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Abstract

We study the design of optimal liability sharing rules when the use of an AI prediction by a

human user may cause external damage. To do so, we set up a game-theoretic model in which

an AI manufacturer chooses the level of accuracy with which an AI is developed (which increases

the reliability of its prediction) and the price at which it is distributed. The user then decides

whether to buy the AI. The AI’s prediction gives a signal about the state of the world, while the

user chooses her effort to discover the payoffs in each possible state of the world. The user may

be susceptible to an automation bias that leads her to overestimate the algorithm’s accuracy

(overestimation bias). In the absence of an automation bias, we find that full user liability

is optimal. However, when the user is prone to an overestimation bias, increasing the share

of liability borne by the AI manufacturer can be beneficial for two reasons. First, it reduces

the rent that the AI manufacturer can extract by exploiting the user’s overestimation bias by

underinvesting or overinvesting in the AI accuracy. Second, due to the nature of the interaction

between algorithm accuracy and the user effort, the user may be incentivized to increase her

(too low) judgment effort.
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1 Introduction

Motivation. As artificial intelligence (AI) gains momentum, algorithms are being extensively

used in AI-assisted decision-making (Rastogi et al., 2020). Advisory algorithms provide decision

support in a variety of situations, while performative algorithms are “able to accomplish indepen-

dent actions by gathering information, decide and execute” (Jussupow et al., 2020).1 These two

types of algorithms (advisory versus performative) are distinguished by their degree of autonomy.

For example, in aviation, pilots have been transformed from operators to supervisors as a result of

increased reliance on performative algorithms. We can expect to see the same trend for drivers in

automated cars in the coming years. Conversely, advisory algorithms leave the final decision to the

user. The focus of this paper is on advisory algorithms, which are used in a variety of contexts.

Physicians use them to better interpret x-rays pictures, to better predict the onset and/or evolution

of a disease, and to better anticipate emerging infectious disease epidemics.2 Advisory algorithms

are used by judges to help them assess the risk of recidivism of criminal defendants (e.g., the con-

troversial COMPAS algorithm, for “Correctional Offender Management Profiling for Alternative

Sanctions”).3 Banking institutions also use predictions of credit scoring models to reduce the risk

of default or to prevent fraud.

Because AI algorithms often outperform humans in a wide range of applications, there are great

benefits to be gained from their use. For example, AI algorithms outperform humans in the

context of pretrial release decisions (Kleinberg et al., 2018) or in the context of medical imaging

analyses such as computed tomography (Cheng et al., 2016).4 By reducing the cost of providing

1This classification originates from Nissen (2001) and Nissen and Sengupta (2006).
2See, for example, Chopard and Musy (2022) who study the market for AI systems in health care, and Dai and

Singh (2023) who focus on the decision of impurely altruistic physicians whether to use an AI and to follow its
recommendation when that recommendation may affect the finding of negligence.

3COMPAS has been criticized on the grounds that the algorithm is allegedly biased against black defendants (see
the propublica article by Larson, Mattu, Kirchner, and Angwin, 2016). However, we should keep in mind that these
types of algorithms are generally less biased than human decision makers, which may be a motivation for their use
(see, e.g., Kleinberg et al., 2018).

4For example, focusing on bail decisions and comparing a machine learning algorithm to judges, Kleinberg et al.
(2018) show that using the algorithm can lead to large welfare gains: “crime can be reduced by up to 24.8% with
no change in jailing rates, or jail populations can be reduced by 42.0% with no increase in crime rates.” Shulayeva
et al. (2017) compares the ability to analyze existing case law by a human or an automated annotators, both trained
by a professional annotator. The algorithm allows to reach a correct classification level of 85% versus 83.7% for the
human annotator.
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high accuracy predictions, AI enables human operators to “know more about their environment,

including about future states of the world” (Agrawal et al., 2018) and thus to make better decisions.

However, even with the assistance of an advisory algorithm, human decisions are prone to error.

This is especially true if the human operator does not properly consider the reliability of the

algorithm’s prediction. In fact, as is well known in the computer science literature, humans may

be overly reliant on the predictions made (Zerilli et al., 2019; Springer et al., 2017). Different

terminologies are used to characterize this issue, such as the “control problem” (Zerilli et al., 2019),

or the “misuse” issue (Parasuraman and Riley, 1997).5 According to Zerilli et al. (2019), the control

problem refers to “the tendency of the human agent within a human-machine control loop to become

complacent, over-reliant or unduly diffident when faced with the outputs of a reliable autonomous

system.” This tendency has been referred to as “automation bias”, notably by Cummings (2017)

and Mosier and Skitka (2018). In our paper, the control problem or “misuse” (hereafter referred to

as overestimation bias) is characterized by an overestimation of the probability that the algorithm’s

prediction is correct.6 The bias can lead the human operator to use the algorithm inappropriately

by reducing her own effort and the AI manufacturer to underinvest or overinvest in the accuracy

of the AI.

One way to reduce the risk of external damage is to implement accountability mechanisms to share

the burden of poor outcomes from collaborative human-AI decisions. Well-designed legislation can

incentivize the production of high-accuracy algorithms, while mitigating the effects of behavioral

biases and ensuring the appropriate use of predictions by users. In fact, AI legal frameworks are

currently under discussion in many countries.7

5Misuse is specifically defined by Parasuraman and Riley (1997) as overreliance on automation.
6The explainable AI approach tends to address the problem of overestimation bias by providing insight into how

the algorithm makes its prediction. However, this approach has not been very successful in achieving this goal
(Buçinca et al., 2021).

7Legislation could take the form of regulations (e.g., certifications), defective product liability, or specific AI tort
laws. In the European Union, the Product Liability Directive (PLD) was recently revised in October 2024, notably to
include other types of goods, including software. However, the AI Liability Directive (AILD) proposal was withdrawn
in February 2025. The AILD was intended to complement the Artificial Intelligence Act (Regulation 2024/1689).
Furthermore, specific sector regulations may exist, such as those in healthcare (Chopard and Musy, 2024). Thus,
depending on the context, different liability rules may apply.
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Research questions. Our paper addresses the issue of the optimal liability rule when an AI

manufacturer develops an algorithm to be used by a human operator. The accuracy of the prediction

is chosen by the AI manufacturer during the algorithm development phase. Then, a human operator

chooses whether to use an algorithm (i.e. to pay for a prediction), and her level of unobservable

cognitive effort (which we call judgment effort) to learn about the payoff. Finally, a decision is

made based on the available information about the state of the world (which may be imperfectly

revealed by the use of the algorithm) and the associated payoffs (which may be observed by way

of the judgment effort). In the absence of any cognitive bias, a strict liability of the human

operator induces her to use the algorithm in an appropriate way and, moreover, incentivizes the

AI manufacturer to make the socially optimal investment in the algorithm’s accuracy (since he

fully internalizes the expected liability cost through the price). We then ask the following question:

Could the overestimation bias justify a sharing of liability between the user of the algorithm and

the AI manufacturer?

Assumptions and main results. In our model, we assume that the user of an algorithm suffers

from an overestimation bias, which leads to a misperception of the risk of a false prediction. More

specifically, the user tends to overestimate the accuracy of the algorithm. As explained by Miceli

and Segerson (2021) and following Zeiler (2019), this bias is a “psychological mistake”8 that affects

the actual decisions made by the user, with the consequence that these decisions do not reflect the

true costs and benefits that they face. Thus, the decisions made will not necessarily be optimal for

the user (who may regret them later) as well as for society. Miceli and Segerson (2021) suggest that

this implies that “there is a potential role for legal rules to correct the distortions in decision-making

that these biases can create.” For this reason, we consider the legislative authority responsible for

choosing the liability rule to be “paternalistic” rather than “populist” in the sense emphasized by

Salanié and Treich (2009), meaning that this authority perceives welfare using the true probability

of a false prediction, as opposed to the probability perceived by the user who suffers from an

8As these authors explain, another type of “bias” comes from non-standard preferences. Unlike a misperception
bias, a non-standard preferences bias does not imply that the individual is making a mistake, and thus should not
necessarily be corrected.
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overestimation bias.

Following Agrawal et al. (2019b), the algorithm’s prediction and the user’s judgment effort cover

two different dimensions. While the information provided by the prediction refers to the actual

state of the world (e.g., whether a patient has cancer or not), the judgment effort refers to the

payoffs in each possible state of the world (e.g., whether the patient will benefit from intensive and

expensive treatment if he has cancer).9

Our main results are as follows. When the human operator does not suffer from an overestimation

bias, strict user liability is optimal. Indeed, the expected social cost is fully internalized in the price

of the algorithm, resulting in the socially optimal investment in the AI accuracy, and an optimal

level of judgment effort.

In contrast, we show that strict user liability is not always optimal when the user suffers from an

overestimation bias, mainly for two reasons. The first reason relates to the choice of AI accuracy

by the manufacturer: the AI manufacturer exploits the user’s misperception, which leads to a

suboptimal accuracy level. Specifically, the accuracy level of the AI will be too high (low) if the user

overestimates (underestimates) the marginal effect of a higher investment by the AI manufacturer.

In general (although we show that this is not always true), increasing the AI manufacturer’s share

of liability will induce him to choose a accuracy level closer to the first-best. The second reason

relates to the user’s choice of judgment effort. In fact, the user’s overreliance on the algorithm will

lead her to choose too low a level of judgment effort. In certain conditions pertaining to the nature

of the interaction between algorithm accuracy and user effort, extending the AI manufacturer’s

liability share may prompt the user to enhance her judgment effort.

The rest of the paper is organized as follows. Section 2 presents the related literature. Section 3 is

the model setup. Section 4 gives the first-best optimum, and we solve the model and comment on

9The approach of AI we adopt is close to Agrawal et al. (2018), Agrawal et al. (2019a), and Agrawal et al. (2019b).
In their setting, the human operator can make a judgment effort (which is a cognitive effort) to assess the payoff in
each possible state of the world, while the AI, when used, provides her with a prediction about the actual state of
the world. We borrow their modeling approach and add a potential external damage when a risky decision is made.
Both the effort of judgment and the accuracy of the AI can affect the decision and thus the occurrence of damage.
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the second-best liability sharing rule in Section 5. Finally, Section 6 concludes and discusses our

results.

2 Related literature

Our paper lies at the intersection of two bodies of literature: one on human decision-making

and predictive algorithms (subsection 2.1) and the other on the economic approach of product

liability (subsection 2.2). To our knowledge, the theoretical law and economics literature does not

address the specifics of human-algorithm interactions, such as automation bias, when analyzing the

efficiency of different liability rules.10

2.1 Human decision making and predictive algorithms

Decision-making with predictive algorithms has been investigated theoretically in a series of papers

by Agrawal et al. (2019a, 2018, 2019b). Specifically, the authors consider the complementarity

between an algorithm’s prediction and the judgment of a human decision-maker. Our approach is

similar, except we assume that the human decision-maker may incorrectly estimate the algorithm’s

accuracy.

Several computer science and economics papers have identified the limits of using predictive algo-

rithms empirically. This literature aims to determine whether AI improves decision-making and, if

so, under what conditions (Alur et al., 2024). The effectiveness of human-AI interactions appears to

depend on various factors, including algorithmic tuning and user experience (Inkpen et al., 2023).

Studies have been conducted in various sectors, including social services and healthcare. In the

social sector, Fogliato et al. (2022) examined the use of an algorithmic risk assessment tool by

social workers in child protection. The authors found that although the social workers altered their

decisions in the presence of the algorithm, they did not exhibit significant algorithmic aversion or

automation bias. In contrast, in the healthcare sector, the results of Agarwal et al. (2023) suggest

that radiologists underuse the information produced by predictive algorithms. Other articles sug-

10Apart from Obidzinski and Oytana (2024), where the human is assumed to have a limited attention.
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gest that AI users may rely too heavily on predictions. For instance, Keding and Meissner (2021)

show that managers tend to rely too heavily on predictions made by AI-based advisory systems

because they “associate this advice with a higher level of process structure and perceive it as more

trustworthy than human advice.”

In our paper, we focus primarily on the issue of overreliance, while explaining in Section 6 how our

model can address algorithmic aversion.

2.2 The economic approach of product liability

The law and economics literature has provided some insights into tort liability for products based on

artificial intelligence. This literature generally assumes that technology and humans are substitute

means of achieving a task rather than complementary ones.11 There is specific law and economics

literature on the optimal liability of smart products (and more specifically, self-driving cars) when

accidents involving smart products may arise. More broadly, our paper is also related to the

literature on product liability and consumer biases, as well as the literature on product liability

and sequential care.

Autonomous vehicles (AVs) and liability rules. There is a growing body of literature on

the liability rules that should apply to AVs (Shavell, 2020; Talley, 2019; De Chiara et al., 2021;

Dawid and Muehlheusser, 2022; Guerra et al., 2022a,b). These papers differ with respect to (1)

whether the probability of an accident can be affected by the vehicle’s mileage, or the manufacturer’s

investment, (2) whether there is a mix of automated vehicles and human-driven vehicles, and (3)

the type of liability rules envisioned.12 Our framework differs in that we consider that the victim is

a passive third party who has no control over the probability of the accident occurring. In addition,

we do not specifically deal with AVs; rather, we focus more generally on advisory algorithms and

11With the exception of Chopard and Musy (2024).
12For example, Shavell (2020) considers a model in which all vehicles are autonomous and proposes the use of a

new form of liability in which damages are paid to the state. Talley (2019) and De Chiara et al. (2021) develop a
model in which only some (but not all) vehicles are autonomous. Dawid and Muehlheusser (2022), in the context of
a dynamic model of product innovation calibrated to the U.S. auto market, study how liability rules may affect the
emergence and the development of AV.
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the distinction between human judgment and algorithmic prediction. Nevertheless, we share some

important results with these papers. Like Shavell (2020) and Talley (2019), we find that a strict

liability regime may be suboptimal. Moreover, similar to De Chiara et al. (2021) and Dawid

and Muehlheusser (2022), we find that increasing the share of liability borne by the manufacturer

may improve accuracy. However, to our knowledge, the emerging literature on AVs has not yet

considered the fact that human users may be prone to cognitive biases when interacting with

machines.

Product liability and consumer biases. Our paper is more broadly related to the product

liability literature.13 Hay and Spier (2005) show that it is optimal for the consumer, if fully solvent,

to bear full liability for external damage. This result is consistent with our benchmark without

user bias. When consumers are insolvent, a “residual-manufacturer liability”, where the liability is

shared between the manufacturer and the consumer, may be optimal. We also find that a sharing

of liability between the manufacturer and the consumer (i.e., the human operator in our context)

may be optimal, though the reasons for this result differ.14 In Hay and Spier (2005), the consumer

cannot be strictly liable because he is insolvent, while in our model the human operator should not

be strictly liable because then the AI manufacturer would benefit from the consumer’s mispercep-

tion, resulting in a suboptimal level of accuracy. A subset of the product liability literature has

considered biased consumers.15 The closest to our paper are Friehe et al. (2020) and Obidzinski

and Oytana (2024). Friehe et al. (2020) compare liability rules when consumers are present-biased,

while Obidzinski and Oytana (2024) consider the case where users exhibit behavioral inattention.

We share their results that consumer bias may provide a rationale for sharing liability between

the consumer and the (monopolistic) manufacturer. However, we differ in the specific bias we

consider and in the nature of the decisions made by users.16 In a broader account of the role

of bias in economic models of law, Miceli and Segerson (2021) recently consider the case where

13Daughety and Reinganum (2013) and Geistfeld (2009) provide surveys of the product liability literature. See also
the seminal paper by Landes and Posner (1985).

14In our framework, we assume that both the manufacturer and the user are fully solvent.
15On consumer misperception, see the seminal papers by Spence (1977) and Polinsky and Rogerson (1983).
16See also Baniak and Grajzl (2017), who consider the consequences of possible customer misperceptions about

future usage, referred to as projection bias.
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consumers misperceive their risk of damage in both a competitive and in a monopolistic setting.

In the perfectly competitive setting, misperception implies that strict producer liability is opti-

mal. In the monopolistic setting, strict producer liability is optimal when consumers overestimate

the risk, while liability sharing may be optimal when consumers underestimate the risk, because

it (partially) offsets the monopoly distortion on quantities. In contrast, we do not consider how

liability rules may lead to underproduction or overproduction, since in our model a representative

user buys at most one prediction. Thus, there is no heterogeneity in the user’s willingness to pay

for the prediction of the AI.

Sequential care. In our paper, the risk of damage can be mitigated by both the accuracy of the

algorithm chosen by the manufacturer and by the effort of the human operator. This framework

has similarities to sequential care models in the economic approach to tort law (Wittman, 1981;

Shavell, 1983). However, the insights provided by these models cannot be directly applied to the

context under study. This is due to the fact that, even if the user’s effort decision intervenes after

the accuracy of the algorithm is set, the judgment effort is unobservable and, as a consequence,

cannot be subject to a negligence rule.17

3 The Model

We build a model based on Agrawal et al. (2019b) (inspired by Bolton and Faure-Grimaud, 2009)

to derive the optimal liability regime chosen by a policymaker when the use of an algorithm may

cause external damage. The purpose of the liability regime is to apportion the damage between a

representative user of the algorithm (the human operator, H, she) and the AI manufacturer (M ,

he), when the human operator may suffer from an overestimation bias. This bias leads the user of

the algorithm to be overly confident in the prediction made by the AI. In this section, we introduce

the general setup of our model by describing the players’ objectives, their decision variables and

their payoff. We also describe our behavioral assumption regarding automation bias. Finally, we

17Our contribution is also related to the literature on multiple injurers and the design of apportionment rules
(Landes and Posner, 1980; Landes et al., 1987; Guttel et al., 2021; Ferey and Dehez, 2016; Kornhauser and Revesz,
1989). However, these papers are primarily concerned with dilution of liability and the risk of suboptimal care.
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describe the sequence of events.

The state of the world is θ ∈ {θ1, θ2}, with Pr(θ = θ1) = Pr(θ = θ2) = 1/2. In each of the states of

the world, a “safe” or a “risky” decision can be made. A safe decision always yields a payoff of 0,

regardless of the state of the world, while the payoff of a risky decision depends on the realization

of the state of the world. In particular, a state θ = θ1 captures a “good” state of the world in

that a risky decision yields a possibly positive payoff b ∈ {b, 0}, where b is a random variable with

Pr(b = b) = v, Pr(b = 0) = 1 − v, and b > 0. In contrast, in the “bad” state of the world θ = θ2,

the payoff is always −c < 0 if a risky decision is made.

Figure 1: Social payoff of a risky decision

θ1

b

v

0

1− v

1/2

θ2

−c

1

1/2

The AI manufacturer. The state of the world θ is unobservable. However, the AI manufacturer

(M) can sell an AI that makes an (imperfect) prediction about θ, in the form of a signal s ∈ {θ1, θ2}.

It is assumed that M is a monopolist whose objective is to maximize his expected profit by choosing

the level of AI accuracy q ∈ [1/2, 1], and the price at which the AI is sold to the user. The level

of AI accuracy is the probability that the prediction is correct: Pr(s = θ) = q. The cost to the

manufacturer of achieving an accuracy level q for his algorithm is denoted cM (q), with c′M (q) ≥ 0,

c′′M (q) > 0, c′M (1/2) = 0 and limq→1 c
′
M (q) = +∞.

The user. The human user (H) first decides whether or not to buy the AI (or, equivalently in

our model, its prediction). H may be prone to an overestimation bias. In this case, the probability

that the algorithm reveals the correct state of the world as perceived by the human operator is
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q̃(q) > q. Increasing the accuracy level of the algorithm (q) has a positive effect on the accuracy

as perceived by H (q̃′(q) > 0), although the magnitude of this increase may be underestimated

(q̃′(q) < 1) or overestimated (q̃′(q) > 1).

After observing s, H exerts a judgment effort e ∈ [0, 1]. The judgment effort allows her to learn the

payoff of a risky decision.18 Specifically, with probability e, H observes the realization of b (i.e.,

the payoff obtained from a risky decision if θ = θ1). The judgment effort costs her cH(e), with

c′H(e) ≥ 0, c′′H(e) > 0, c′H(0) = 0 and lime→1 c
′
H(e) = +∞.

The user’s objective is to minimize the sum of her liability cost, plus the cost of her effort and the

price of the prediction.

The decision rule. We assume the following decision rule: a favorable prediction s = θ1 is a

necessary condition for making a risky decision. If s = θ1, then a risky decision is made, unless

H’s judgment effort reveals b = 0, in which case the safe decision is made. In other words, a risky

decision is made if and only if (i) the prediction is favorable and (ii) the operator does not learn

bad news about the payoff in the “good” state of the world.

Note that we assume that the decision rule is fixed and cannot be changed by the user, even though

this rule is not necessarily optimal for all parameters values. Nevertheless, we focus on this rule

because it is relevant in the context of human-machine interaction, and because it allows for a much

more tractable analysis compared to the case where H strategically chooses between a safe and a

risky decision.

The policy maker. The policy maker chooses a liability rule to minimize the expected social

cost, which is defined as the expected loss due to errors (making a safe decision when a risky one

would have yielded a higher social benefit, and vice versa), plus the costs of algorithm accuracy

cM (q) and judgment effort cH(e). We restrict our attention to a liability rule such that damages are

18This information is unavailable to the AI. As Alur et al. (2024) emphasise, “humans often have access to infor-
mation which is not encoded in the data available to predictive algorithms.”
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shared between the AI manufacturer and the human operator. The liability sharing rule allocates

a portion α ∈ [0, 1] of the liability to the user of the algorithm. The AI manufacturer is liable for

the remaining part 1 − α. Thus, if α = 0, the liability lies entirely with M (strict manufacturer

liability), while if α = 1, it lies entirely with H (strict user liability).

The timing of the game.

t=0. Nature independently chooses (i) the state of the world θ ∈ {θ1, θ2} and (ii) the payoff

b ∈ {b, 0} of a risky decision in state θ = θ1.

t=1. The policy maker chooses the liability sharing rule α ∈ [0, 1].

t=2. The AI manufacturer chooses the AI accuracy q ∈ [1/2, 1] and the price at which the

prediction is sold.

t=3. The user decides whether to buy the prediction and observes a signal s ∈ {θ1, θ2} about the

state of the world.

t=4. The user chooses her level of judgment effort e ∈ [0, 1].

t=5. A decision (safe or risky) is made according to the decision rule given above, and payoffs are

realized.

4 The first-best optimum

In this section, we derive the first-best optimum. In other words, we determine the levels of AI

accuracy and judgment effort that minimize the expected social cost. This cost is defined as the

sum of the total expected loss from errors (assuming no overestimation bias), the cost of accuracy,

and the expected cost of judgment effort.

Suppose the AI prediction is s = θ1. This prediction is wrong with probability (1− q). In this case,

with probability v + (1− v)(1− e), b = 0 is not observed and a risky decision is made (recall that

the decision rule is such that a risky decision is made unless b = 0 is observed), causing a social

12



cost c. Conditional on a prediction s = θ1, the expected loss is:

Ls=θ1(q, e) = (1− q)
(
v + (1− v)(1− e)

)
c (1)

Now suppose the AI prediction is s = θ2. In this case, the decision rule is such that the safe decision

is always made. However, with probability (1− q) this prediction does not match the state of the

world: a risky decision would have yielded an expected payoff of vb. Conditional on a prediction

s = θ2, the expected loss is:

Ls=θ2(q) = (1− q)vb (2)

We have Pr(s = θ1) = Pr(s = θ2) = 1/2. Thus, the total expected loss due to errors is:

L(q, e) =
1

2
Ls=θ1(q, e) +

1

2
Ls=θ2(q) (3)

L(q, e) is decreasing with the judgment effort (e):

∂L

∂e
(q, e) = −1

2
(1− q)(1− v)c < 0 (4)

The probability of making a risky decision incorrectly decreases with the judgment effort. This is

because, with probability e, the payoff b is observed by the user and, if b = 0, the “safe” decision

is made, preventing any possible social cost c.

L(q, e) is decreasing with the accuracy of the algorithm (q):

∂L

∂q
(q, e) = −1

2

(
vb+

(
(v + (1− v)(1− e)

)
c
)
< 0 (5)

There are two effects of increasing the accuracy of the AI (q) on the total expected loss. First,

an increase in q improves the probability that a prediction s = θ1 will be correct, and thus the

probability that a risky decision will be made when it actually brings a social benefit b. Second,

increasing q reduces the probability that the prediction s = θ1 will be incorrect, and thus the
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probability that an incorrect risky decision will be made.

Note that a strictly positive judgment effort is only made if the prediction is s = θ1. Indeed, if

s = θ2, the optimal level of judgment effort is 0, because increasing the judgment effort is costly

while it cannot change the decision (which is always a safe decision). Thus, with a slight abuse

of notation, we will refer to e as the level of judgment effort conditional on the prediction s = θ1

being observed.

The expected social cost is the sum of the total expected loss L(q, e), plus the costs of algorithm

accuracy (cM (q)) and judgment effort (cH(e)):

SC(q, e) = L(q, e) + cM (q) +
1

2
cH(e) (6)

The first best level of AI accuracy (q), for a given e, minimizes the expected social cost and is

characterized by the following first-order condition (FOC):

− ∂L

∂q
(q, e) = c′M (q) (7)

The socially optimal level of accuracy is reached when the marginal benefit of reducing the expected

error loss (the left-hand side of (7)) is equal to the marginal cost of accuracy (the right-hand side

of (7)).

Similarly, the first-best level of the judgment effort (e), for a given q, is characterized by the FOC:

− ∂Ls=θ1
∂e

(q, e) = c′H(e) (8)

The socially optimal judgment effort is achieved when the marginal benefit of reducing the expected

error loss (the left-hand side of (8)) is equal to the marginal cost of the judgment effort (the right-

hand side of (8)).
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Now that we have determined the accuracy of the algorithm and the judgment at the first-best

optimum, we consider the second-best in the next section.

5 Equilibrium judgment effort, accuracy and liability sharing rule

Recall that when the user suffers from an overestimation bias, the probability that the algorithm’s

prediction about the state of the world is correct, as perceived by the human operator, is q̃(q) > q

(and q̃(q) = q when there is no bias). In this section, we solve the model, starting with the user’s

choice of her judgment effort both when she uses the AI and when she does not. We then derive

her willingness to pay for the algorithm, the manufacturer’s choice of algorithm accuracy, and

finally the second-best liability sharing rule. At each step, we emphasize the effect of the user’s

overestimation bias.

5.1 The user’s choice of her judgment effort

Case 1: with an AI. As emphasized in the previous section, when H uses an AI to obtain

a prediction, an error may occur, generating a cost for which the user is liable for a part α (the

manufacturer is liable for the remaining part 1 − α). The user seeks to minimize her expected

liability costs (keeping in mind that her perception of these costs will be inaccurate if she is prone

to an overestimation bias), plus the cost of her judgment effort. Thus, her expected utility is given

by:

αLs=θ1
(
q̃(q), e

)
+ cH(e) (9)

Her choice of judgment effort is characterized by the FOC:

− α∂Ls=θ1
∂e

(
q̃(q), e

)
= c′H(e) (10)

We denote the implicit solution of this FOC by e∗AI(α, q). The interpretation of (10) is equivalent

to (8) (i.e., the user’s judgment effort at the first-best optimum), with two differences: (i) the

marginal social benefit (left-hand side of (10)) is weighted by α ≤ 1 (H internalizes only a fraction

of the social benefit of her judgment effort if she is not fully liable), and (ii) if H overestimates
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the accuracy of the AI, she underestimates the probability that the algorithm’s prediction is wrong

and thus her liability costs. These two differences negatively affect the user’s judgment effort at

equilibrium compared to the first-best. Thus, H’s judgment effort is insufficient unless these two

conditions are met: (i) H is not subject to an automation bias (q̃(q) = q) and (ii) she is fully liable

for the social cost c in case of an erroneous risky decision (α = 1).

Proposition 1. For a given AI accuracy level q and if H is not subject to an overestimation bias

(q̃(q) = q), H’s judgment effort is socially optimal under strict user liability (α = 1). If H has an

overestimation bias (q̃(q) > q), her judgment effort is too low.

Proof. If α = 1 and q̃(q) = q, then (10) is equivalent to (8): for a given accuracy level q, the

judgment effort chosen by the user is that which minimizes SC(q, e). If q̃(q) > q, then for any

α ∈ [0, 1], the left-hand term in (10) is less than the left-hand term in (8): the user’s judgment

effort is less than that which minimizes SC(q, e).

From the implicit function theorem, we can show that:

∂e∗AI
∂α

(α, q) = −
∂Ls=θ1
∂e

(
q̃(q), e∗AI(α, q)

)

c′′H
(
e∗AI(α, q)

) > 0 (11)

And:

∂e∗AI
∂q

(α, q) = −
αq̃(q)

∂2Ls=θ1
∂e∂q

(
q̃(q), e∗AI(α, q)

)

c′′H
(
e∗AI(α, q)

) < (=)0 if α > (=)0 (12)

From (11), increasing H’s liability share (α) has a positive effect on her judgment effort. From

(12), increasing the accuracy level of the AI reduces H’s judgment effort if she bears at least part

of the social cost of an erroneous risky decision (α > 0). Otherwise (when α = 0), H’s judgment

effort is zero, regardless of the accuracy of the AI.

Case 2: without AI. If H does not use the AI, we assume that she receives a signal about the

state of the world that is correct (s = θ) with probability 1/2. Since no AI is used, she bears full
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liability in case of an error. According to the assumed decision rule, her expected perceived cost is:

Ls=θ1(1/2, e) + cH(e) (13)

Her choice of judgment effort is characterized by the FOC:

1

2
(1− v)c = c′H(e) (14)

We denote the implicit solution of this FOC by e∗∅. A comparison of (10) and (14) shows that this

judgment effort is higher than when using the AI. This is because the probability of error about

the state of the world is higher, and H fully internalizes the social cost c, which incentivizes her to

make a higher effort. Note that the liability sharing rule (α) and the accuracy of the AI (q) have

no effect on the effort e∗∅, since the AI is not used.

5.2 The user’s willingness to pay

When using the AI, the user’s expected perceived cost of choosing a judgment effort e∗AI(α, q) is:

CH,AI(α, q) = αL(q̃(q), e∗AI(α, q)) +
1

2
cH(e∗AI(α, q)) (15)

Conversely, if she does not use the AI, her expected perceived cost of choosing a judgment effort e∗∅

is:

CH,∅ = L(1/2, e∗∅) +
1

2
cH(e∗∅) (16)

The expected (perceived and actual) costs borne by H are higher when the algorithm is not used,

for two reasons. First, without AI, the user’s information about the state of the world is less reliable.

Thus, the probability of error is higher than with the AI. Second, the manufacturer cannot be held

liable for the cost of errors, because the AI is not used. Therefore, H bears the full expected social

cost of errors. H’s willingness to pay for the AI is:

P (α, q) = CH,∅ − CH,AI(α, q) > 0 (17)
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Using the envelope theorem, we find:

∂P

∂α
(α, q) < 0 (18)

And:

∂P

∂q
(α, q) > (=)0 if α > (=)0 (19)

From (18), increasing the user’s share of liability (or, equivalently, decreasing the manufacturer’s

share) reduces the user’s willingness to pay. Indeed, one of the benefits of AI for the user is that

it shifts some of the liability to the manufacturer. From (19), increasing the accuracy of the AI

increases the user’s willingness to pay because using the AI improves the reliability of the prediction

and reduces the probability (and thus the expected cost) of errors, which the user internalizes (at

least in part, if α > 0) through liability.

5.3 The manufacturer’s choice of AI accuracy

M ’s expected profit is equal to H’s willingness to pay given by P (α, q),19 minus his direct liability

for losses due to errors (1 − α)L(q, e∗AI(α, q)) and the cost of investing in the accuracy of the AI

(cM (q)):

Π(α, q) = P (α, q)− (1− α)L
(
q, e∗AI(α, q)

)
− cM (q) (20)

M ’s choice of AI accuracy is characterized by the FOC:

∂P

∂q
(α, q)− (1− α)

∂L

∂q
(q, e∗AI(α, q))− (1− α)

∂L

∂e
(q, e∗AI(α, q))

∂e∗AI
∂q

(α, q) = c′M (q) (21)

The first (positive) term is the effect of AI accuracy on the user’s willingness to pay. The second

(positive) term is the direct effect of the AI accuracy (q) on the liability borne by M . The third

(negative) term is the indirect effect of increasing the AI accuracy (q) on M ’s liability via its

effect on H’s judgment effort: as the AI accuracy increases, H’s judgment effort decreases, which

increases M ’s liability. To ensure an internal solution, we assume that the first two effects dominate

the third.

19We assume that the manufacturer is a monopolist and is therefore able to extract all of H’s surplus, since there
is no heterogeneity in user preferences.

18



We denote the implicit solution of FOC (21) by q∗(α). Comparing (7) and (21), we find that the

accuracy level chosen by M is socially optimal only if q̃′(q) = 1 (e.g., if the user has no automation

bias, with q̃(q) = q) and α = 1 (strict user liability). First, the accuracy of the AI chosen by M is

negatively affected by the fact that H’s judgment effort decreases with q (recall that
∂e∗AI
∂q (α, q) ≤ 0).

This reduction in judgment effort is costly toM because it increases the probability that an incorrect

prediction s = θ1 will lead to a risky decision, generating an error whose loss is (at least partially)

internalized by M if α < 1. As a result, M will have an incentive to reduce the accuracy of the

AI below the socially optimal level. Second, even if α = 1, the accuracy level of the AI is too high

if q̃′(q∗(1)) > 1 and too low if q̃′(q∗(1)) < 1. The intuition is as follows. When q̃′
(
q∗(1)

)
> 1, the

accuracy level perceived by the user increases faster than the actual accuracy level. As a result, H

overestimates the effect of higher accuracy on her liability. Since the user’s (perceived) liability is

internalized by M via the price, M has an incentive to choose an accuracy level that is too high

(exploiting the user’s overestimation bias). If q̃′
(
q∗(1)

)
< 1, the reasoning is similar: the effect

of higher accuracy on the expected cost of errors is underestimated by H, and as a result the AI

accuracy level chosen by M is too low.

Proposition 2. If H is not subject to an overestimation bias (q̃(q) = q), then a regime of strict

user liability (α = 1) achieves the first-best optimum. If H is subject to an overestimation bias

(q̃(q) > q) and is fully liable (α = 1), then the accuracy level chosen by M is socially excessive (too

low) if q̃′
(
q∗(1)

)
> 1 (q̃′

(
q∗(1)

)
< 1).

Proof. Suppose that α = 1. Substituting (10) into (21) gives us:

∂P

∂q
(1, q) = c′M (q) (22)

With:

∂P

∂q
(1, q) = −q̃′(q)∂L

∂q

(
q, e∗AI(1, q)

)
(23)

If q̃(q) = q, (22) is equivalent to (7) for e = e∗AI(1, q). Since e∗AI(1, q) is the first-best level of

judgment effort for a given q according to Proposition 1 in this case, M chooses the first-best level
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of AI accuracy.

If q̃(q) > q, then, according to (23), the left-hand side of (22) (i.e., the marginal benefit of M

from increasing the level of AI accuracy) is strictly higher than the left-hand side of (7) for e =

e∗AI(1, q) (i.e., the marginal social benefit from increasing the level of AI accuracy) if q̃′(q∗(1)) > 1.

Conversely, the level of AI accuracy chosen by M is strictly lower than the first-best level of AI

accuracy if q̃′
(
q∗(1)

)
< 1.

The result of Proposition 2 shows that if H is subject to an overestimation bias, it is impossible

to achieve the first-best, regardless of the liability sharing rule (unless we are in the special case

q̃′(q) = 1).

Lemma 1. Suppose H is fully liable (α = 1) and subject to an overestimation bias (q̃(q) > q).

If q̃′(q) > 1, increasing M ’s share of liability has a negative effect on the accuracy level of the AI

(q∗′(1) > 0). If q̃′(q) < 1, the effect is ambiguous.

Proof. Applying the implicit function theorem to the FOC (21), we find that the sign of q∗′(1) is

the same as the sign of:

(
1− q̃′

(
q∗(1)

)) ∂L
∂q

(
q∗(1), e∗AI

(
1, q∗(1)

))

− 1

2

[
∂e∗AI
∂α

(1, q∗(1))q̃′
(
q∗(1)

)
+
∂e∗AI
∂q

(1, q∗(1))
(
1− q∗(1)

)]
(1− v)c (24)

Using (11) and (12), the term in square brackets can be rewritten:

− q̃′
(
q∗(1)

)

c′′h

(
e∗AI

(
1, q∗(1)

))
(
q̃
(
q∗(1)

)
− q∗(1)

)
(1− v)c < 0 (25)

Thus, if q̃′
(
q∗(1)

)
> 1, the first and second terms in (24) are both positive: increasing M ’s share

of liability (decreasing α) decreases the AI accuracy chosen by M (i.e., q∗′(1) > 0). Conversely, if

q̃′
(
q∗(1)

)
< 1, the first term is now negative, while the second is positive: increasing M ’s share of

liability (decreasing α) has an ambiguous effect on the AI accuracy chosen by M : the sign of q∗′(1)
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is ambiguous.

This lemma shows that increasing the liability share of M does not necessarily bring the man-

ufacturer’s choice of AI accuracy closer to the socially optimal accuracy. In particular, when

q̃′
(
q∗(1)

)
< 1, there are two opposing effects. On the one hand, increasing the manufacturer’s lia-

bility incentivizes the manufacturer to increase the AI accuracy, which is too low (see Proposition

2). On the other hand, increasing the AI accuracy will induce the user to reduce her judgment

effort, thereby increasing the expected liability cost of M .

5.4 The second-best liability sharing rule

There exists a liability sharing rule such that M bears a part of the liability (α < 1) which is better

than full user liability (α = 1) if:

dSC
(
q∗(α), e∗AI

(
α, q∗(α)

))

dα

∣∣∣∣∣∣
α=1

> 0 (26)

Using the envelope theorem and rearranging, (26) can be rewritten as:

∂L

∂q

(
q∗(1), e∗AI(1, q

∗(1))
)
q∗′(1)

(
1− q̃′(q∗(1))

)

+
∂L

∂e

(
q∗(1), e∗AI(1, q

∗(1))
) q̃

(
q∗(1)

)
− q∗(1)

1− q∗(1)

[
∂e∗AI
∂α

(
1, q∗(1)

)
+ q∗′(1)

∂e∗AI
∂q

(
1, q∗(1)

)]
< 0 (27)

Proposition 3. (i) If H is not subject to an overestimation bias (q̃(q) = q), then full user liability

(α = 1) achieves the first-best in terms of AI accuracy and judgment effort. (ii) If H is subject

to an overestimation bias (q̃(q) > q), then there exists a liability sharing rule α < 1 such that the

second-best is achieved if (27) holds.

Proof. Part (i) is a direct consequence of Proposition 1 and Proposition 2. The proof of part (ii) is

in the text.

Part (i) of Proposition 3 follows directly from Propositions 1 and 2. However, if H is subject to an
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overestimation bias (part (ii) of Proposition 3), then understanding the effects at play requires an

interpretation of (27).

The first term in (27) captures the effect of a change in the liability sharing rule on the expected

social cost via M ’s choice of AI accuracy. As the liability share of M increases, this effect helps to

reduce the expected social cost if:

q∗′(1)
(

1− q̃′(q∗(1))
)
< 0 (28)

The signs of q∗′(1) and 1 − q̃′
(
q∗(1)

)
are ambiguous. To interpret (28), let us first assume that

q̃′
(
q∗(1)

)
> 1. In this case, Proposition 2 and Lemma 1 tell us that, starting from a strict user

liability rule (α = 1), the accuracy level of the AI chosen by M is excessive, but can be reduced

by assigning him a positive share of the liability (q∗′(1) > 0). In other words, condition (28) is

satisfied: increasing M ’s liability share brings the accuracy level of the AI chosen by M closer to

the socially optimal accuracy level of the AI.

If q̃′
(
q∗(1)

)
< 1, then condition (28) may not hold. In fact, according to Proposition 1, the accuracy

level chosen by M is too low, while the effect of increasing M ’s share of liability on his choice of AI

accuracy is ambiguous. Under these conditions, it is possible that increasing M ’s share of liability

will further decrease the AI accuracy, thereby increasing the expected social cost (the effort chosen

by M is further away from the socially optimal effort).

The second term in (28) captures the effect of a change in the liability sharing rule on the expected

social cost via H’s judgment effort. As the liability share of M increases, this effect helps to reduce

the expected social cost if:

∂e∗AI
∂α

(
1, q∗(1)

)
+ q∗′(1)

∂e∗AI
∂q

(
1, q∗(1)

)
< 0 (29)

Suppose that q̃′
(
q∗(1)

)
> 1. Again, from Proposition 2 and Lemma 1, starting from a strict user
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liability rule (α = 1), the accuracy level of the AI chosen by M is too high, but it can be reduced

by giving him a positive share of the liability (q∗′(1) > 0). From Proposition 1, the judgment effort

is too low and from (11) and (12) we know that
∂e∗AI
∂α

(
1, q∗(1)

)
> 0 and

∂e∗AI
∂q

(
1, q∗(1)

)
< 0. There

are two countervailing effects. First, a higher liability for M implies a lower liability for H, which

reduces her already too low judgment effort (first term of (29)). Second, a larger share of liability

attributed to M will lead to a reduction in the accuracy level of the AI chosen by M , causing H

to increase her judgment effort (second term of (29)). If the second effect dominates the first, then

condition (29) is satisfied: increasing M ’s share of liability has an overall positive effect on H’s

judgment effort, reducing the expected social cost.

If q̃′
(
q∗(1)

)
< 1, then the sign of q∗′(1) is ambiguous. A higher liability for M still has a negative

effect by incentivizing H to choose a lower judgment effort (first term of (29)). However, the

indirect effect (second term of (29)), via M ’s choice of AI accuracy, is ambiguous: H’s judgment

effort increases if an increase in M ’s liability share causes M to choose a lower AI accuracy (i.e., if

q∗′(1) > 0), and vice versa.

Note that the magnitude of the effect captured by the second term in (27) (the effect of α on the

expected social cost via H’s judgment effort) increases with
q̃
(
q∗(1)

)
−q∗(1)

1−q∗(1) . This fraction is the

magnitude of the overestimation bias (q̃
(
q∗(1)

)
− q∗(1)) relative to the probability of an incorrect

prediction (1 − q∗(1)). It suggests that the effect captured by the second term in (27) tends to

be stronger when users suffer from a large overestimation bias and use a very reliable AI, making

the relative overestimation bias (i.e., the percentage increase in accuracy as perceived by the user

compared to the true accuracy) very high.

6 Discussion and conclusion

In this paper, we examine a situation in which human decision-maker and an AI advisory algorithm

provide complementary information, with an incorrect decision resulting in damage for a third party.

The accuracy of the algorithm and the user’s judgment effort both impact the probability of an
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incorrect decision, wich results in loss (e.g., a physician implements a treatment that is not suited

to the patient’s condition after observing computed tomography and making an effort to assess the

extent to which the treatment would benefit the patient). Following Agrawal et al., 2019a, 2018,

2019b, we assumed that the AI prediction and the human user’s judgment effort are complementary

because they provide information on separate dimensions. Specifically, the AI predicition provides

information about the state of the world (e.g., whether the patient is sick), while the user’s judgment

provides information about the payoff of a risky decision (e.g., the payoff of implementing treatment

for an ill patient). Furthermore, we assumed that the human user may be susceptible to automation

bias (i.e., she may overestimate the algorithm’s accuracy). The objective of society is to minimize

expected social costs, which are the sum of expected error costs and the costs of algorithm accuracy

and judgment effort. In this context, we examine the optimal sharing of liability between the AI

manufacturer and the human.

We show that, in the absence of overestimation bias, full user liability is optimal. However, when

users are prone to an overestimation bias, increasing the AI manufacturer’s liability can be ben-

eficial. This reduces the rent that the AI manufacturer can extract by exploiting the user’s over-

estimation bias through underinvestment or overinvestment in AI accuracy. Furthermore, due to

the nature of the interaction between algorithm accuracy and the user effort, the user may be

incentivized to increase her (too low) judgment effort.

In this concluding section, we discuss three possible extensions of our setting. First, we discuss

algorithm aversion. Second, we examine another type of liability rule, namely the negligence rule.

Third, we consider the possibility of debiasing the consumer by either the manufacturer or a public

authority.

6.1 Algorithm aversion

Although we have focused on automation bias, users may be prone to other biases when using

an AI. One such bias is algorithm aversion. Jussupow et al. (2020) define algorithm aversion as a

“biased assessment of an algorithm which manifests in negative behaviors and attitudes towards the
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algorithm compared to a human agent.”20 Our theoretical model can be used to assess how liability

rules can mitigate the effects of users’ algorithm aversion. In our setting, algorithm aversion can

manifest itself in two ways.

First, algorithm aversion may reduce the user’s willingness to pay for the prediction (e.g., the

user suffers a fixed disutility when choosing to use an AI). If this effect is strong enough, the AI

manufacturer may choose not to develop the AI at all, even though its development and adoption

would reduce the expected social cost.

Second, the user may underestimate the accuracy of the AI prediction as a result of algorithm

aversion. In this case, we can reinterpret the results of our model with the alternative assumption

that when the user is algorithm averse, the perceived AI accuracy is inferior to the true AI accuracy

level. We can then expect the following results. In the absence of algorithm version, strict user

liability allows the first-best optimum to be achieved. Now assume a strict liability of the user. Re-

interpreting Proposition 1, we find that the user effort is now too high. The result of Proposition 2

holds in the sense that if the user overestimates (underestimates) the effect of an accuracy increase,

then the AI accuracy chosen by the manufacturer is socially excessive (too low). Finally, we can

find a condition analogous to the one in Proposition 3, under which it is socially beneficial to assign

a strictly positive share of liability to the AI manufacturer. If the user is averse to algorithms, there

are still two main effects. The first (second) captures the effect of increasing the manufacturer’s

liability share on the expected social loss via his choice of AI accuracy (the user’s choice of judgment

effort). Overall, the signs of these two effects will remain ambiguous and will largely depend on

whether the user overestimates or underestimates the effect of an accuracy increase, as in our

analysis of the overestimation bias.

20Note, however, that the evidence for the existence of algorithm aversion is mixed, especially with respect to users
of advisory algorithms (Jussupow et al., 2020). Interestingly, in the health care context, Longoni et al. (2019) show
that a specific form of algorithm aversion, which they call “uniqueness neglect”, is eliminated when the AI makes a
prediction that “only supports, rather than replaces, a decision made by a human healthcare provider”, which is by
definition the case with advisory algorithms.
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6.2 Negligence rule

In our analysis, we have focused exclusively on liability sharing rules. However, other liability rules

may be relevant in the same setting. One possible alternative is to establish a negligence rule

that specifies a minimum level of accuracy for the AI. The AI manufacturer would be liable if this

standard is not met, while the user would be liable otherwise. Although a well-designed negligence

rule can avoid some of the limitations of a liability sharing rule, it may be difficult to implement in

practice, especially when applied to external damages resulting from an incorrect AI prediction.21

A first limitation that may prevent a negligence rule from being fully efficient is that the socially

optimal level of the standard may be difficult to determine. In our setting, it would require knowing

both the effect of a greater investment in accuracy on the reliability of the algorithm’s prediction,

and the costs and benefits of increasing that accuracy. However, as Hay and Spier (1997) explain,

“manufacturers are likely to be better informed about the feasibility of product modifications than

regulators”.

A second limitation is that the AI manufacturer may misperceive the level of the standard that

will be enforced by the courts, either because of the vagueness of the terms used to formulate the

standard or because of uncertainty about how the court will interpret that formulation. This is

especially true if the standard can only be stated in very broad terms, which is likely to be the case

because of the practical impossibility of specifying a precise level of accuracy in a fast-moving and

complex technological environment.

A third limitation is that it may be costly for the court to observe how much investment the AI

manufacturer actually made in improving the algorithm, and thus to determine accurately whether

the manufacturer was negligent or not.22 This is particularly true when we consider, for example,

the predictions made by deep learning algorithms. In fact, these algorithms are often considered as

21For a general discussion of liability rules and AI, see Buiten et al. (2021).
22As is well known from the law and economics literature (e.g. Shavell, 1987), errors in determining negligence will

often lead to a level of precaution that is higher than the socially optimal level. In the context of our model, this
means that the AI manufacturer will choose an excessively high level of accuracy.
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“black boxes” because it can be very difficult, even for their creators, to identify the weight given

to each feature (a measurable property or characteristic of a data set) and how these features relate

to each other to shape the algorithm’s prediction.

Interestingly, our model points to a fourth limitation, which is a consequence of the user’s overesti-

mation bias. According to our results, if the level of AI accuracy as perceived by the user increases

faster than the true accuracy (i.e., the user overestimates the increase in accuracy), then the level

of accuracy chosen by the AI manufacturer is too high. Since a standard specifies a minimum level

of accuracy, a negligence rule will fail to restore the proper incentives of the manufacturer with

respect to the accuracy of the AI.

Although these limitations may make it difficult to efficiently implement a negligence rule in prac-

tice, the applicability of a liability sharing rule is not straightforward either. Designing a very

specific allocation of liability (e.g., the sharing that minimizes the expected social cost when strict

user liability is not second-best) can be challenging. Indeed, the optimal sharing rule will generally

depend on the particular context in which it is applied. Although there will always be some uncer-

tainty about the exact liability sharing that should apply, our analysis shows that when choosing

how to share liability, the policymaker should consider not only the existence of a possible user

overestimation bias, but also, among other things, the relative magnitude of the overestimation

bias, whether the “subjective” AI accuracy (the accuracy as perceived by the user) is increasing

faster than the “objective” AI accuracy (the true AI accuracy), and so on. Unfortunately, this

information is likely to vary depending on the specific algorithms used and the context in which

they are used.

6.3 Debiasing the consumer

So far, we have omitted both the possibility that the public authority may try debiasing the human

user (Jolls and Sunstein, 2006; Luppi and Parisi, 2016), and the possibility that the manufacturer

may want to educate the user (Bienenstock, 2016). In the latter case, when applied to our context

of decision-making with an advisory algorithm, the user tends to overestimate the accuracy of the
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product. However, it is not rational for a monopoly to educate the consumer, but it might be the

case in an oligopoly context: a manufacturer might be willing to correct the consumer’s perception

of the accuracy of its competitors’ products. Such an extension would be relevant in our setting,

where it would be worth investigating how liability rules might induce AI manufacturers to invest

in consumer education. These extensions are left for future research.
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