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Abstract

We consider cooperative TU-games with unpaid players, which are described by a TU-

game and two categories of players, paid and unpaid. Unpaid players participate in the

cooperative game but are not rewarded for their participation, for instance for legal reasons.

The objective is then to determine how the contributions of unpaid players are redistributed

among the paid players. To meet this goal, we introduce and characterize axiomatically

three values that are inspired by the Shapley value but di�er in the way they redistribute

the contributions of unpaid players. These values are uni�ed as instances of a more general

two-step allocation procedure.

JEL Code: C72

Keywords: Unpaid players, Shapley value, Harsanyi dividends, axioms, two-step
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1. Introduction

Cooperative games with transferable utility (TU-games for short) describe situations

where players can generate certain worths by cooperating. A payo� vector for a TU-game

is a vector that assigns a real payo� to each player in order to re�ect its participation to the

game. A value on a class of TU-games assigns to each game in this class a payo� vector.

In the classical model, it is assumed that all players are paid. In this article, we relax this

assumption, which makes sense in several situations where some players cannot be paid.

Examples are the following.
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Firstly, according to the French law, voluntary work in a company may be authorized

in certain cases (occasional family assistance, help from a spouse, �a helping hand� from a

non-executive partner),1 but is still common in not-for-pro�t organisations. In all cases, a

voluntary worker cannot be paid. Secondly, in a worker cooperative company, employees and

machines all participate in the production process (and therefore in the creation of value),

but only employees are paid. So the contribution of machines can be seen as voluntary work.

Thirdly, in France, for certain minor o�enses, criminal courts may sentence the o�ender to

perform community service. This is unpaid work that facilitates reintegration by engaging

in a socially useful professional activity. Fourthly, in certain committees, members may hold

either deliberative or advisory voting rights. In the latter case, their vote carries no weight

in the �nal decision. This is for instance the case of the supervisory board at Curie institute,

a leading French cancer treatment and research center, which is composed of 24 members;

18 of them with deliberative votes and 6 with advisory votes.2

Formally, we consider TU-games with unpaid players. Such a game is given by a TU-

game in which the player set is partitioned into paid and unpaid players. A value in this

context assigns to any TU-game with unpaid players a payo� vector on the set of paid

players. In this sense, one of the questions we are trying to answer is how the collective

contributions of unpaid players are distributed among the paid players. In the classical

case where the set of unpaid players is empty, the Shapley value (Shapley, 1953) is widely

recognized as the most prominent value. In our setting, we believe there are several relevant

ways to extend the Shapley value. We have chosen three, which we call the P -priority value,

the U -priority value and the Redistribution value.

The P -priority value is inspired by the formulation of the Shapley in terms of Harsanyi

dividends. The Shapley values splits the Harsanyi dividend of each coalition equally among

the coalition members. The P -priority value splits the dividend of each coalition equally

among the paid players in the coalition and equally among all paid players when the coalition

only contains unpaid players.

The U -priority value assigns to each paid player its Shapley value in the subgame among

paid players and then split what remains of the worth of the grand coalition (the incremental

contribution of the set of unpaid players to the set of paid players) equally among all paid

players.

The Redistribution value assigns to each paid player its Shapley value in the original

TU-game (and not in the subgame among paid players as for the U -priority value) and

then redistributes the payo�s that the unpaid players would have obtained according to the

Shapley value equally among all paid players.

1See the Circular of the 18th January 2010 on relations between associations and public authorities, which

recalls that volunteering is unpaid.
2See https://institut-curie.org/supervisory-board
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It is interesting to remark that these three values each have an asymmetrical component

that di�erentiates between paid players according to their productivity, and an egalitarian

component where each paid player receives the same additional payo�. Our three values

essentially di�er in the perimeter used to calculate the productivity of paid players. We

highlight these similarities and di�erences through a two-step allocation procedure that

uni�es our three values within a single framework. In a �rst step, a value is used to determine

payo�s of all players in the original TU-game with unpaid players. This value may depend

on the status of paid players relative to unpaid players or the type of interaction they may

have. In the second step, a quasi-additive TU-game is constructed on the set of paid players

from the resulting allocation, i.e. the worth of the coalition containing all paid players is the

sum of all payo�s distributed in the �rst step and for any other subcoalition, the worth is the

sum of payo�s obtained by its members in the �rst step. This uni�ed approach is useful to

link axioms for the class of TU-games with unpaid players and axioms in the classical setting

but also to make connections with the literature on TU-games with a priority structure. Our

two-step procedure is reminiscent, to some extent, of the literature on operators for claim

problems initiated by Thomson and Yeh (2008) and continued by Hougaard et al. (2012),

among others.

We characterize axiomatically these three values in the tradition initiated by Shapley.

Some axioms are natural adaptations of classical axioms in the literature to the framework

of TU-games with unpaid players. Some other axioms are new and have no counterpart in

the classical model of TU-games. In this introduction, we illustrate our results by focusing

on a single characterization. An instance of a new axiom is the axiom of Equal impact

of promoting an unpaid player, which requires that any two paid players should enjoy the

same payo� variation if an arbitrary initially unpaid player becomes a paid player. This

changes clearly makes sense in applications where, for example, an unpaid trainee becomes

a fully-�edged employee following recruitment. This axiom is satis�ed by the Redistribution

value but not by the two other values. In order to characterize the Redistribution value,

we also invoke two extra axioms. The �rst one is E�ciency for paid players, which requires

that the worth of the grand coalition is fully shared among paid players. The second one

is Balanced contributions for paid players with null unpaid players, which adapts Myerson

(1980)'s celebrated axiom of Balanced contributions by comparing only pairs of paid players

in a situation where, in addition, unpaid players are null players. E�ciency for paid players

and Balanced contributions for paid players with null unpaid players are also satis�ed by the

P -priority and U -priority values, which means that the axiom of Equal impact of promoting

an unpaid player is really characteristic of the Redistribution value. Some of our results are

comparable in the sense that they invoke common axioms and di�er with respect to axioms

with similar �avor.

The rest of this article is organized as follows. Section 2 presents TU-games and TU-

games with unpaid players. Section 3 presents the two-step procedure. Section 4 de�nes the
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axioms that we invoke in Section 5 for the characterizations of three values emerging from

this two-step procedure. Section 6 presents alternative approaches and proves the logical

independence of the set of axioms used in each characterization result. Section 7 concludes.

2. Cooperative games with unpaid players

Notation. The cardinality of a �nite set S will be denoted by s.

TU-games. A cooperative game with transferable utility (TU-game) is a pair (N,v) where
N ⊆ N is �nite player set and v ∶ 2N Ð→ R is a characteristic function such that v(∅) = 0.
The null game on N is denoted by (N,0N) and is such that 0N(S) = 0 for each S ⊆ N . The

sum of two TU-games (N,v) and (N,w) is the TU-game (N,v +w) such that (v +w)(S) =
v(S) +w(S) for each S ⊆ N . The TU-game (N,v) multiplied by a scalar α ∈ R is the TU-

game (N,αv) such that (αv)(S) = αv(S) for each S ⊆ N . This way, the set of all TU-games

on a �xed player set N of size n can be viewed as a linear subspace of R2n . The Dirac game

induced on N by a nonempty coalition S ⊆ N is the TU-game (N,1S) such that

1S(T ) = 1 if T = S and 1S(T ) = 0 if T /= S.
Obviously, for each TU-game (N,v),

v = ∑
S⊆N,S≠∅ v(S)1S.

The unanimity TU-game on N induced by a nonempty coalition S ⊆ N is the TU-game(N,uS) such that

uS(T ) = 1 if T ⊇ S and uS(T ) = 0 if T /⊇ S.
It is known that each TU-game (N,v) can be linearly decomposed in a unique way into a

weighted sum of the unanimity TU-games (N,uS), S ⊆ N,S /= ∅:
v = ∑

S⊆N,S≠∅∆S(v)uS, (1)

where the coordinate ∆S(v) is called the Harsanyi dividend (Harsanyi, 1959) of coalition S.

A TU-game (N,v) is quasi-additive if its linear decomposition according to the unanimity

games is given by:

v = ∑
i∈N ∆{i}(v)u{i} +∆N(v)uN . (2)

The TU-game (N,v) is additive if ∆N(v) = 0 in the above linear decomposition. Quasi-

additive games are considered in Moulin (1987) (under the name joint venture games) and

van den Brink et al. (2020), among others. For each game (N,v), the subgame induced

by a nonempty coalition S ⊆ N is denoted by (S, v∣S), where v∣S stands for the restriction
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of the original characteristic function to 2S. If no confusion arise, the subgame (S, v∣S) of(N,v) will be denoted by (S, v). The (marginal) contributions of player i ∈ N in (N,v)
are de�ned as:

v(S ∪ {i}) − v(S), ∀S ⊆ N ∖ {i}. (3)

Given a TU-game (N,v), two players i, j ∈ N are equal in (N,v) if
v(S ∪ {i}) = v(S ∪ {j}), ∀S ⊆ N ∖ {i, j}.

A player i ∈ N is null in (N,v) if
v(S ∪ {i}) = v(S), ∀S ⊆ N ∖ {i}.

Remark 1. If i ∈ N is a null player in a game (N,v), then ∆S(v) = 0 for each S ⊆ N such
that S ∋ i.
Values for TU-games. Let G be the set of all TU-games. A value on G is a function f

on G that associates to each TU-game (N,v) ∈ G, a unique payo� vector f(N,v) in RN ,

specifying the payo� of each player i ∈ N for its participation in the TU-game (N,v). For

S ⊆ N , fS(N,v) stands for the sum of the payo�s fi(N,v), i ∈ S.
Here are some usual properties or axioms for a value on a domain G, which we will

invoke in this article.

E�ciency. For each (N,v) ∈G, it holds that:

∑
i∈N fi(N,v) = v(N).

Equal treatment of equal players. For each (N,v) ∈G, and each pair {i, j} ⊆ N of equal

players in (N,v), it holds that:
fi(N,v) = fj(N,v).

Null player axiom. For each (N,v) ∈ G, and each null player i ∈ N in (N,v), it holds
that:

fi(N,v) = 0.
Marginality. For each pair of TU-games (N,v) and (N,w) of G and each i ∈ N such that

its contributions as de�ned in (3) are identical in (N,v) and (N,w), it holds that:
fi(N,v) = fi(N,w).

Additive. The value f on G is additive, that is,

f(N,v +w) = f(N,v) + f(N,w), ∀(N,v), (N,w) ∈G.
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Covariance. For each pair of TU-games (N,v) and (N,w) inG such that (N,w) is additive,
and each α ∈ R, it holds that:

f(N,αv +w) = αf(N,v) + (w({i}))i∈N .
Coalitional strategic equivalence. For each TU-game (N,v) ∈G, each unanimity game(N,uS) ∈G and each α ∈ R, it holds that:

fi(N,v + αuS) = fi(N,v), ∀i ∈ N ∖ S.
Coalitional strategic equivalence, introduced by Chun (1989), is equivalent to Marginal-

ity (see footnotes 3 in van den Brink (2007) and Casajus (2011)).

Balanced contributions. For each TU-game (N,v) ∈G and each pair of players {i, j} ⊆ N ,

it holds that:

fi(N,v) − fi(N ∖ {j}, v) = fj(N,v) − fj(N ∖ {i}, v).
One of the most well-known values for TU-games is the Shapley value Sh (Shapley,

1953). For each TU-game in G, the Shapley value distributes to the players a weighted

average of their contributions as de�ned in (3). Equivalently, the Shapley value distributes

the Harsanyi dividend of each coalition equally among its members:

Shi(N,v) = ∑
S⊆N∖{i}

s!(n − s − 1)!
n!

(v(S ∪ {i}) − v(S)
= ∑

S⊆N ∶S∋i
∆S(v)

s
, ∀(N,v) ∈ G,∀i ∈ N. (4)

Proposition 1 below states three popular axiomatic characterizations of the Shapley value

Sh on G. The �rst one is due to Shapley (1953), the second one is due Myerson (1980) and

the last one can be found in Young (1985).

Proposition 1. The following equivalent characterizations results hold:

1. The Shapley value Sh on G is the only value that satis�es E�ciency, Linearity (or

Additivity), Equal treatment of equals players, and the Null player axiom;

2. The Shapley value Sh on G is the only value that satis�es E�ciency and Balanced

contributions;

3. The Shapley value Sh on G is the only value that satis�es E�ciency, Marginality (or

Coalitional strategic equivalence) and Equal treatment of equal players.
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TU-games with unpaid players. A TU-game with unpaid players is a triple (N,v,B)
where (N,v) is a TU-game in G and B is a partition of N . We consider only two types

of partitions: either B is a bipartition {P,U}, that is U ∪ P = N and U ∩ P = ∅, or B is

the coarsest partition {N}. In the �rst case, the elements of P represent the set of paid

players and the elements of U represent the set of unpaid players. In the second case, all

players are paid players and the TU-game with unpaid players boils down to a TU-game.

For convenience, we sometimes continue to write (N,v,{P,U}) in case U = ∅. Denote by B

the set of such partitions that one can construct from �nite player sets, and let GB be the

set of all such TU-games with unpaid players. By construction G ⊆GB.

A TU-game with unpaid players (N,v,B) of GB is formally equivalent to a game with

a coalition structure.3 A coalitional value for TU-games with a coalition structure is a

value f on GB that associates to each (N,v,B) ∈GB, a unique payo� vector f(N,v,B) in
RN , specifying the payo� of each player i ∈ N for its participation in the TU-game (N,v,B).
When triplets (N,v,B) are viewed as TU-games with unpaid players, a value for TU-

games with unpaid players on GB is a function f on GB which associates to each TU-

game with unpaid players (N,v,{P,U}), the payo� vector f(N,v,{P,U}) in RP , specifying

the payo� of each paid player in P for its participation in (N,v,{P,U}). Equivalently,

f could be viewed as a speci�c coalitional value where the unpaid players receive a null

payo�. In the following, the term coalitional value is used when all participants in the game

can receive a payo�, and the term value is used when the players of U do not receive any

payo�. The objective is therefore to determine fair payo�s for paid players in P , which

requires determining how the contributions of unpaid players in U are distributed among

paid players.

3. A two-step procedure

For TU-games with a coalition structure, Owen (1977) de�nes a two-step procedure.

In the �rst step, the coalitions in the partition B bargain for the value v(N) through a

TU-game on B constructed from (N,v). As a result, each coalition of B receives a payo�;

in the second step, each coalition of B allocates payo�s to its members using a TU-game

on that coalition, which takes into account the payo�s obtained in the �rst step when each

subcoalition of that coalition represents it.

Here we also propose a two-step procedure, but the objective is di�erent. In the �rst

step, the procedure determines the payo�s that members of N can obtain in (N,v,{P,U})
viewed as a TU-game with a coalition structure. The payo� allocation may depend on the

status of members of P relative to members of U or the type of interaction they may have.

3In a TU-game with a coalition structure, the latter may contain more than two elements. Here, the

coalition structure contains at most two elements, P and U . A more general framework could allow the

members of P and U to be partitioned to obtain the coalition structure {P1, . . . , Pk, Uk+1, . . . Um}.
7



For example, if the members of P represent workers and U represents machines, the status

of workers can be considered di�erent from that of machines. If the elements of P represent

skilled employees and U represents unskilled volunteers, a hierarchical relationship may exist

between the members of these two groups, with the former having priority over the appro-

priation of dividends obtained by cooperating. If the members of P represent the o�cial

languages of a jurisdiction and U represents the non-o�cial languages of that jurisdiction,

it is possible that a government whose objective is to rank the o�cial languages of that ju-

risdiction may choose to ignore or minimize the possible e�ects of non-o�cial languages on

communication between citizens of that jurisdiction. The second step determines a transfer

of payo�s from the members of U to the members of P , taking into account the payo�s

obtained in the �rst step.

Formally, a value f on GB is obtained from a two-step procedure, if there exist a

coalitional value f (1) on GB and a value f (2) on G such that:

f(N,v,{P,U}) = f (2)(P, vf(1)), (5)

where (P, vf(1)) ∈ G is a quasi-additive TU-game constructed from the payo�s f (1)(N,v,{P,U})
obtained in the �rst step of the procedure and de�ned as:

vf(1) = ∑
i∈P f

(1)
i (N,v,{P,U})u{i} + f (1)U (N,v,{P,U})uP . (6)

Assume that f (2) satis�es Covariance, then (5) rewrites as:

fi(N,v,{P,U}) = f (1)i (N,v,{P,U}) + f (2)(P, f (1)U (N,v,{P,U})uP ), ∀i ∈ P,
meaning that each player i in P receives the payo� f

(1)
i (N,v,{P,U}) in the �rst step plus the

payo� f
(2)
i (P, f (1)U (N,v,{P,U})uP ) in the second step that represents a transfer of money

from the members of U to the members of P . If, in addition, f (2) is E�cient and satis�es

Equal treatment of equal players, then the transfer is an equal share of the total payo�s

f
(1)
U (N,v,{P,U}) obtained by the members of U at the �rst step:

fi(N,v,{P,U}) = f (1)i (N,v,{P,U}) + f
(1)
U (N,v,{P,U})

p
, ∀i ∈ P.

4. Axioms

In this section, we introduce axioms for values on the domain GB of TU-games with

unpaid players. We begin by restating the axioms of E�ciency, Additivity, and Equal treat-

ment of equals and Balanced contributions adapted to the values of the domain GB. Next,

we introduce variants of the axioms of Equal treatment of equals, Null player, Marginality,

Coalitional strategic equivalence and Balanced contributions. Finally, we introduce two new

axioms for values on GB.
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The �rst axiom states that the worth generated by the cooperation of all players is shared

among the paid players.

E�ciency for paid players. For each (N,v,{P,U}) ∈GB, it holds that

fP (P,U, v) = v(N).
The second axiom extends the axiom of Additivity from G to GB.

Additivity. The value of f is additive on GB:

f(N,v+w,{P,U}) = f(N,v,{U,P})+f(N,w,{U,P}), ∀(N,v,{P,U}), (N,w,{P,U}) ∈GB.

The third axiom is similar to the axiom of Equal treatment of equals for values on G

but restricted to pairs of paid players.

Equal treatment of equal paid players. For each (N,v,{P,U}) ∈ GB and each pair{i, j} ⊆ P of equal paid players in (N,v,{P,U}), it holds that:
fi(N,v,{P,U}) = fj(N,v,{P,U}).

Balanced contributions for paid players. For each (N,v,{P,U}) ∈ GB and each pair{i, j} ⊆ P , it holds that:
fi(N,v,{P,U})−fi(N ∖{j}, v,{P ∖{j}, U}) = fj(N,v,{P,U})−fj(N ∖{i}, v,{P ∖{j}, U}).

Next, we introduce axioms that are variant of well-known axioms.

Weak equal treatment of equal paid players. For each (N,v,{P,U}) ∈GB and each

pair {i, j} ⊆ P of equal paid players in the subgame (P, v), it holds that:
fi(N,v,{P,U}) = fj(N,v,{P,U}).

The next axiom distributes a null payo� to null paid player, provided that all members

of U are also null players.

Null paid player with null unpaid players. For each game (N,v,{P,U}) ∈GB, if i ∈ N
is null in (N,v,{P,U}) and all unpaid players are null in (N,v), it holds that

fi((N,v,{P,U})) = 0.
The following axiom requires that a null paid player gets a null payo� in a situation

where unpaid players are not productive without the collaboration of some paid players.

9



Null paid player with stand-alone unproductive unpaid players. For each (N,v,{P,U}) ∈
GB such that the subgame (U, v) is the null game, and each null paid player i ∈ P in(N,v,{P,U}), it holds that:

fi(N,v,{P,U}) = 0.
Null paid player with stand-alone unproductive unpaid players imposes that a null paid

player gets a zero payo� if, in addition, all unpaid players are null. If all unpaid players are

null in (N,v,{P,U}), then no coalition of unpaid players is productive. The converse im-

plication does not hold: even if all coalitions of unpaid players are unproductive, then these

players may not be null, for instance if they enjoy positive interactions with paid players.

Therefore, Null paid player with stand-alone unproductive unpaid players implies Null paid

player with null unpaid player, but not the way around.

The following axiom adapts Coalition strategic equivalence for values on G and requires

that a paid player should not be a�ected whenever a TU-game with unpaid players is added

in which this player and each unpaid players are null.

Coalitional strategic equivalence for changes of paid players. For each pair of TU-

games with unpaid players (N,v,{P,U}), (N,w,{P,U}) ∈ GB and paid player i ∈ P such

that each j ∈ U ∪ {i} is a null player in (N,w,{P,U}), it holds that:
fi(N,v +w,{P,U}) = fi(N,v,{P,U}).

The next axiom adapts Marginality for values on G by imposing the same condition

both on one paid player and at the same time to each unpaid player.

Marginality with respect to the unpaid players. For each pair of TU-games with

unpaid players (N,v,{P,U}), (N,w,{P,U}) ∈GB, each i ∈ P such that

v(S ∪ {k}) − v(S) = w(S ∪ {k}) −w(S), ∀k ∈ U ∪ {i},∀S ⊆ N ∖ {k},
it holds that:

fi(N,v,{P,U}) = fi(N,w,{P,U}).
The next axiom applies the principle of Balanced contributions in situations where all

unpaid players are null players in the TU-game with unpaid players.

Balanced contributions for paid players with null unpaid players. For each TU-

game with unpaid players (N,v,{P,U}) ∈ GB such that all unpaid players are null in(N,v,{P,U}), and each pair {i, j} ⊆ P , it holds that:
fi(N,v,{P,U})−fi(N ∖{j}, v,{P ∖{j}, U}) = fj(N,v,{P,U})−fj(N ∖{i}, v,{P ∖{j}, U}).
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We conclude this list with two new axioms. The �rst one requires that paid players are

equally a�ected by a change in any coalition involving some unpaid players, ceteris paribus.

The second one requires that if the status of an unpaid player changes so that it is now one

of the paid players, then this change must a�ect each paid player of the original situation

in the same way.

Equal impact of changes in a coalition containing an unpaid player. For any two

TU-games with unpaid players (N,v,{P,U}) ∈ GB and (N,w,{P,U}) ∈ GB such that

v(S) ≠ w(S) for some nonempty S ⊆ N such that S ∩U ≠ ∅ and v(T ) = w(T ) for each other

coalition T ⊆ N , and any pair of paid players {i, j} ⊆ P , it holds that:
fi(N,v,{P,U}) − fi(N,w,{P,U}) = fj(N,v,{P,U}) − fj(N,w,{P,U}).

Equal impact of promoting an unpaid player. For each (N,v,{P,U}) ∈GB, each pair

of paid players {i, j} ⊆ P and each unpaid player k ∈ U , it holds that:
fi(N,v,{P,U})−fi(N,v,{P ∪{k}, U ∖{k}}) = fj(N,v,{P,U})−fj(N,v{P ∪{k}, U ∖{k}}).

Lemma 1 below shows the equivalence Coalition strategic equivalence for changes of paid

players and Marginality with respect to unpaid players.

Lemma 1. Coalition strategic equivalence for changes of paid players is equivalent to

Marginality with respect to unpaid players on GB.

Proof. Let f be a value on GB that satis�es Coalition strategic equivalence for changes

of paid players. Let (N,v,{P,U}), (N,w,{P,U}) ∈ GB as hypothesized, and i ∈ P . Pick

any k ∈ U ∪ {i}. Observe that for each S ⊆ N , S ∋ k, ∆S(v) =∆S(w). Thus, one can write

w = v + ∑
S⊆P∖{i}∆S(w − v)uS.

Because i is a null player in each (N,∆S(w − v)uS), S ⊆ P ∖ {i}, successive applications

of Coalition strategic equivalence for changes of paid players yields that fi(N,v,{P,U}) =
fi(N,w,{P,U}). Therefore, f satis�es Marginality with respect to unpaid players.

To show the converse implication, let f be a value on GB that satis�es Marginality with

respect to unpaid players. Consider (N,v,{P,U}) ∈ GB, i ∈ P and (N,w,{P,U}) ∈ GB

such that each k ∈ U ∪ {i} is null in (N,w,{P,U}). It follows that each k ∈ U ∪ {i} is such
that (v +w)(S ∪ {k}) − (v +w)(S) = v(S ∪ {k}) − v(S).
ByMarginality with respect to unpaid players, one concludes that fi(N,v,{P,U}) = fi(N,v+
w,{P,U}). Therefore f satis�es Coalition strategic equivalence for changes of paid players.

This concludes the proof. ∎
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We conclude this section with a series of remarks on the values constructed from the

two-step procedure and some of the axioms in the above list.

Remark 2. Assume that a value f on GB is de�ned through the two-step procedure (5)-(6).

1. If f (1) and f (2) satisfy E�ciency, then f satis�es E�ciency for paid players.

2. If f (1) and f (2) satisfy Additivity, then f satis�es Additivity.

3. If f (1) and f (2) satisfy Equal treatment of equal players, then f satis�es Equal treatment
of equal paid players.

4. If f (1) satis�es Balanced contributions and the Null player axiom and f (2) satis�es
Covariance, then f satis�es Balanced contributions for paid players with null unpaid
players.

5. If f (1) satis�es the Null player axiom and f (2) satis�es Covariance, then f satis�es
Null paid player with null unpaid players. This comes from the fact that f (2)(P,0P )
is the null payo� vector.

6. If f (1) satis�es Marginality and f (2) satis�es Covariance, then f satis�es Marginality
with respect to the unpaid players. Assume that for (N,v,{P,U}) and (N,w,{P,U})
of GB, paid player i ∈ P and each unpaid player k ∈ U satis�es the condition of
Marginality with respect to the unpaid players. We have that i and each k have the
same contributions in both TU-games with unpaid players. By Marginality applied
to k ∈ U , one gets f

(1)
k (N,v,{P,U}) = f (1)k (N,w,{P,U}) so that f

(1)
U (N,v,{P,U}) =

f
(1)
U (N,w,{P,U}), and by Marginality applied to i ∈ P , it holds that f (1)i (N,v,{P,U}) =
f
(1)
i (N,w,{P,U}). Using the above equalities and Covariance of f (2), one obtains

fi(N,v,{U,P}) = f
(1)
i (N,v,{U,P}) + f (2)(f (1)U (N,v,{U,P})uP )= f
(1)
i (N,w,{U,P}) + f (2)(f (1)U (N,w,{U,P})uP )= fi(N,w,{U,P}),

as desired.

7. We say that f (1) satis�es Partition invariance if f
(1)
i (N,v,{P,U}) is independent of

the partition {P,U}. Assume that f (1) satis�es Partition invariance and f (2) satis�es
Covariance and Equal treatment of equal players. Then f satis�es Equal impact of
promoting an unpaid player. Indeed, by Covariance and Equal treatment of equal
players there is a constant cP such that

fi(N,v,{P,U}) = f (1)i (N,v,{P,U}) + cP , ∀i ∈ P.
The same argument applies when P ∪ {k} and U ∖ {k}, k ∈ U , so that

fi(N,v,{P ∪ {k}, U ∖ k}) = f (1)i (N,v,{P ∪ {k}, U ∖ k}) + cP∪k, ∀i ∈ P.
By Partition invariance,

f
(1)
i (N,v,{P,U}) = f (1)i (N,v,{P ∪ {k}, U ∖ k}),
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so that the di�erence

fi(N,v,{P,U}) − fi(N,v,{P ∪ {k}, U ∖ k}) = cP − cP∪k
does not depend on i ∈ P , as stated.

5. Axiomatic analysis

In this section, we propose di�erent combinations of axioms from the list of axioms

presented in section 4 to arrive at the characterisation of three values de�ned using the

two-step procedure (5)-(6).

Proposition 2.

1. There is at most one value onGB that satis�es E�ciency for paid players and Balanced

contributions for paid players.

2. There is at most one value on GB that satis�es E�ciency for paid players, Addi-

tivity, Equal treatment of equal paid players and Null paid player with stand-alone

unproductive unpaid players.

Proof. Point 1. The proof follows similar arguments as the proof in Myerson (1980) for

values on G, so it is omitted.

Point 2. Pick any value f satisfying the four axioms of the statement of point 2. Because

f satis�es Additivity, from (1), it is enough to show that f(N, cuS,{U,P}) is uniquely

determined for each nonempty S ⊆ N and each scalar c ∈ R. If c = 0, then f(N, cuS,{U,P}) =
0P by Additivity of f . So let c /= 0 and pick any nonempty S ⊆ N . Two cases are considered.

Case (a): S ⊆ U . Note that all paid players are null and so equal players in (N, cuS,{U,P})
and the subgame (S,uS) /= 0S. From E�ciency and Equal treatment of equal paid players,

we get fi(N, cuS,{U,P}) = c/p for each i ∈ P .
Case (b): S ∩ P ≠ ∅. Each i ∈ P ∖ S is a null player in (N, cuS,{U,P}). In addition, for

each T ⊆ U , it holds that (cuS)(T ) = 0 since S ∩ P ≠ ∅, that is the subgame (S,uS) = 0S.

Hence, applying Null paid player with stand-alone unproductive unpaid players yields that

fi(N, cuS,{U,P}) = 0 for each i ∈ P ∖ S. Next, any pair of players in S ∩ P are equal

players in (N, cuS). Thus, E�ciency and Equal treatment of equal paid players imply that

fi(N, cuS,{U,P}) = c/sp for each i ∈ S ∩P , where sp denotes the cardinality of the set S ∩P .
From Case (a)-(b), the proof of point 2 is complete. ∎

Using the procedure (5)-(6), de�ne the P -priority value fP on GB as follows:

fP (N,v,{U,P}) = fP,(2)(P, vfP,(1)(N,v,{U,P})), (7)

13



where fP,(2) = Sh, and
f
P,(1)
i (N,v,{U,P}) = ∑

S⊆N ∶
S∋i

∆S(v)
sp

, ∀i ∈ P, and f
P,(1)
i (N,v,{U,P}) = ∑

S⊆U ∶
S∋i

∆S(v)
s

, ∀i ∈ U,
(8)

where sp denotes the cardinality of the set S ∩ P .
Note that f

P,(1)
i (N,v,{U,P}) = Shi(U, v) for each i ∈ U so that by E�ciency of Sh,

f
P,(1)
U (N,v,{U,P}) = v(U).

Next, using Covariance, Equal treatment of equal players and E�ciency of the Shapley value

in the second step, fP rewrites as:

fP
i (N,v,{U,P}) = Shi(P,∑

i∈P( ∑S⊆N ∶
S∋i

∆S(v)
sp
)u{i} + v(U)uP)

= ∑
S⊆N ∶
S∋i

∆S(v)
sp

+ v(U)
p

, ∀i ∈ P (9)

The P -priority value fP allocates the dividend of each coalition equally among its paid

members and if a coalition contains no paid player, the associated dividend is split equally

among all unpaid players. The interpretation is as follows. In the �rst step, members

of P have priority over members of U in claiming the dividend of a coalition containing

members of P and U . On the other hand, coalitions formed solely by members of U share

the dividends equally among themselves. In other words, cooperation between members of

P and U results in a sharing of dividends among the paid players. In the second step, the

Shapley value is applied to the quasi-additive TU-game on P so that paid players receive

their payo� from the �rst step plus an equal share of the total payo� v(U) obtained by the

members of U in the �rst step.

Proposition 3. The P -priority value fP is the unique value for TU-games with unpaid

players on GB that satis�es (1) E�ciency for paid players and Balanced contributions for

paid players or (2) E�ciency for paid players, Additivity, Equal treatment of equal paid

players and Null paid player with stand-alone unproductive unpaid players.

Proof. By Proposition 2, it su�ces to show the fP satis�es the axioms of points 1 and 2

of the statement of the proposition.

E�ciency for paid players. fP,(1) and fP,(2) are both E�cient values so that fP is

E�cient for paid players by point 1 of Remark 2. To see that fP,(1) is E�cient, note that

the members of P share equally the dividend of each coalition S such that S ∩P /= ∅ so that

they collect in total:

f
P,(1)
P (N,v,{P,U}) = ∑

S⊆N ∶
S∩P /=∅

∆S(v),
14



while the members of U collect in total,

f
P,(1)
U (N,v,{P,U}) = ∑

S⊆N ∶
S⊆U,S/=∅

∆S(v).
It follows that:

f
P,(1)
P (N,v,{P,U}) + fP,(1)

U (N,v,{P,U}) = ∑
S⊆N ∶
S/=∅

∆S = v(N),
as desired.

Balanced contributions for paid players Pick any (N,v,{P,U}) ∈GB and any pair of

distinct paid players {i, j} ⊆ P . We have:4

fP
i (N,v,{P,U}) − fP

i (N ∖ {j}, v,{P ∖ {j}, U}) = ∑
S⊆N ∶

S⊇{i,j}

∆S(v)
sp

+ v(U)
p
− v(U)
p − 1 ,

= fP
j (N,v,{P,U}) − fP

j (N ∖ {i}, v,{P ∖ {i}, U}).
Additivity. fP,(1) and fP,(2) are both additive values so that fP is Additive by point 2 of

Remark 2.

Equal treatment of equal paid players. By expression (9) of fP , fP,(2) = Sh. The result
follows from point 1 of Proposition 1.

Null paid player with stand-alone unproductive unpaid players. It must be clear

that fP,(1) satis�es the Null player axiom. In particular, v(U) = 0 in (N,v,{P,U}) implies

that

vfP,(1)(N,v,{P,U}) = ∑
j∈P f

P,(1)
j (N,v,{P,U})u{i}.

Thus, if i ∈ P is a null player in (N,v,{P,U}), fP,(2)
i (P, v,{P,U}) = f (1)i (N,v,{P,U}) = 0

by Covariance of fP,(2) = Sh. This concludes the proof of Proposition 3. ∎
The next three new combinations of axioms result in at most one value in GB.

Proposition 4.

1. There is at most one value on GB that satis�es E�ciency for paid players, Additivity,

Weak equal treatment of equal paid players and Null paid player with null unpaid

players.

4Note that we can not use point 4 of Remark 2 because fP,(1) do not satisfy Balanced contributions.
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2. There is at most one value on GB that satis�es E�ciency for paid players, Equal im-

pact of changes in a coalition containing an unpaid player and Balanced contributions

for paid players with null unpaid players.

3. There is at most one value on GB that satis�es E�ciency for paid players, Weak

equal treatment of equal paid players, Coalition strategic equivalence for changes of

paid players (or Marginality with respect to unpaid players)5, and Equal impact of

changes in a coalition containing an unpaid player.

Proof. Point 1. Assume there is a value f on GB that satis�es E�ciency for paid

players, Additivity, Equal treatment of restricted equal paid players and Null paid player

with null unpaid players. Because f satis�es Additivity, from (1), it is enough to show that

f(N, cuS,{P,U}) is uniquely determined for all nonempty coalition S ⊆ N and all scalar

c ∈ R. If c = 0, then f(N, cuS,{P,U}) = 0P by Additivity of f . So let c /= 0 and pick any

nonempty coalition S ⊆ N . Two cases are considered.

Case (a): S ∩ U ≠ ∅. All players in P are equal players in (P, cuS). By Weak equal

treatment of equal paid players and E�ciency for paid players f is uniquely determined:

fi(N, cuS,{P,U}) = c

p
, ∀i ∈ P.

Case (b): S ∩U = ∅. Hence, S ⊆ P . Each j ∈ (P ∖S) ∪U is null in (N, cuS,{P,U}) so that
one can apply Null paid player with null unpaid players to get fi(N, cuS,{P,U}) = 0 for

each i ∈ P ∖ S. Because S ⊆ P , any two (paid) players in S are equal in (P, cuS). Invoking
Weak equal treatment of equal paid players and E�ciency for paid players yields

fi(N, cuS,{P,U}) = c

s
, ∀i ∈ P,

so that f is uniquely determined.

From Case (a)-(b), the proof of point 1 is complete.

Point 2. Pick any value f on GB satisfying E�ciency for paid players, Equal impact of

changes in a coalition containing an unpaid player and Balanced contributions for paid play-

ers with null unpaid players. Pick any (N,v,{P,U}) ∈GB. We prove that f(N,v,{P,U})
is uniquely determined by induction on the number δ(v) of coalitions involving some unpaid

players and with a non-zero Harsanyi dividend.

δ(v) = card{S ⊆ N ∶ S ∩U ≠ ∅,∆S(v) ≠ 0}.
5See Lemma 1.
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Initial step: δ(v) = 0. Remark that each player i ∈ U is a null player in (N,v,{P,U}).
Proceeding as in Myerson (1980), Balanced contributions for paid players with null unpaid

players and E�ciency for paid players ensure that f is uniquely determined.

Induction hypothesis: Assume that f(N,v,{P,U}) is uniquely determined for each(N,v,{P,U}) such that δ(v) ≤ k with 0 ≤ k ≤ δ(v) < 2p(2u − 1).
Induction step: δ(v) = k + 1. Choose any S ⊆ N such that S ∩ U ≠ ∅ and ∆S(v) ≠ 0 and

consider any T ⊆ N such that S ⊆ T . Obviously, T ∩U ≠ ∅. From Equal impact of changes in

a coalition containing an unpaid player, for each pair of paid players {i, j} ⊆ P , one obtains:
fi(N,v,{P,U}) − fi(N,v −∆S(v)1T ,{P,U}) = fj(N,v,{P,U}) − fj(N,v −∆S(v)1T ,{P,U})

(10)

Repeating this operation successively for each coalition T such that S ⊆ T and summing

over all the resulting equalities, one gets:

fi(N,v,{P,U})−fi(N,v− ∑
T⊆N ∶
T⊇S

∆S(v)1T ,{P,U}) = fj(N,v,{P,U})−fj(P,U, v− ∑
T⊆N ∶
T⊇S

∆S(v)1T ,{P,U}),
which is equivalent to

fi(N,v,{P,U}) − fi(N,v −∆S(v)uS,{P,U}) = fj(N,v,{P,U}) − fj(N,v −∆S(v)uS,{P,U})
(11)

Since ∆S(v − ∆v(S)uS) = 0 and ∆T (v − ∆v(S)uS) = ∆T (v) for each T /= S, one obtains

δ(v −∆v(S)uS) = δ(v) − 1 = k. Therefore, the induction hypothesis implies that f(N,v −
∆S(v)uS,{P,U}) is uniquely determined. Summing both sides of (11) over all elements j

of P and using E�ciency for paid players, yields

p(fi(N,v,{P,U}) − fi(N,v −∆S(v)uS,{P,U}) = v(N) − (v −∆S(v)uS)(N),
that is,

fi(N,v,{P,U}) = fi(N,v −∆S(v)uS,{P,U}) + ∆S(v)
p

,

which makes fi(N,v,{P,U}) uniquely determined. This completes the induction step.

Point 3. Let f be any value on GB that satis�es E�ciency for paid players, Weak

equal treatment of equal paid players, Coalition strategic equivalence for changes of paid

players, and Equal impact of changes in a coalition containing an unpaid player. As above

one proceeds by induction on δ(v) to prove that f(N,v,{P,U}), (N,v,{P,U}) ∈ GB is

uniquely determined.

Initial step: δ(v) = 0. It holds that v = ∑S⊆P ∆S(v)uS that coincides with (P, v). So

one can proceed as in Chun (1989) to conclude that the combination of E�ciency for paid
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players, Equal treatment for restricted equal paid players, Coalition strategic equivalence

for changes of paid players determines f(N,v,{P,U}) uniquely.
Induction hypothesis: Assume that f(N,v,{P,U}) is uniquely determined for each(N,v,{P,U}) such that δ(v) ≤ k with 0 ≤ k ≤ δ(v) < 2p(2u − 1).
Induction step: The induction step is identical to the induction step of point 2 above and

is not replicated here. ∎
Using the procedure (5)-(6), de�ne the U-priority value fU on GB as follows:

fU(N,v,{U,P}) = fU,(2)(P, vfU,(1)), (12)

where fU,(2) = Sh, and
f
U,(1)
i (N,v,{U,P}) = ∑

S⊆P ∶
S∋i

∆S(v)
s

, ∀i ∈ P, and f
U,(1)
i (N,v,{U,P}) = ∑

S⊆N ∶
S∋i

∆S(v)
su

, ∀i ∈ U,
(13)

where su denotes the cardinality of the set S ∩U .
Note that f

U,(1)
i (N,v,{U,P}) = Shi(P, v) for each i ∈ P so that by E�ciency of Sh,

f
U,(1)
P (N,v,{U,P}) = v(P ).

Next, using Covariance, Equal treatment of equal players and E�ciency of the Sh value in

the second step, fU writes as:

fU
i (N,v,{U,P}) = Shi(P, v) +

(∑i∈U ∑S⊆N ∶
S∋i

∆S(v)
su
)

p
(14)

The U-priority value fU allocates the dividend of each coalition equally among its

unpaid members and if a coalition contains no unpaid player, the associated dividend is

split among all paid players. This is the opposite situation to that described for the P -

priority value fP . In the �rst step, members of U have priority over members of P in

claiming the dividend of a coalition containing members of P and U . On the other hand,

coalitions formed solely by members of P share the dividends equally among themselves. In

other words, cooperation between members of P and U in the �rst step results in a sharing

of dividends among the unpaid players. In the second step, the Shapley value is applied to

the quasi-additive TU-game on P so that paid players receive their payo� from the �rst step

plus an equal share of the total payo� obtained by the members of U in the �rst step. As

for fP,(1), fU,(1) if an E�cient coalitional value so that

∑
i∈U ∑S⊆N ∶

S∋i

∆S(v)
su

= v(N) − v(P ).
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Therefore, the U -priority value fU rewrites as :

fU
i (N,v,{U,P}) = Shi(P, v) + v(N) − v(P )

p
, ∀i ∈ P (15)

This two-step procedure leads to a value that assigns to each paid player its Shapley value

in the subgame (P, v) and shares the incremental contribution of all unpaid players equally

among paid players.

The next result provides three alternative characterizations of the U -priority value.

Proposition 5. The U -priority value fU as de�ned in (15) is the unique value on GD

that satis�es (1) E�ciency for paid players, Additivity, Weak equal treatment of equal paid

players and Null paid player with null unpaid players, (2) E�ciency for paid players, Equal

impact of changes in a coalition containing an unpaid player and Balanced contributions

for paid players with null unpaid players or (3) E�ciency for paid players, Weak equal

treatment of equal paid players, Coalition strategic equivalence for changes of paid players

(or Marginality with respect to unpaid players) and Equal impact of changes in a coalition

containing an unpaid player.

Proof. In view of Proposition 4, it su�ces to show that fU satis�es the axioms contained

in points 1-3 of the statement of the proposition.

E�ciency of paid players, Additivity, Null paid player with null unpaid players:

it su�ces to proceed in a similar way as in the proof of Proposition 3 to conclude.

Weak equal treatment of equal paid players: consider any (N,v,{P,U}) in GB, as-

sume that two players i and j in P are equal players in (P, v). By equal treatment of equal

players of Sh, Shi(P, v) = Shj(P, v) and so by (15), fU
i (N,v,{U,P}) = fU

j (N,v,{U,P}).
Equal impact of changes in a coalition containing an unpaid player: consider

any two TU-games with unpaid players (N,v,{P,U}) and (N,w,{P,U}) ∈ GB such that

v(S) ≠ w(S) for some nonempty S ⊆ N , S ∩U ≠ ∅, and v(T ) = w(T ) for each other coalition

T /= S. Because (P, v) = (P,w), it holds that Shi(P, v) = Shi(P,w) for each i ∈ P . Therefore,
by (15), for each i ∈ P , we have

fU
i (N,v,{P,U}) − fU

i (N,w,{P,U}) = v(N) − v(P )
p

− w(N) −w(P )
p

,

which does not depend on i ∈ P , from which Equal impact of changes in a coalition containing

an unpaid player follows.

Balanced contributions for paid players with null unpaid players: consider any TU-

game with unpaid players (N,v,{P,U}) ∈ GB. If all unpaid players are null players, then
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this implies that v(N) = v(P ) and in turn, for each i ∈ P , that fU
i (N,v,{P,U}) = Shi(P, v).

As a consequence, fU immediately inherits Balanced contributions for paid players with

null unpaid players from the fact that the Shapley value satis�es Balanced contributions

(see point 2 of Proposition 1).

Coalition strategic equivalence for changes of paid players: let (N,v,{P,U}) and(N,w,{P,U}) ∈ GB and i ∈ P be as hypothesized by Coalition strategic equivalence for

changes of paid players. By the de�nition (15) of fU , it holds that:

fU
i (N,v +w,{P,U}) − fU

i (N,v,{P,U}) = Shi(P, v +w) − Shi(P, v) + w(N) −w(P )
p

.

Because player i ∈ P is null in (N,w,{P,U}) by hypothesis, it is also null in (P,w). Thus,
Shi(N,v +w,{P,U}) = Shi(P, v) by Coalitional strategic equivalence of Sh (see point 3 of

Proposition 1). Finally, because each player k ∈ U is null in (N,w,{P,U}) by hypothesis, it

holds that w(N) = w(P ). One concludes that fU
i (N,v +w,{P,U})− fU(N,v,{P,U}) = 0 as

desired. ∎
Finally, one last combination of axioms leads to uniqueness.

Proposition 6. There is at most one value onGB that satis�es E�ciency for paid players,

Equal impact of promoting an unpaid player and Balanced contributions for paid players

with null unpaid players.

Proof. Consider any f on GB satisfying E�ciency for paid players, Equal impact of

promoting an unpaid player and Balanced contributions for paid players with null unpaid

players. We proceed by induction on the cardinality u of U to show that f is uniquely

determined.

Initial step: U is such that u = 0, that is (N,v,{P,U}) reduces to the TU-game (P, v) ∈G,

where P = N . Then, Balanced contributions for paid players with null unpaid players

vacuously reduces to the axiom of Balanced contributions and E�ciency for paid players

reduces to the axiom of E�ciency. From Myerson (1980), conclude that fi(P, v), i ∈ P , is
uniquely determined.

Induction hypothesis: Assume that f(N,v,{P,U}) is uniquely determined for each(N,v,{P,U}) ∈GB such that u ≤ q, where 0 ≤ q < n − 1.
Induction step: Consider any (N,v,{P,U}) ∈ GB such that u = q + 1. Applying Equal

impact of promoting an unpaid player, for each pair {i, j} ⊆ P and each k ∈ U , one obtains
fi(N,v,{P,U})−fj(N,v,{P,U}) = fi(N,v, (P ∪{k}, U ∖{k}})−fj(N,v,{P ∪{k}, U ∖{k}),

(16)
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By the induction hypothesis, note that the right hand side of (16) is uniquely determined.

Summing (16) on j ∈ P and using E�ciency for paid players, one obtains:

pfi(N,v,{P,U})−v(N) = pfi(N,v,{P ∪{k}, U ∖{k}})−(v(N)−fk(N,v,{P ∪{k}, U ∖{k}}),
that is

fi(N,v,{P,U}) − v(N) = fi(N,v,{P ∪ {k}, U ∖ {k}}) + fk(N,v,{P ∪ {k}, U ∖ {k}})
p

,

from which one concludes that f is uniquely determined. ∎
Using the procedure (5)-(6), de�ne the Redistribution value fR on GB as follows:

fR(N,v,{U,P}) = fR,(2)(P, vfR,(1)), (17)

where fR,(2) = Sh, and fR,(1) = Sh, so that

fR
i (N,v,{U,P}) = Shi(N,v,{P,U}) + 1

p
(∑
j∈U Shj(N,v,{P,U})), ∀i ∈ P (18)

Therefore f (1) assigns to each player its Shapley value in the �rst step and f (2) redistributes
the total payo� obtained by U in the �rst step equally among the paid players.

Unlike fP and fU , the �rst step of the procedure treats the members of P in the same

way as the members of U , without establishing a priority relationship between these two

groups. The second step is identical for fP , fU , and fR.

The last result of this section provides a characterization of the Redistribution value.

Proposition 7. The Redistribution value fR is the unique value on GB that satis�es

E�ciency for paid players, Equal impact of promoting an unpaid player and Balanced con-

tributions for paid players with null unpaid players.

Proof. In view of Proposition 6, it su�ces to show that fR satis�es the axioms of the

statement of the proposition. It is obvious that fR satis�es E�ciency for paid players

Balanced contributions for paid players with null unpaid players, given that Sh satis�es

E�ciency, the Null player axiom and Balanced contributions. Equal impact of promoting

an unpaid player follows from point 7 of Remark 2. ∎
Remark that the �nal equation of the proof of Proposition 6 yields a somehow recursive

(w.r.t. the distribution of players between P and U) formula for fR: for each (N,v,{P,U}) ∈
GB, each i ∈ P and each k ∈ U ,

fR
i (N,v,{P,U}) = fR

i (N,v,{P ∪ {k}, U ∖ {k}}) + 1

p
fR
k (N,v,{P ∪ {k}, U ∖ {k}}).
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Our characterizations can be summarized by the following recap chart, in which a �⊕�
symbol means that the axiom is invoked in the corresponding characterization, a �+� symbol
means is satis�ed but not invoked in a characterization and a �−� symbol means that the

axiom is not satis�ed. The number of the corresponding proposition is indicated for the

multiple characterizations of the P -priority and U -priority values.

Axioms
fP fU

fR

P3(1) P3(2) P5(1) P5(2) P5(3)
E�ciency for paid players ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
Additivity + ⊕ ⊕ + + +
Equal treatment of equal paid players + ⊕ − − − +
Equal treatment for restricted equal paid

players
− − ⊕ + ⊕ −

Null paid player with stand-alone unpro-

ductive unpaid players
+ ⊕ − − − −

Null paid player with null unpaid players + + ⊕ + + +
Equal impact of changes in a coalition con-

taining an unpaid player
− − + ⊕ ⊕ −

Balanced contributions for paid players ⊕ + − − − −
Balanced contributions for paid players

with null unpaid players
+ + + ⊕ + ⊕

Equal impact of promoting an unpaid player − − − − − ⊕
Coalition strategic equivalence for changes

of paid players/Marginality with respect to

the unpaid players

+ + + + ⊕ +

6. Additional content

6.1. Formulation as the Shapley value of an alternative reduced games

The quasi-additive TU-games constructed in the second-step of our procedure can be

considered as reduced games on the set of paid players obtained from the original TU-

game with unpaid players and the value f (1).6 In this subsection, we present an alternative

6Reduced games considered here are di�erent from reduced games proposed in the literature on the

axioms of consistency (see Thomson, 2011, for instance). In this literature, the leaving players take payo�s

with them. In our framework, the leaving (unpaid) players get nothing.
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reduced-game approach in which the reduced game does not depend on f (1). We show that

this alternative viewpoint is suitable to compare the P -priority and U -priority values: these

values can be written as the Shapley value of these reduced games.

More speci�cally, from each TU-game with unpaid players (N,v,{P,U}), construct the
reduced game (P, vP ) such that vP (∅) = 0 and for each nonempty S ⊆ P ,

vP (S) = ∑
T⊆S ∑K⊆U ∆T∪K(v) (19)

Equivalently, remark that

vP (S) = v(S) + ∑
T⊆S ∑

K⊆U ∶K≠∅∆T∪K(v), (20)

which leads to the interpretation that vP (S) is v(S) plus a claim by S of all dividends that

its members can create by cooperating with the members of U . The next result proves that

the P -priority value is the Shapley value of this reduced game.

Proposition 8. For each game (N,v,{P,U}), it holds that fP (N,v,{P,U}) = Sh(P, vP ).
As a preliminary result, we start by exhibiting the Harsanyi dividends of (P, vP ).

Lemma 2. For each game (P, vP ) and each nonempty coalition S ⊆ P of cardinality s, it

holds that:

∆S(vP ) =∆S(v) − (−1)sv(U) + ∑
K⊆U ∶K≠∅∆K∪S(v) (21)

Proof. We proceed by induction on the cardinality of coalition S.

Initialization. Assume that s = 1, i.e., S = {i} for some i ∈ P . From (20), we have

∆{i}(vP ) = vP ({i})
= v({i}) + ∑

K⊆U ∶
K≠∅

∆K(v) + ∑
K⊆U ∶
K≠∅

∆K∪{i}(v)
= ∆{i}(v) + v(U) + ∑

K⊆U ∶
K≠∅

∆K∪{i}(v)
= ∆{i}(v) − (−1)1v(U) + ∑

K⊆U ∶
K≠∅

∆K∪{i}(v),
Induction hypothesis. Assume that ∆S(vP ) is given by (21) for all nonempty S ⊆ P

such that s ≤ k, 1 ≤ k < p.
Induction step. Consider any S ⊆ P of cardinality s = k + 1. By de�nition,

∆S(vP ) = vP (S) − ∑
T⊊S∆T (vP ).
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From (20), the induction hypothesis and (21), this equality can be rewritten as

vP (S) = [v(S) + ∑
T⊆S ∑K⊆U ∶

K≠∅
∆K∪T (v)] − ∑

T⊊S [∆T (v) − (−1)tv(U) + ∑
K⊆U ∶
K≠∅

∆K∪T (v)]
= ∆S(v) + ∑

K⊆U ∶
K≠∅

∆K∪S(v) + ∑
T⊊S(−1)tv(U)= ∆S(v) + ∑

K⊆U ∶
K≠∅

∆K∪S(v) + v(U) ∑
T⊆S(−1)t − (−1)sv(U)

= ∆S(v) + ∑
K⊆U ∶
K≠∅

∆K∪S(v) + v(U) s∑
t=0(st)(−1)t − (−1)sv(U)

= ∆S(v) + ∑
K⊆U ∶
K≠∅

∆K∪S(v) − (−1)sv(U),
where the �nal equality comes from the Binomial theorem. This concludes the proof. ∎
Proof. (Proposition 8) For each (N,v,{P,U}) ∈GB and each i ∈ P , we have

Shi(P, vP ) = ∑
S⊆P ∶
S∋i

∆S(vP )
s

.

Using (21) from Lemma 2 and the notation sp for ∣S ∩ P ∣, we have
Shi(P, vP )

= ∑
S⊆P ∶
S∋i

∆S(v)
s
+ ∑

S⊆P ∶
S∋i
∑
K⊆U ∶
K≠∅

∆K∪S(v)
s

− ∑
S⊆P ∶
S∋i
(−1)sv(U)

s

= ∑
S⊆N ∶
S∋i

∆S(v)
sp

− v(U) ∑
S⊆P ∶
S∋i
(−1)s1

s

= ∑
S⊆N ∶
S∋i

∆S(v)
sp

− v(U) p∑
s=1 ∑S⊆P ∶

S∋i,∣S∣=s
(−1)s1

s

= ∑
S⊆N ∶
S∋i

∆S(v)
sp

− v(U) p∑
s=1(p−1s−1)(−1)s1s

= ∑
S⊆N ∶
S∋i

∆S(v)
sp

− v(U) s∑
s=1(ss)(−1)s

1

p

= ∑
S⊆N ∶
S∋i

∆S(v)
sp

− v(U)
p
[ p∑
s=0(ps)(−1)s − (p0)(−1)0]

= ∑
S⊆N ∶
S∋i

∆S(v)
sp

− v(U)
p
[0 − 1]

= ∑
S⊆N ∶
S∋i

∆S(v)
sp

+ v(U)
p

= fP
i (N,v,{P,U}),
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where the seventh equality is once again due to the Binomial theorem. ∎
A similar reduced game, closely related to (20), that leads to fU(N,v,{P,U}) is (P, vU)

where, for each nonempty S ⊆ P ,
vU(S) = v(S) + ∑

T⊆N ∑
K⊆U ∶K≠∅∆T∪K(v).

The only change compared to (20) is that the sum on subsets of S is replaced by the sum on

subsets on N . Remark that the second component of vU(S) is independent of S and can be

rewritten as ∑T⊆N ∆T −∑T⊆P ∆T or, equivalently, as v(N)−v(P ). Hence (P, vU) is the sum
of (P, v) and a constant symmetric TU-game in which the grand coalition P has a worth

equal to v(N) − v(P ), which implies that, for each i ∈ P ,
Shi(P, vU) = Shi(P, v) + v(N) − v(P )

p= fU
i (N,v,{P,U}).

6.2. Relationship with the Priority value

Our three values are already described by a uni�ed procedure in which they all make use

of the Shapley value in the second step. In this subsection, we show more explicitly that

they can also be derived by relying on the Priority value (Béal et al., 2022) for TU-games

with a priority structure in the �rst step for suitable choices of a priority structure between

the elements of P and those of U .

A priority structure on a player set N is a partially ordered set or poset ≽ on N ,

i.e. a re�exive, antisymmetric and transitive binary relation. The relation i ≽ j means that i

has priority over j. The poset (N,≽0) containing no priority relation among pair of distinct

players is called the trivial poset. The subposet (S,≽S) of (N,≽) induced by S is de�ned

as follows: for each i ∈ S and j ∈ S, i ≽S j if i ≽ j. A player i is a priority player in (S,≽) if,
for ∈ S, the relation j ≽ i implies i = j. Denote by M(S,≽) the nonempty subset of priority

players in (S,≽).
The Priority value PV distributes the dividend of each coalition equally among its

priority players:

PVi(N,v,≽) = ∑
S⊆N ∶M(S,≽)∋i

∆S(v)∣M(S,≽)∣ ∀i ∈ N. (22)

The proposition below establishes that fP,(1) is obtained from the Priority value when

the paid players have priority over unpaid players. By reversing all priorities, one gets

fU,(1). Finally, in absence of priority among the players, the Priority value coincides with

the Shapley value, leading to fR,(1).
Proposition 9. For each game (N,v,{P,U}) ∈GB, it holds that
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(i) fP,(1)(N,v,{P,U}) = PV (N,v,≽P ), where ≽P is such that [i ≽P j] ⇐⇒ [i ∈ P, j ∈ U];
(ii) fU,(1)(N,v,{P,U}) = PV (N,v,≽U), where ≽U is such that [j ≽U i] ⇐⇒ [j ∈ U, i ∈ P ];
(iii) fR,(1)(N,v,{P,U}) = PV (N,v,≽0).

The proof of this results follow directly from the de�nitions (8) and (13) of fP,(1) and
fU,(1), the fact that fR,(1) = Sh and Proposition 3 in Béal et al. (2022).

6.3. Logical independence of the axioms

The axioms invoked in the characterization results are logically independent as illustrated

by the following counter-examples:

� The null value de�ned, for each (N,v,{P,U}) ∈GB and each i ∈ N , as f 0
i (N,v,{P,U}) =

0 satis�es:

� Additivity,

� Equal treatment of equal paid players,

� Equal treatment for restricted equal paid players,

� Null paid player with stand-alone unproductive unpaid players,

� Null paid player with null unpaid players,

� Equal impact of changes in a coalition containing an unpaid player,

� Balanced contributions for paid players with null unpaid players,

� Coalition strategic equivalence for changes of paid players,

� Equal impact of promoting an unpaid player

However, f 0 does not satisfy E�ciency for paid players.

� Let γ ∈ RN++. The value fγ de�ned, for each (N,v,{P,U}) ∈GB and each i ∈ P , as
fγ
i (N,v,{P,U}) = ∑

S⊆N
i∈S

γi∑i∈S∖U γj
∆S(v) + v(U)∣P ∣

satis�es:

� E�ciency for paid players,

� Additivity (when γ is exogenous),

� Null paid player with null unpaid players,

� Null paid players with stand-alone unproductive unpaid players,
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� Coalition strategic equivalence for changes of paid players.

However, fγ does not satisfy Equal treatment of equal paid players, Equal treatment of

restricted equal paid players, Balanced contribution for paid players with null unpaid

players. If one consider an endogenous weight system γv with γv
i = v(i)2 + 1 for all

i ∈ N , then the value fγv
satis�es all the previously listed axioms but Additivity.

� Let w ∈ RN++ and consider the corresponding positively weighted Shapley value Shw.

The value fw de�ned, for each (N,v,{P,U}) ∈GB and each i ∈ P , as
fw
i (N,v,{P,U}) = Shw

i (P, v) + v(N) − v(P )∣P ∣ ,

satis�es :

� E�ciency for paid players,

� Additivity (when w is exogenous),

� Null paid player with null unpaid players,

� Equal impact of changes in a coalition containing an unpaid player,

� Coalition strategic equivalence for changes of paid players.

However, fw does not satisfy Equal treatment for equal paid players, nor Equal treat-

ment for restricted equal paid players, nor Balanced contributions for paid players with

null unpaid players, nor Equal impact of promoting an unpaid player. If one consider

an endogenous weight system wv with wv
i = v(i)2 + 1 for all i ∈ N , then the value fwv

satis�es all the previously listed axioms but Additivity.

� The equal division value for paid players de�ned, for each (N,v,{P,U}) ∈ GB and

each i ∈ P , as
fED
i (N,v,{P,U}) = v(N)∣P ∣

satis�es:

� E�ciency for paid players,

� Additivity,

� Equal treatment for restricted equal paid players,

� Equal treatment of equal paid players,

� Equal impact for changes in a coalition containing an unpaid player,

� Equal impact of promoting an unpaid player.
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However, fED does not satisfy Balanced contributions for paid players, Balanced con-

tributions for paid players with null unpaid players, nor Coalition strategic equivalence

for changes of paid players, nor Null paid player with null unpaid player, nor Null paid

player with stand-alone unproductive unpaid players.

7. Conclusion

We believe that there are at least three ways to extend our work.

Firstly, as noted in footnote 3, it is possible to consider more re�ned structures than a

mere bipartition between paid and unpaid players. Subdividing each set into subcategories

would, for instance, make it possible to distinguish di�erent priority relations among paid

and unpaid players, depending on the subgroups to which they belong.

Secondly, this article has focused on extensions of the Shapley value to the framework

of cooperative games with unpaid players. The literature on allocation rules for cooperative

games studies many of types of allocation rules. For instance, more egalitarian values and

their (convex) combinations with the Shapley value have received considerable attention in

recent years. See van den Brink (2007); Ju et al. (2007); Casajus and Huettner (2014) among

others. A natural extension of our work would therefore be to adapt these allocation rules

to our framework.

Thirdly, it would be valuable to examine practical applications. In certain contexts,

the purely marginalistic P -priority value is particularly relevant, whereas in others the more

solidaristic U -priority and Redistribution values appear more appropriate, especially in cases

where resources must be reallocated to reduce inequalities among paid players.

These extensions are left for future work.
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