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Abstract

Space infrastructure and data have become indispensable to humanity at all scales, which is

largely due to the advent of the New Space era, characterized by the creation of large satellite

constellations. Unfortunately, these remarkable developments exacerbate an already pressing

issue: the growing accumulation of space debris. In this article, we propose a dynamic game-

theoretic model showing that this problem can be contained, if an international institution is

created and empowered to levy taxes to finance active debris removal activities.

Keywords: Dynamic games; space debris, large constellations, active debris removal, in-

ternational institution.

1 Introduction

Since its inception in the late 1950s, the space age has never been as advanced as it is today. Every

day, humanity relies on space-based infrastructure and data at local, national, and international

levels. Whether in communications, transportation, agriculture, security, defense, health, environ-

mental monitoring, or other fields, space has become indispensable to science, commerce, and

public policy.

This transformation, often referred to as New Space or Space 2.0, emerged in the early 21st

century, driven by political decisions and public investment, scientific progress, advances in micro-

electronics and satellite miniaturization, reduced launch costs, digital innovation, and private sector

engagement. Once the preserve of a handful of nations and a few large specialized corporations,

∗The authors would like to thank the Centre National d’Etudes Spatiales, France, for its financial support within

project PERSEDS.

1



space has become increasingly accessible: today, only a few countries lack a space policy, and

thousands of private companies are active across the sector.

One of the most striking developments in the space sector, particularly since the 2020s, has been

the emergence and expansion of large-scale projects, mainly in low Earth orbit (LEO), between 100

and 2,000 kilometers in altitude.1 These projects include several large constellations, i.e., groups

of more than 100 satellites operating as an integrated system, to provide high-speed, low-latency

Internet connectivity and global communications coverage.2 Prominent examples include Starlink

(currently about 7,400 satellites, with authorization for up to 42,000), Guowang (expected to com-

prise 13,000 satellites), Kuiper (around 10,000 satellites), and IRIS2 (several hundred LEO and

MEO satellites).3 To grasp the scale of this transformation, it is useful to recall that the major navi-

gation constellations (GPS, GLONASS, Galileo, and BeiDou) each consist of roughly 30 satellites,

and that as of May 2025, there were fewer than 12,000 active satellites in orbit. The magnitude of

this change is also reflected in the rapid increase in annual launch activity: in 2024 alone, a record

250 launches placed more than 2,500 spacecraft into orbit (see Figure 1).

Figure 1: Evolution of number of launches (Liou (2025,p.3))

Unfortunately, these new constellations are emerging in an already alarming context with regard

to space debris.4 Since the dawn of the space age, humans have left debris in orbit, both during

satellite launches and following the end of satellites’ operational lifetimes, particularly in LEO.

This accumulation has led to severe congestion, increasing the likelihood of collisions between

active satellites and existing debris, thereby generating even more fragments. The danger arises,

first, from the extremely high orbital velocities involved—between 6.9 and 7.9 km/s in LEO—

meaning that even debris as small as 1-10 centimeters can completely destroy a satellite and create

additional debris. Second, the persistence of debris in orbit exacerbates the problem: an object at

an altitude of 1,200 kilometers may take up to 4,300 years to naturally re-enter the atmosphere,

whereas debris at 600 kilometers typically deorbits within about 10 years.

In response to this growing threat, major space agencies, governments, and some private op-

erators have sought since the late 1980s to establish guidelines and standards aimed at mitigating

1Liou (2025, p. 5) notes that more than half of the total orbital mass is located in LEO.
2According to IADC (2025a, p. 8), a constellation is “a set of spacecraft operating in a coordinated manner to

create a single large system, often based on a recurring spacecraft design and operating in similar orbits."
3For a detailed overview of large constellations, see GAO (2022) and Académie des Sciences (2024)
4It should be noted that, for the first time, the IADC [2025a] has included a dedicated section on large constellations.
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or eliminating debris generation, e.g., the ESA’s PSS-01-40 policy introduced in 1988. Yet, de-

spite these initiatives, progress has been limited: the overall volume of debris continues to rise,

particularly in LEO, as illustrated in Figure 2.

Figure 2: Changes in LEO environment (Liou (2025, p. 6))

We are interested in this paper by the management of space debris and wish to address two

research questions:

1. Under what conditions, the economic exploitation of space remains profitable?

2. Can satellite operators benefit from coordinating their launching activities?

The first question is related to the so-called Kessler syndrome (Kessler and Cour-Palais (1978),

Kessler (1991)), which predicts that the multiplication of debris beyond a certain level would ren-

der space physically unexploitable. As pointed out by Adilov et al. (2018) an economic Kessler

syndrome can preclude the physical one, that is, the cost induced by these debris would leave firms

with no positive profits. Now, suppose that an international agency is created and responsible for

(i) actively removing debris to keep the stock constant over time, and (ii) levying taxes on satellite

operators to finance its operations. This raises the question of whether the level of taxation required

to implement the policy is compatible with operators maintaining strictly positive profits.

By the virtue of joint optimization, coordinating of strategies (cooperation) leads to a higher to-

tal collective payoff than the sum of noncooperative individual gains. Our second question is meant

to check if the difference is sufficiently high to justify (probably lengthy and costly) negotiations

for designing an agreement between the operators.

Our paper is related to Bernhard et al. (2023), with two notable differences. First, we consider

any number of constellations, rather than at most two operating at approximately the same altitude.

Second, we note that when constellations are launched into orbits with significant eccentricity,

they may interfere with a larger number of similar systems than would occur with quasi-circular

orbits. To capture this possibility, we modify the original model to allow for multiple orbit types to

represent the relative collision frequencies between two constellations.

Our main finding is that the core conclusion of Bernhard et al. (2023) still holds: the difference

between jointly optimal and Nash equilibrium payoffs remains small, as do the differences in the
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associated strategies. Consequently, the incentive to deviate from the collectively optimal solution

is small.

Although the economic analysis of outer space has roots dating back fifty years, with early

contributions by Snow (1975), O’Neill (1977), Sandler and Schulze (1981), and Wihlborg and

Wijkman (1981), it is, as Bongers et al. (2024) observe, still premature to speak of a distinct and

mature field of “space economics.” At present, the most comprehensive overview of the subject is

provided by Weinzierl (2018), while Oltrogge and Christensen (2020) offer a broader perspective

on space governance, and Bongers et al. (2024) present the most detailed literature review. Our

article contributes to the more focused emerging body of work dealing with the financing of space

debris removal through a tax on satellite launches, within a framework of imperfect competition

modeled as a dynamic game. In this regard, beyond Bernhard et al. (2023), the study most closely

related to ours is Guyot and Rouillon (2023) (extending Rouillon (2020)), which analyzes how the

combined use of an ad valorem tax, a launch tax, and a certificate trading system can generate

appropriate incentives to ensure the long-term sustainability of low Earth orbits.

The rest of the paper is organized as follows. Section 2 introduces the model, and Section 3

characterizes and compares the noncooperative and cooperative solutions. Section 4 concludes.

The proofs of the propositions are in the appendix, as the notation of our variables and their orders

of magnitude.

2 Model

2.1 Notation

Our model is meant to be flexible and adaptable to various situations, which comes with the cost

of having a large number of parameters. And to keep our calculations manageable, we need to

introduce further notation as the combinations of native coefficients.

Vector notation For two n-vectors q and r, the notation 〈q, r〉 stands for their inner product:

〈q, r〉 =

n∑
i=1

qiri = qtr .

The notation
∑

i, with no explicit bounds on i will stand for
∑n

i=1, and likewise for
∑

j .

1l stands for the n-vector whose coordinates are all equal to 1 while 1li stands for the n-vector

whose only non-zero coordinate is the i-th one : 1lii = 1 and ∀j 6= i, 1lij = 0. (1li is therefore the i-th
basis vector of Rn.)

For each scalar quantity qi indexed by i ∈ {1, . . . , n}, the letter q stands for the n-vector of the

qi, q
i stands for the n-vector whose only nonzero entry is the i-th: qii = qi, q

i
j = 0 for i 6= j, and qt

and (qi)t respectively denote their transposed.

We will introduce coefficients zi,0 and zi,j related to collision risks. We denote by z0 the n-

vector of the zi0 and zi the n-vector of the zij , j ranging from 1 to n, whose j-th coordinate is

zij .
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Matrix notation Let Z be the symmetric n × n-matrix of the zij , with zero diagonal elements.

We will also use the diagonal matrices

A = diag(ai) , Ψ = diag(ψi) , M = diag(µi) .

Finally, we introduce two sets of symmetric n × n matrices: Y i whose only non-zero entry is

Y i
ii = 1, and Zi with zi in column i and (zi)t in line i:

Zi = zi(1li)t + 1li(zi)t =



0 · · · 0 zi1 0 · · · 0
...

...
...

...
...

0 · · · 0 zi i−1 0 · · · 0
zi1 zi i−1 0 zi i+1 zin
0 · · · 0 zi i+1 0 · · · 0
...

...
...

...
...

0 · · · 0 zin 0 · · · 0


.

Parameters Table 1 gives the list of variables, functions, and parameters

Table 1: Variables, functions, and parameters

si(t) Number of satellites launched by operator i at year t.
xi(t) Number of satellites of operator i aloft at a time t.
y(t) Number of debris aloft at time t, with y (0) = y0
h(t) Number of actively removed debris via ADR the year t.
Ri(xi) = φixi + ψix

2
i /2, revenue function.

Ci(si) = cisi, cost of launching si,with ci > 0.

Ti(xi) = ηixi + ζ iω, tax charged to operator i.
Πi Operator i’s profit.

ηi Tax rate

ζ i Share of the non-attributable costs ω borne by player i, with
∑

i ζ i = 1.

p Unit cost of active debris removal (ADR).

αi Relative rate of debris deorbiting either by natural decay or active deorbiting.

α0 Relative rate of deorbiting including arrivals from higher orbits.

βi Relative rate of on-orbit satellite death.

ν Average number of debris caused by a collision.

µi Half the cost of an evasive maneuver for operator i.
ρ Discount factor.

σ Expected number of satellites launched outside the agreement.

τ “Congestion parameter”:

τz = probability of hitting one among z objects per unit time.

φi Unit yearly value of a satellite aloft in revenue function R(xi).

ψi Coefficient of the term in x2i in the revenue function R(xi).
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2.2 Dynamic model

We consider n large constellations sharing the same altitudes, each with a number xi of satellites,

and y debris in the same altitude interval. These numbers will vary with time according to equations

to be described below.

Collision risk and maneuvers Space debris and collision risks are our main concerns. The fre-

quency of “potential collisions” of n orbital objects of a certain type with m of another type is

modelled by a term à la Lotka-Volterra τ̃nm, and (1/2)τ̃n2 for objects of the same type, where the

τ̃ are parameters to be described now.

The number of collisions of debris with debris will be denoted (1/2)τy2, where τ is a small

parameter (typically of order 10−6 to 10−7). The rate of collisions of xi satellites with y space

debris is τ i0xy. Concerning two constellations of xi and xj satellites respectively, we will assume

that collisions are avoided by Just-in-time Collision Avoidance (JCA) maneuvers. The frequency

of these maneuvers depends on the rate of “potential collisions”, and given by τ ijxixj . The para-

meter τ ij depends on the relative orbital parameters of the two constellations, assuming they share

the same altitudes. These maneuvers are costly, because they expand orbit-keeping propellant, thus

limiting the usual life time of the satellites. If the “cost” of a maneuver for operator i is 2µi, each

collision risk detected, will, on average, cost µi, because only one of the two satellites involved in

the collision risk will maneuver.

We set τ ij = zijτ , and we expect that zij := τ ij/τ is never large. (See below.) Obviously,

∀i 6= 0, zii = 0, and we take the zij = zji as given. But determining a reasonable number for each

of them is a research topic in itself (see, e.g. [12]), which we do not address here. We note however

that we mean here collision risk. Such events are much more frequent than actual collisions in

the absence of maneuvering. If we assume that a maneuver is initiated each time the perceived

probability of collision is larger than a given threshold P0, then the zij for i 6= 0 should be of the

order of 1/P0. Assuming P0 is the same for all combinations, we have rather absorb this coefficient

into the costs µi, to keep zij of the order of a few units.

2.2.1 State dynamics

We adopt an infinite-horizon discrete-time dynamic model. The time step is one year, which is

what it takes to decide, build, and launch a set of satellites. For i ∈ {1, 2, . . . , n}, let xi(t) be the

number of satellites in constellation i, si(t) the number of launched satellites, and y(t) the number

of space debris in the same region of space at time period t. At each time period, we assume the

following:

• A loss of αixi(t) satellites by (passive and active) deorbitation.

• A number of βixi(t) satellites are transformed into space debris by accidental breakdown.

• A loss of α0y debris by natural decay and replenishment by debris decaying from higher

orbits.
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• A loss of τzi0xi(t)y(t) satellites by collisions with space debris, each collision producing ν
new space debris.

• Collisions between satellites of two of the constellations are systematically avoided by JCA.

• A launch of si(t) satellites in that constellation.

• A mean launch of σ satellites by operators not party in the agreement.

Consequently, we have

xi(t+ 1) = (1− αi − βi − τzi0y(t))xi(t) + si(t) , xi(0) = 0 , (1)

y(t+ 1) =

(1− α0)y(t) + 〈β, x〉+ τ

[
(ν − 1)〈z0, x〉+

y(t)

2
(ν − 2)

]
y(t) + σ − h(t), (2)

y(0) = y0 . (3)

As in Bernhard et al. (2023), we assume that the number of debris must remain constant. More

specifically, we impose y (t) = y0, which then leads to

h(t) = −α0y0 + τ(ν−2)
y20
2

+ σ + 〈β + (ν − 1)y0τz
0, x〉,

Letting

ai = 1− αi − βi − τzi0y0 , (4)

ω = −α0y0 + τ(ν − 2)
y20
2

+ σ , (5)

ηi = βi + τzi0(ν − 1)y0 , (6)

where ω is the yearly debris creation that is not attributable to the n players, the state dynamics

become

xi(t+ 1) = aixi(t) + si(t) , or, equivalently, x(t+ 1) = Ax(t) + s(t) , (7)

and

h(t) = ω + 〈η, x〉 . (8)

For the dynamics of x to make sense, the parameter values in (4) must be such that ai > 0 for all i.

2.2.2 Optimization problems

Denote by Ri(xi) Player i’s revenues from the exploitation of a fleet of xi satellites. We assume

that Ri(xi) is given by the following concave function:

Ri(xi) = φixi −
ψi
2
x2i ,
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where φi and ψi are positive parameters. The cost of maneuvering to avoid collisions is defined by

τµi
∑

j zijxj , where τ and µi are positive parameters. Let cisi be the cost of launching si satellites

during one period of time, and Ti(xi) be the contribution of player i to ADR cost given by

Ti(xi) = ηixi + ζ iω,

where the individual shares ζ i of the non-attributable costs satisfy 〈1l, ζ〉 = 1. How the ζ i are

chosen is a classical problem in public good economics, and will not be discussed at this point.

Denoting by p the unit cost of ADR, then Player i’s total discounted profit is then given by

Πi =
∞∑
t=0

ρt

[
Ri(x(t))− cisi − τµi

∑
j

zijxj − pTi(xi(t))
]
, (9)

where ρ ∈ (0, 1) is the common discount factor.

By (7) and (9), we have defined a n-player infinite-horizon discrete-time dynamic game, with

state variable x and one control variable si for each player. To further save on notation, let

bi = φi − pηi = φi − pβi − τzi0p(ν − 1)y0 , (10)

gi = ρφi − (1− ρai)ci , (11)

fi = ρbi − ci(1− ρai) = gi − pρηi . (12)

Letting bi = bi1l
i, ci = ci1l

i, and Qi = ψiY
i + τµiZ

i, Player i’s profit can be rewritten as:

Πi =
∞∑
t=0

ρt
[
〈bi, x〉 − 1

2
〈x,Qix〉 − 〈ci, s〉 − pζ iω

]
. (13)

Further, let

Ū =
∑

µiZ
i = MZ + ZM , Q̄ =

∑
i

Qi = Ψ + τŪ ,

where Ū is the matrix of the uij = (µi + µj)zij . Using the product ψ̄ =
∏
i ψi, we note that

det Q̄ = ψ̄ − τ 2
∑
ij

ψ̄

ψiψj
(µi + µj)

2z2ij +O(τ 3).

As a consequence, and since τ is of the order of 10−6 to 10−7, while the ψi are of the order of 10−3,
the µij and zij of a few units, this determinant is not null, and Q̄ is invertible.

The matrix Ū has all its entries positive. According to the Perron-Frobenius theorem, the spec-

tral radius of the matrix τŪ is of the order of τ ; hence (much) smaller than one. Therefore, the

inverse Q̄−1 may be represented as a series in the powers of τ , allowing one to write:

Q̄ = Ψ + τŪ = (I + τŪΨ−1)Ψ hence Q̄−1 = Ψ−1 − τΨ−1ŪΨ−1 +O(τ 2). (14)

To illustrate, for n = 3 we have

δ = detQ̄ = ψ1ψ2ψ3 − τ 2(ψ1u223 + ψ2u
2
31 + ψ3u

2
12) + 2τ 3u12u23u31 , (15)
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and

Q̄−1 =
1

δ

 ψ2ψ3 0 0
0 ψ3ψ1 0
0 0 ψ1ψ2

 − τ
 0 ψ3u12 ψ2u31

ψ3u12 0 ψ1u23
ψ2u31 ψ1u23 0


+ τ 2

 −u223 u23u31 u12u23
u23u31 −u231 u12u31
u12u23 u12u31 −u212

 .
3 Solutions

In this section, we characterize and compare the jointly optimal solution and Nash equilibrium.

3.1 Joint optimal solution

Let

ξO =
1

ρ
Q̄−1f .

The superscript O stands for (jointly) optimal solution.

Proposition 1 Assuming that all ξOi are non-negative, the jointly optimal satellite launching policy

for i = 1, . . . , n is given by

sOi (xi) = −aixi + ξOi , (16)

and the steady-state value by

xOi∞ = ξOi . (17)

The value function is given by

V O(x) = −1

2
〈x, Q̄x〉+ 〈b+ Atc, x〉+

1

1− ρ

[
1

2ρ
〈f, Q̄−1f〉 − pω

]
. (18)

Proof. See Appendix B.

Let

pN := min
i

gi
ρηi

= min
i

ρφi − (1− ρai)ci
ρηi

. (19)

Proposition 2 A necessary condition for sOi (xi), x
O
i∞, and V O(x) to be nonnegative is to have

p ≤ pN .

Proof. Condition (19) is equivalent to have fi ≥ 0 for all i. Note that all entries of Q̄ are positive.

Therefore, if ξO has also all its coordinates nonnegative, so has the product f = ρQ̄ξO. Hence

fi ≥ 0 for all i is a necessary condition. We may add that if ξO is with non-negative entries and is

not the zero vector, then all the fi are strictly positive.

To give a hint about the satisfaction of the condition (Q̄−1f)i ≥ 0, let us consider a case with 3
symmetric players and assume that f ≥ 0. According to the formulas given above, we obtain the

condition

ψ2 − 4τψµ+ 4τ 2µ2 ≥ 0 ⇔ ψ (ψ − 4τµ) + 4τ 2µ2 ≥ 0.
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A sufficient (not necessary) condition for the above inequality to hold is to have ψ ≥ 4τµ. As the

order of magnitude5 of ψ and τ are 10−3 and 10−7, respectively, and µ < 1, the condition ψ ≥
4τµ is clearly always satisfied with a wide margin. Therefore, in this case, the only constraining

condition is p ≤ pN .

Profitability To investigate the conditions under which space exploitation is profitable under joint

optimization, we consider the case with n symmetric players. Then, the solution is profitable when

the value function evaluated at x = 0 is positive, i.e.,

V O(0) =
1

1− ρ

[
1

2ρ
〈f, Q̄−1f〉 − pω

]
> 0, (20)

which is equivalent to

POn (p) = ρ2η2〈1l, Q̄−11l〉(pN − p)2 − 2ρpω > 0 .

A necessary (not sufficient) condition for the above condition to hold is

〈1l, Q̄−11l〉 > 0 . (21)

We note that POn (pN) = −2ρpω is negative. Therefore, condition (21) suffices to ensure that there

exists a positive pOn such that, for p < pOn , which implies p < pN , the industry is profitable.

Furthermore, using (14), we see that (21) may be written

n

ψ

(
n− 2τ

n− 1

ψ

)
+O(τ 2) > 0 ,

which is always true given the orders of magnitude provided in Appendix A. Hence, in practice, as

long as the condition gi = ρφi − (1 − ρai)ci > 0 is satisfied, the added condition p < pOn suffices

to ensure both the existence and the profitability of the optimal strategies.

3.2 Nash equilibrium

We seek a Nash equilibrium for the profits (13). We need to introduce the matrix Q̃ whose line i is

the line i of Qi. Let

Ũ = MZ , Q̃ = Ψ + τŨ .

We note that

∆ := detQ̃ = ψ̄[1 +O(τ 2/ψ2)],

so that with the orders of magnitude of Appendix A, ∆ > 0 and Q̃ is invertible. In a similar

fashion as we did in the joint optimization case, we may write Q̃ = (I + τŨΨ−1)Ψ and hence

Q̃−1 = Ψ−1 − τΨ−1ŨΨ−1 +O(τ 2).

Let

ξNi =
1

ρ
Q̃−1f .

5See Appendix A.
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Proposition 3 Assuming that all ξNi are non-negative, the unique feedback-Nash satellite launch-

ing equilibrium strategy for i = 1, . . . , n is given by

sNi (xi) = −axi + ξNi , (22)

and the steady-state values by

xNi∞ = ξNi . (23)

The value functions are as follows:

Vi(x) =− 1

2
〈x,Qix〉+ (bi + aici)xi (24)

+
1

ρ(1− ρ)

[
〈f i, Q̃−1f〉 − 1

2
〈Q̃−1f,QiQ̃−1f〉 − ρpζ iω

]
.

Proof. See Appendix B.

As in the joint optimization case, the equilibrium strategy is at each step an “impulse” bringing

the state to its equilibrium value ξN , which is a strong form of turnpike.6

As in the joint optimization case, we have the following

Proposition 4 A necessary condition for sNi (xi), x
N
i∞, and V N(x) to be nonnegative is to have

p ≤ pN .

Proof. Similar to the proof of Proposition 2.

Profitability Again, we consider the profitability in a symmetric setup, i.e., with all zij = 1. The

condition Vi(0) > 0 translates into

PNn (p) := ρ2η2
[
〈1li, Q̃−11l〉 − 1

2
〈Q̃−11l, QiQ̃−11l〉

]
(pN − p)2 − ρ 1

n
ωp > 0 .

We can see that the condition PNn (0) > 0 is more restrictive than condition (21) of the joint opti-

mization problem. In the same fashion, if it is satisfied, there exists a bound pNn < pN and p < pNn
that ensure existence and profitability of the equilibrium strategies.

3.3 Comparison

Now, we compare the steady-state values and the payoffs obtained in the two solutions. Recall that

the numbers of satellites in the steady state are given by

xO∞ = Q̄−1f , xN∞ = Q̃−1f .

Using the first order expansion in powers of τ , we have

xN∞ − xO∞ = τΨ−1(Ū − Ũ)Ψ−1f = τΨ−1ZMΨ−1f +O(τ 2) .

6The turnpike principle in optimal control theory states that the optimal trajectory spends most of its time near a

steady-state solution. The analogy comes from the idea that a traveller takes a turnpike to a highway as soon as possible

after starting their journey and leaving it at the latest moment to reach their final destination.
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The first term is made of positive coefficients, hence has all its coordinates strictly positive, of the

order of τµ/ψ2, i.e., 10−1 to a few units. The remainder is of the order of τ 2/ψ3, i.e., 10−3 at most.

Therefore, the number of satellites per constellation in the long term regime is larger in the case of

the Nash equilibrium, but may be in a insignificant way (if this “theoretical” difference is less than

one).

The dividend of cooperation (DC), measured by the difference between the jointly optimal

solution and Nash equilibrium is defined as follows:

DC = V O(0)−
n∑
i=1

V N
i (0).

Proposition 5 In the symmetric case, if p ≤ pN− so that the Nash equilibrium yields a positive profit

for the players, then the jointly optimal solution is also profitable.

In the general case, the dividend of cooperation is positive and is small (in the order of τ 2).

Proof. See Appendix B.

The two comparative results were also obtained in Bernhard et al. (2023) with two constella-

tions. The reason is due to the fact that the players’ payoffs are lightly coupled.

4 Conclusion

This paper develops a model to study the economic trade-off between expanding the size of mega-

constellations and the resulting loss of profitability due to space congestion, whether arising from

collisions with debris or from interference among coexisting constellations. The model is delib-

erately simple and, as a result, necessarily incomplete. This is the cost of gaining an analytical

framework that can explore policy choices more transparently and more efficiently than repeated

large-scale simulations.

Our goal, however, is a model with enough adjustable parameters to be calibrated for a wide

range of scenarios. In particular, it must accommodate all relevant combinations of orbital regimes.

We also recognize that constellations can interfere in additional ways, notably through radio-

bandwidth spillover. These effects are diverse and technically intricate, and we set them aside

in order to keep the focus on debris and collision risks.

Several limitations follow from these modeling choices. We mention at least five. First, we

treat the xi, si and y as real numbers even though they are integers; conducting the type of analysis

we seek using integer quantities is infeasible, and the approximation seems reasonable when the

populations are large. Second, although our framework allows constellations to differ in their

orbits, we assume that each constellation is internally homogeneous, consisting of a single orbital

population. Modern constellations are typically more heterogeneous. Third, operators generally

deorbit satellites after a prescribed lifetime, but a model tracking the deorbiting of thousands of

individual satellites is intractable. We therefore rely on a constant rate capturing both natural decay

and active disposal. Fourth, the number of debris fragments produced in a collision depends heavily

on the geometry and physical composition of the objects involved. Since capturing that variability

is out of reach, we employ a fixed debris yield ν. Fifth, we adopt a concave economic value

function for constellation size, even though a more realistic representation would be sigmoidal: a

12



single satellite, or even a small handful, yields virtually no economic value. Because the system’s

dynamics are naturally linear, we forgo this realism and keep a non-homogeneous quadratic form

for the sake of analytical tractability.

Despite these simplifications, we hope the model isolates key qualitative insights, and that the

conclusions may guide practical policy choices by operators and strengthen the case for establishing

an international institution responsible for space debris removal.

13



5 Appendix A: Orders of magnitude

As we used first order expansions in the small parameter τ in our derivations, we need to have a

(rough) estimate of the order of magnitude for the other parameters. Table 2 provides the informa-

tion.

.
Table 2: Order of magnitude of the various parameters.

Nature Order Comments

τ Congestion coef. 10−7 Based on literature, e.g., [12], and empirical data.

αi Satellite .3 depends on the altitude of the constellations considered.

decay If we consider that after 5 years, 80% of the satellites have

rate left the orbital altitude used (ignoring the possibility of

periodic raising of it) this leads to αi = .275.

α0 Debris 10−1 Of the same order of αi. May be either positive

decay or negative due to debris decaying from higher orbits.

βi Natural 10−1 A function of the technology involved.

breakdown Arbitrarily estimated as a fraction of αi.
ai Eqn (4) 10−1.
y0 Number 103 Dangerous debris at the altitude considered. Kept

of debris constant via ADR per an international agreement.

ρ Discount .9
φi Satellite revenue 1 Following [3].

ψi Saturation 10−3 − 10−4 If adding a satellite to the constellation i beyond

coefficient the N -th brings no new value, then ψi = φi/N .

µi Half cost < 5 It is the cost of a maneuver times 1/P0.
maneuver by expanding the orbit keeping propellant.

zij Relative .1 – 10 We choose z00 = 1 by definition, and expect that

collision the zij are never more than a few units. (Operators

frequency would not use exceedingly crowded orbits.)

ci Unit 2 – 4 Economic viability of the constellation requires

launch that ci < ρφi/(1− ρai). Another consideration is

cost the time of return on investment in years.

ηi Eqn (6) 10−2 Consequence of above estimations.

ν # debris > 50 Is the least defined of our parameters. We take it

per as a fixed number for lack of a better model.

collision At least 50, possibly several thousands.

ω Eqn (5) 10 Or a few tens. Consequence of other estimations.
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6 Appendix B: Proofs

6.1 Proof of proposition 1

The criterion to be optimized is Π =
∑

i Πi, i.e.:

Π =

∞∑
t=0

ρt
[
−1

2
〈x, Q̄x〉 − 〈c, s〉+ 〈b, x〉 − pω

]
.

We make the informed guess that Bellman’s return function will be of the form

V O(x) = −1

2
〈x, Q̄x〉+ 〈`, x〉+m.

The fact that we succeed in solving Bellman’s equation with such a function will prove our guess

right. It reads

V O(x) = max
s≥0

{
− 1

2
〈x,Qx〉 − 〈c, s〉+ 〈b, x〉 − pω

+ ρ

[
−1

2
〈Ax+ s, Q̄(Ax+ s)〉+ 〈`, Ax+ s〉+m

]}
.

The r.h.s. is strictly concave in s. Differentiating with respect to s and equating to zero, we obtain

sO = −Ax+
1

ρ
Q̄−1(ρ`− c).

Substituting in V O(x) is made easy by the fact that Ax+ s is simple. We find that the square term

in x is as “guessed”, and identifying other coefficients, we find

` = b+ Atc =⇒ ρ`− c = ρb− (I − ρAt)c = f ,

and thus

sO = −Ax+ ξO with ξO =
1

ρ
Q̄−1f ,

and

m =
1

1− ρ

[
1

2ρ
〈f, Q̄−1f〉 − pω

]
.

These formulas coincide with the formulas expanded componentwise in the proposition.

6.2 Proof of proposition 3

We seek an Isaacs Value function of the form

Vi(x) = −1

2
〈x,Qix〉+ 〈`i, x〉+mi .

15



We write Isaacs’ equation in terms of bi = bi1l
i and ci = ci1l

i:

Vi(x) = max
si

{
〈bi, x〉 − 1

2
〈x,Qix〉 − 〈ci, s〉 − pζ iω

+ ρ

[
−1

2
〈Ax+ s,Qi(Ax+ s)〉+ 〈`i, Ax+ s〉+mi

]}
.

The matrix Qi is not positive definite, but the right-hand side above is strictly concave in si, with a

quadratic term −(1/2)ψis
2
i . We will find the maximum over R by differentiating. Let Qii stand for

the line i of Qi. Note that the derivative of 〈s,Qis〉 with respect to si is 2Qiis, and that of 〈QiAx, s〉
is QiiAx. Differentiating all V N

i (x) with respect to si each and equating to zero, we obtain

∂Vi
si

= −cii − ρQiis− ρQiiAx+ ρ`ii = 0 .

Let Q̃ denote the matrix whose line i is Qii. Regrouping these equations in a vector equation yields

ρQ̃s = −ρQ̃Ax+ ρ`i − ci .

Hence, with ρ`i − ci = f̃ i, we have

s = sN = −Ax+
1

ρ
Q̃−1(ρ`i − ci) = −Ax+

1

ρ
Q̃−1f̃ i .

Substitute in Vi, we get

−1

2
〈x,Qix〉+ 〈`i, x〉+mi = 〈bi, x〉 − 1

2
〈x,Qix〉 − 〈ci,−Ax+

1

ρ
Q̃−1f̃ i〉 − pζ iω

− 1

2ρ
〈Q̃−1f̃ i, QiQ̃−1f̃ i〉+ 〈`i, Q̃−1f̃ i〉+ ρmi .

Identifying like powers of x, we get the right term in x2, and

`i = bi + Atci =⇒ `i = (bi + aici)1l
i .

It follows that f̃ i = fi1l
i = f i .

Finally, the terms without x read

(1− ρ)mi =
1

ρ
〈f i, Q̃−1f〉 − 1

2ρ
〈Q̃−1f,QiQ̃−1f〉 − pζ iω .

6.3 Proof of proposition 5

In the symmetric case, we have seen that pNn < pN , which proves the first statement.

The dividend of cooperation in the general case is necessarily positive, the total profit under co-

operation being the maximum of the sum of the profits of the players over all n-uples of admissible

controls, it is larger than the same sum under the Nash equilibrium strategies. To get an order of

magnitude of the difference, we investigate the dividend of cooperation DC:

DC = V O(0)−
n∑
i=1

V N
i (0) .
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We compare the joint optimum profit V O(0) and the sum of the individual profits in the Nash

equilibrium. Let

V O(0) =
1

2ρ(1− ρ)
WO − 2ρωp ,∑

i

V N
i (0) =

1

2ρ(1− ρ)
WN − 2ρωp ,

with

WO = 〈f, Q̄−1f〉,
and, remembering that

∑
i f

i = f and
∑

iQ
i = Q̄, we obtain

WN = 2〈f, Q̃−1f〉 − 〈Q̃−1f, Q̄Q̃−1f〉 = 2〈Q̃−1f, Q̃ Q̃−1f〉 − 〈Q̃−1f, Q̄Q̃−1f〉.

Using the fact that a quadratic form only depends on the symmetric part of the coefficient matrix

leads to

WN = 〈Q̃−1f, (Q̃+ Q̃t)Q̃−1f〉 − 〈Q̃−1f, Q̄Q̃−1f〉 = 〈Q̃−1f, (Q̃+ Q̃t − Q̄)Q̃−1f〉.

Note then that Q̃+ Q̃t − Q̄ = Ψ. Hence

WN = 〈Q̃−1f,ΨQ̃−1f〉

We expand both WO and WN to first order:

WO = 〈f,Ψ−1f〉 − τ〈Ψ−1f, ŪΨ−1f〉+O(τ 2) ,

and

WN = 〈Ψ−1f − τΨ−1ŨΨ−1f,Ψ[Ψ−1f − τΨ−1ŨΨ−1f ]〉+O(τ 2) .

Keeping terms of first order in τ , and noticing that Ũ + Ũ t = Ū , we get

WN = 〈f,Ψ−1f〉 − 2τ〈f,Ψ−1ŨΨ−1f〉+O(τ 2)

= 〈f,Ψ−1f〉 − τ〈f,Ψ−1(Ũ + Ũ t)Ψ−1f〉+O(τ 2) ,

= 〈f,Ψ−1f〉 − τ〈Ψ−1f, ŪΨ−1f〉+O(τ 2) .

Therefore, WO = WN + O(τ 2), i.e., the benefit of cooperation, which is by definition positive, is

of the order of τ 2, and therefore very small.
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