is symmetric so that vecH 0 = vecH:
Since H and � are unknown, we estimate bias as

[Bias(b�) = 1

2
tr
n bHb�o = 1

2
(vec bH)0vecb�+O(n�2)

where bH is the estimate of the Hessian matrix of the second-order partial
derivatives and b� is the estimate of the variance-covariance matrix of b�1 and b�2:
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It which yields

[Bias(b�) = � 1b�22 dCov(b�1; b�2) +
b�1b�32 bV (b�2) +O(n�2)

which can be written as

[Bias(b�) = b�1b�2
" bV (b�2)b�22 �

dCov(b�1; b�2)b�1b�2
#
+O(n�2)

The approximation of the variance of b� with a second-order term
The calculation of the variance of the second order Taylor series reveals the

covariances between the random variables.and gives a better approximation.

To facilitate notation, let us de�ne the random vector z =
�b�1 � �1 ; b�2 � �2�0

with E(z) = 0 , E(zz0) = � and z is a normal random variable .z � N(0;�)
We can rewrite the second order of Taylor�s expansion as follows

g(b�1; b�2) = g(�1; �2) +G0z + 1
2
z0Hz ++ Rn

and its variance is

V ( g(b�1; b�2)) = V (G0z) + 1
4
V (z0Hz) + Cov (G0z; z0Hz)

To obtain the variance V ( g(b�1; b�2)) we need to calculate the three terms
(i) V (G0z) = G0�G

(ii) 1
4V (z

0Hz) = 1
4

n
E [z0Hz]

2 � [E(z0Hz)]
2
o

= 1
4

n
[tr(H�)]

2
+ 2tr(H�)2 � [tr(H�)]2

o
= 1

2 tr(H�)
2

(iii) Cov (G0z; z0Hz) = G0E [zz0Hz]
= G0E [z 
 zz0]0 vecH
= 0

since odd moments of z are zero. Thus the linear form G0z and the quadratic
form z0Hz are uncorrelated.
By combining these three results, we obtain the following result

V
h
g(b�1; b�2)i = G0�G| {z }

�rst-order part

+
1

2
tr
�
(H�)2

�
| {z }
second-order part

= G0�G| {z }
�rst-order part

+
1

2
(vecH)

0
(�
 �)vecH| {z }

second-oder part

where the �rst order part G0�G is the variance of b� corresponding to a �rst
order approximation and the second order part corresponding to an additional
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part from second-order approximation which permit to take into account the
correlation between the random variables.
Let bV hg(b�1; b�2)i be the estimate of the variance V hg(b�1; b�2)i de�ned by

bV hg(b�1; b�2)i = bG0b� bG| {z }
�rst-order part

+
1

2
(vec bH)0(b�
 b�)vec bH| {z }

second-oder part

It which yields

bV hg(b�1; b�2)i = 1b�22
"bV (b�1)� 2 b�1b�2

! dCov(b�1; b�2) + b�21b�22
! bV (b�2)#| {z }

�rst-order approximation

+

1b�42 bV (b�2) hbV (b�1)� 4� b�1b�2� dCov(b�1; b�2) + 2� b�21b�22 � bV (b�2)i
+ 1b�42 dCov(b�1; b�2)2| {z }

additional part from second-order approximation

which can be written as

bV hg(b�1; b�2)i = b�21b�22
" bV (b�1)b�21 � 2

dCov(b�1; b�2)b�1b�2 +
bV (b�2)b�22

#
| {z }

�rst-order approximation

+
b�21b�22
8<:

bV (b�2)b�22
h bV (b�1)b�21 � 4dCov(b�1;b�2)b�1b�2 + 2

bV (b�2)b�22
i

+
dCov(b�1;b�2)2b�21b�22

9=;| {z }
additional part from second-order approximation

Thus this variance can be express in terms of the coe¢ cient of variation and
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the coe¢ cient of co-variation of b�1 and b�2:
bV hg(b�1; b�2)i = b�21b�22

hdCV (b�1)2 � 2dCV (b�1; b�2) +dCV (b�2)2i| {z }
�rst-order approximation

+
b�21b�22
( dCV (b�2)2 hdCV (b�1)2 � 4dCV (b�1; b�2) + 2dCV (b�2)2i

+dCV (b�1; b�2)2
)

| {z }
additional part from second-order approximation

=
b�21b�22
hdCV (b�1)2 � 2b�dCV (b�1)dCV (b�2) +dCV (b�2)2i| {z }

�rst-order approximation

+
b�21b�22
(dCV (b�2)2 " dCV (b�1)2 � 4b�dCV (b�1)dCV (b�2) + b�2dCV (b�1)2

+2dCV (b�2)2
#)

| {z }
additional part from second-order approximation
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