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Since its inception in the late 1950s, the space age has never been as advanced as it is today. Every
day, humanity relies on space-based infrastructure and data at local, national, and international
levels. Whether in communications, transportation, agriculture, security, defense, health, environ-
mental monitoring, or other fields, space has become indispensable to science, commerce, and
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Abstract

Space infrastructure and data have become indispensable to humanity at all scales, which is
largely due to the advent of the New Space era, characterized by the creation of large satellite
constellations. Unfortunately, these remarkable developments exacerbate an already pressing
issue: the growing accumulation of space debris. In this article, we propose a dynamic game-
theoretic model showing that this problem can be contained, if an international institution is
created and empowered to levy taxes to finance active debris removal activities.

Keywords: Dynamic games; space debris, large constellations, active debris removal, in-
ternational institution.

Introduction

public policy.

This transformation, often referred to as New Space or Space 2.0, emerged in the early 21st
century, driven by political decisions and public investment, scientific progress, advances in micro-
electronics and satellite miniaturization, reduced launch costs, digital innovation, and private sector
engagement. Once the preserve of a handful of nations and a few large specialized corporations,
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space has become increasingly accessible: today, only a few countries lack a space policy, and
thousands of private companies are active across the sector.

One of the most striking developments in the space sector, particularly since the 2020s, has been
the emergence and expansion of large-scale projects, mainly in low Earth orbit (LEO), between 100
and 2,000 kilometers in altitude.> These projects include several large constellations, i.e., groups
of more than 100 satellites operating as an integrated system, to provide high-speed, low-latency
Internet connectivity and global communications coverage.? Prominent examples include Starlink
(currently about 7,400 satellites, with authorization for up to 42,000), Guowang (expected to com-
prise 13,000 satellites), Kuiper (around 10,000 satellites), and IRIS? (several hundred LEO and
MEO satellites).® To grasp the scale of this transformation, it is useful to recall that the major navi-
gation constellations (GPS, GLONASS, Galileo, and BeiDou) each consist of roughly 30 satellites,
and that as of May 2025, there were fewer than 12,000 active satellites in orbit. The magnitude of
this change is also reflected in the rapid increase in annual launch activity: in 2024 alone, a record
250 launches placed more than 2,500 spacecraft into orbit (see Figure 1).

Figure 1: Evolution of number of launches (Liou (2025,p.3))
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Unfortunately, these new constellations are emerging in an already alarming context with regard
to space debris.* Since the dawn of the space age, humans have left debris in orbit, both during
satellite launches and following the end of satellites’ operational lifetimes, particularly in LEO.
This accumulation has led to severe congestion, increasing the likelihood of collisions between
active satellites and existing debris, thereby generating even more fragments. The danger arises,
first, from the extremely high orbital velocities involved—Dbetween 6.9 and 7.9 km/s in LEO—
meaning that even debris as small as 1-10 centimeters can completely destroy a satellite and create
additional debris. Second, the persistence of debris in orbit exacerbates the problem: an object at
an altitude of 1,200 kilometers may take up to 4,300 years to naturally re-enter the atmosphere,
whereas debris at 600 kilometers typically deorbits within about 10 years.

In response to this growing threat, major space agencies, governments, and some private op-
erators have sought since the late 1980s to establish guidelines and standards aimed at mitigating

!Liou (2025, p. 5) notes that more than half of the total orbital mass is located in LEO.

2According to IADC (2025a, p. 8), a constellation is “a set of spacecraft operating in a coordinated manner to
create a single large system, often based on a recurring spacecraft design and operating in similar orbits."

3For a detailed overview of large constellations, see GAO (2022) and Académie des Sciences (2024)

41t should be noted that, for the first time, the IADC [2025a] has included a dedicated section on large constellations.
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or eliminating debris generation, e.g., the ESA’s PSS-01-40 policy introduced in 1988. Yet, de-
spite these initiatives, progress has been limited: the overall volume of debris continues to rise,
particularly in LEO, as illustrated in Figure 2.

Figure 2: Changes in LEO environment (Liou (2025, p. 6))
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We are interested in this paper by the management of space debris and wish to address two
research questions:

1. Under what conditions, the economic exploitation of space remains profitable?

2. Can satellite operators benefit from coordinating their launching activities?

The first question is related to the so-called Kessler syndrome (Kessler and Cour-Palais (1978),
Kessler (1991)), which predicts that the multiplication of debris beyond a certain level would ren-
der space physically unexploitable. As pointed out by Adilov et al. (2018) an economic Kessler
syndrome can preclude the physical one, that is, the cost induced by these debris would leave firms
with no positive profits. Now, suppose that an international agency is created and responsible for
(1) actively removing debris to keep the stock constant over time, and (ii) levying taxes on satellite
operators to finance its operations. This raises the question of whether the level of taxation required
to implement the policy is compatible with operators maintaining strictly positive profits.

By the virtue of joint optimization, coordinating of strategies (cooperation) leads to a higher to-
tal collective payoff than the sum of noncooperative individual gains. Our second question is meant
to check if the difference is sufficiently high to justify (probably lengthy and costly) negotiations
for designing an agreement between the operators.

Our paper is related to Bernhard et al. (2023), with two notable differences. First, we consider
any number of constellations, rather than at most two operating at approximately the same altitude.
Second, we note that when constellations are launched into orbits with significant eccentricity,
they may interfere with a larger number of similar systems than would occur with quasi-circular
orbits. To capture this possibility, we modify the original model to allow for multiple orbit types to
represent the relative collision frequencies between two constellations.

Our main finding is that the core conclusion of Bernhard et al. (2023) still holds: the difference
between jointly optimal and Nash equilibrium payoffs remains small, as do the differences in the



associated strategies. Consequently, the incentive to deviate from the collectively optimal solution
is small.

Although the economic analysis of outer space has roots dating back fifty years, with early
contributions by Snow (1975), O’Neill (1977), Sandler and Schulze (1981), and Wihlborg and
Wijkman (1981), it is, as Bongers et al. (2024) observe, still premature to speak of a distinct and
mature field of “space economics.” At present, the most comprehensive overview of the subject is
provided by Weinzierl (2018), while Oltrogge and Christensen (2020) offer a broader perspective
on space governance, and Bongers et al. (2024) present the most detailed literature review. Our
article contributes to the more focused emerging body of work dealing with the financing of space
debris removal through a tax on satellite launches, within a framework of imperfect competition
modeled as a dynamic game. In this regard, beyond Bernhard et al. (2023), the study most closely
related to ours is Guyot and Rouillon (2023) (extending Rouillon (2020)), which analyzes how the
combined use of an ad valorem tax, a launch tax, and a certificate trading system can generate
appropriate incentives to ensure the long-term sustainability of low Earth orbits.

The rest of the paper is organized as follows. Section 2 introduces the model, and Section 3
characterizes and compares the noncooperative and cooperative solutions. Section 4 concludes.
The proofs of the propositions are in the appendix, as the notation of our variables and their orders
of magnitude.

2 Model

2.1 Notation

Our model is meant to be flexible and adaptable to various situations, which comes with the cost
of having a large number of parameters. And to keep our calculations manageable, we need to
introduce further notation as the combinations of native coefficients.

Vector notation For two n-vectors ¢ and r, the notation (g, r) stands for their inner product:
(g,7) =Y qiri =q'r.
=1

The notation ) _,, with no explicit bounds on 7 will stand for > 7" |, and likewise for 3.

1 stands for the n-vector whose coordinates are all equal to 1 while 1¢ stands for the n-vector
whose only non-zero coordinate is the i-th one : 1; = 1 and V;j # 4, I} = 0. (1" is therefore the i-th
basis vector of R™.)

For each scalar quantity ¢; indexed by i € {1,...,n}, the letter ¢ stands for the n-vector of the
4, ¢' stands for the n-vector whose only nonzero entry is the i-th: ¢} = ¢;, ¢ = 0 fori # j, and ¢'
and (¢*)" respectively denote their transposed.

We will introduce coefficients z; o and z; ; related to collision risks. We denote by z° the n-
vector of the z;, and 2’ the n-vector of the z;;, j ranging from 1 to n, whose j-th coordinate is
Zij-



Matrix notation Let Z be the symmetric n x n-matrix of the z;;, with zero diagonal elements.
We will also use the diagonal matrices

A=diag(a), V=diag(t,), M = diag(y,).

Finally, we introduce two sets of symmetric n x n matrices: Y whose only non-zero entry is
Y: =1, and Z* with 2% in column i and (2%)" in line i:

0 --- 0 Zi 0o --- 0
Z' =21+ 1) = | za Ziict 0 Zii Zin
0 -~ 0 21 0 - 0
0 --- 0 Zim 0o --- 0

Parameters Table 1 gives the list of variables, functions, and parameters

Table 1: Variables, functions, and parameters

si(t) | Number of satellites launched by operator i at year ¢.
x;(t) | Number of satellites of operator 7 aloft at a time ¢.
y(t) Number of debris aloft at time ¢, with y (0) = yo
h(t) Number of actively removed debris via ADR the year ¢.
Ri(x;) | = ¢;m; + 1,27 /2, revenue function.
Ci(si) | = ¢s;, cost of launching s;,with ¢; > 0.
Ti(z;) | = m;x; + (;w, tax charged to operator i.
I1; Operator ¢’s profit.
n; Tax rate
¢; Share of the non-attributable costs w borne by player ¢, with ). ¢, = 1.
P Unit cost of active debris removal (ADR).
a; Relative rate of debris deorbiting either by natural decay or active deorbiting.
Qg Relative rate of deorbiting including arrivals from higher orbits.
B Relative rate of on-orbit satellite death.
v Average number of debris caused by a collision.
1 Half the cost of an evasive maneuver for operator ;.
p Discount factor.
o Expected number of satellites launched outside the agreement.
T “Congestion parameter”:

7z = probability of hitting one among z objects per unit time.
o; Unit yearly value of a satellite aloft in revenue function R(z;).
W, Coefficient of the term in z? in the revenue function R(z;).




2.2 Dynamic model

We consider n large constellations sharing the same altitudes, each with a number z; of satellites,
and y debris in the same altitude interval. These numbers will vary with time according to equations
to be described below.

Collision risk and maneuvers Space debris and collision risks are our main concerns. The fre-
quency of “potential collisions” of n orbital objects of a certain type with m of another type is
modelled by a term a la Lotka-Volterra 7nm, and (1/2)7n? for objects of the same type, where the
7 are parameters to be described now.

The number of collisions of debris with debris will be denoted (1/2)7y?, where 7 is a small
parameter (typically of order 10-¢ to 10~7). The rate of collisions of x; satellites with y space
debris is 7,0zy. Concerning two constellations of x; and x; satellites respectively, we will assume
that collisions are avoided by Just-in-time Collision Avoidance (JCA) maneuvers. The frequency
of these maneuvers depends on the rate of “potential collisions”, and given by 7;;x;z,. The para-
meter 7,; depends on the relative orbital parameters of the two constellations, assuming they share
the same altitudes. These maneuvers are costly, because they expand orbit-keeping propellant, thus
limiting the usual life time of the satellites. If the “cost” of a maneuver for operator i is 2y, each
collision risk detected, will, on average, cost 1, because only one of the two satellites involved in
the collision risk will maneuver.

We set 7,; = z;7, and we expect that z;; := 7;;/7 is never large. (See below.) Obviously,
Vi # 0, z;; = 0, and we take the z;; = z;; as given. But determining a reasonable number for each
of them is a research topic in itself (see, e.g. [12]), which we do not address here. We note however
that we mean here collision risk. Such events are much more frequent than actual collisions in
the absence of maneuvering. If we assume that a maneuver is initiated each time the perceived
probability of collision is larger than a given threshold F;, then the z;; for ¢ # 0 should be of the
order of 1/ P,. Assuming F, is the same for all combinations, we have rather absorb this coefficient
into the costs 4, to keep z;; of the order of a few units.

2.2.1 State dynamics

We adopt an infinite-horizon discrete-time dynamic model. The time step is one year, which is
what it takes to decide, build, and launch a set of satellites. Fori € {1,2,...,n}, let z;(¢) be the
number of satellites in constellation i, s;(¢) the number of launched satellites, and y(¢) the number
of space debris in the same region of space at time period ¢. At each time period, we assume the
following:

e A loss of o;x;(t) satellites by (passive and active) deorbitation.
e A number of 3,x;(t) satellites are transformed into space debris by accidental breakdown.

e A loss of agy debris by natural decay and replenishment by debris decaying from higher
orbits.



A loss of Tzz;(t)y(t) satellites by collisions with space debris, each collision producing v
new space debris.

Collisions between satellites of two of the constellations are systematically avoided by JCA.

A launch of s;(t) satellites in that constellation.

A mean launch of ¢ satellites by operators not party in the agreement.

Consequently, we have

ri(t+1)=(1—a; — B, — zioy(t))x;(t) + s;(t), 2;(0) =0, (1)
yt+1) =

(1 aot) + (8.0 + 7| - 000 + 2w )y 4o - b, @
y(0) =yo. €©)

As in Bernhard et al. (2023), we assume that the number of debris must remain constant. More
specifically, we impose y () = yo, which then leads to

h(t) = —agyo + T(V—2)%§ +o+ B+ (v— 1yt 1),
Letting
ai=1—0; —B; — TZoYo, (4)
w——a0y0+7'(y—2)%(2)+0, (5)
n, = B; + Tzi0(v — Dyo, (6)

where w is the yearly debris creation that is not attributable to the n players, the state dynamics
become

zi(t + 1) = a;x;(t) + s;(t), or, equivalently, z(t+ 1) = Ax(t) + s(t), (7

and
h(t) =w+ (n,z). (8)

For the dynamics of x to make sense, the parameter values in (4) must be such that a; > 0 for all s.

2.2.2 Optimization problems

Denote by R;(z;) Player i’s revenues from the exploitation of a fleet of z; satellites. We assume
that R;(x;) is given by the following concave function:
Vi

Ri(x;) = ¢;x; — 3 %0



where ¢, and ), are positive parameters. The cost of maneuvering to avoid collisions is defined by
Ty Y %ijrj, Where 7 and p; are positive parameters. Let c;s; be the cost of launching s; satellites
during one period of time, and 7;(z;) be the contribution of player i to ADR cost given by

Ti(z;) = mw; + G,

where the individual shares ¢, of the non-attributable costs satisfy (1,¢{) = 1. How the (; are
chosen is a classical problem in public good economics, and will not be discussed at this point.
Denoting by p the unit cost of ADR, then Player i’s total discounted profit is then given by

J

L= o | Rila(t) — cisi — 7, > 2y — pTilai(t)) | ©)
t=0

where p € (0, 1) is the common discount factor.
By (7) and (9), we have defined a n-player infinite-horizon discrete-time dynamic game, with
state variable = and one control variable s; for each player. To further save on notation, let

bi = ¢; —pn; = ¢ — PP — TZziop(v — 1)y (10)
9i = po; — (1 - Pai)cm (11)
fi = pbi — ci(1 = pa;) = g; — ppn; . (12)

Letting ' = b; 1%, ¢ = ¢; 1%, and Q" = ¢, Y" + Tu, Z*, Player i’s profit can be rewritten as:
> ‘ 1 , ‘
II;, = t[b’w——x, ‘ry — (', s) — iw]. 13
;p<>2<cz><>p< (13)

Further, let B 4 B ' B
U=> wZ =MZ+ZM, Q=> Q=V+7U,

where U is the matrix of the u;; = (u; + 11;) 2. Using the product ¥ =TI, ¥;, we note that

detQ=v —77) v (1 + 1y)°20 + O(7°).
= Viv;

As a consequence, and since 7 is of the order of 1076 to 10~7, while the 1, are of the order of 1073,
the y;; and z;; of a few units, this determinant is not null, and Q is invertible.

The matrix U has all its entries positive. According to the Perron-Frobenius theorem, the spec-
tral radius of the matrix 7U is of the order of 7; hence (much) smaller than one. Therefore, the
inverse Q' may be represented as a series in the powers of 7, allowing one to write:

Q=V+70=I+70VH¥ hence Q'=0"'—70 UV +0O(%). (14
To illustrate, for n = 3 we have

§ = detQ = Vyhyths — T2 (Vg uds + Vousy + Vsuly) + 27%urussus; (15)



and

~ 1 Yoy 0 0 0 Yyurz  Pous:
Q_l = 5 0 VY3thy 0 — 7| Ysur2 0 Yy ug3
0 0 Y11y VYousr  Pyugs 0
—U§3 U23U3zl U2U23
+ 72| ugzusm —u§1 U12U31
Ui2U23  U12U31 _U%Q

3 Solutions

In this section, we characterize and compare the jointly optimal solution and Nash equilibrium.

3.1 Joint optimal solution
Let I
€ =207
P
The superscript O stands for (jointly) optimal solution.

Proposition 1 Assuming that all ¢ are non-negative, the jointly optimal satellite launching policy
fori =1,... nisgiven by

s9(2;) = —aim; + £, (16)

and the steady-state value by
20, = €9 (17)

The value function is given by
VO(w) = — (e, Qu) + (b+ Alesa) + —— | (£.Q7) — pw (18)

2 ? 9 1 _ p 2,0 Y *
Proof. See Appendix B. ]
Let )
pY := min Ji _ min poi = (1= ,oai)c,“ (19)
vy g PN

Proposition 2 A necessary condition for s (x;), 2% , and V°(z) to be nonnegative is to have
p <p".

Proof. Condition (19) is equivalent to have f; > 0 for all . Note that all entries of @ are positive.
Therefore, if £© has also all its coordinates nonnegative, so has the product f = pQ¢°. Hence
f; > 0 for all i is a necessary condition. We may add that if £ is with non-negative entries and is
not the zero vector, then all the f; are strictly positive. |

To give a hint about the satisfaction of the condition (Q~!f); > 0, let us consider a case with 3
symmetric players and assume that f > 0. According to the formulas given above, we obtain the
condition

VP — A+ A% >0 e (Y — drp) + 4772 > 0.

9



A sufficient (not necessary) condition for the above inequality to hold is to have i) > 47u. As the
order of magnitude® of ¢y and 7 are 103 and 10~7, respectively, and i < 1, the condition ) >
47 is clearly always satisfied with a wide margin. Therefore, in this case, the only constraining
condition is p < p".

Profitability To investigate the conditions under which space exploitation is profitable under joint
optimization, we consider the case with n symmetric players. Then, the solution is profitable when
the value function evaluated at = = 0 is positive, i.e.,

VO(O) L

1 ~_
1, %(ﬂQ L) = pw| >0, (20)

which is equivalent to
Py () = P (1,Q 1) (p" — p)* = 2ppw > 0.
A necessary (not sufficient) condition for the above condition to hold is
(1,Q7'1) > 0. (21)

We note that P9 (p") = —2ppw is negative. Therefore, condition (21) suffices to ensure that there
exists a positive p? such that, for p < p?, which implies p < p”, the industry is profitable.
Furthermore, using (14), we see that (21) may be written

%(n—%'nl;l) +0(?) >0,

which is always true given the orders of magnitude provided in Appendix A. Hence, in practice, as
long as the condition g; = p¢;, — (1 — pa;)c; > 0 is satisfied, the added condition p < p@ suffices
to ensure both the existence and the profitability of the optimal strategies.

3.2 Nash equilibrium

We seek a Nash equilibrium for the profits (13). We need to introduce the matrix @ whose line i is
the line 7 of Q. Let N N
U=MZ7, Q=VY+71U.

We note that ~
A = detQ = P[1 + O(72/?)],

so that with the orders of magnitude of Appendix A, A > 0 agd @ is inveLtibIe. In a similar
fashion as we did in the joint optimization case, we may write Q = (I + 7U¥~1)¥ and hence
Q' =Ul - rUTITU + O(2).

Let

5See Appendix A.
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Proposition 3 Assuming that all £ are non-negative, the unique feedback-Nash satellite launch-
ing equilibrium strategy for i = 1,...,n is given by

s () = —am; + &, (22)
and the steady-state values by
Tioe = &i' - (23)
The value functions are as follows:
1 .
Vi(z) = — §<x7 Q'x) + (bi + aic;); (24)
1 . 1 ~ .
+—— ([ Q7) = Q7 f,Q Q) — ppC,w
T | 3@ Q07T —
Proof. See Appendix B. |

As in the joint optimization case, the equilibrium strategy is at each step an “impulse” bringing
the state to its equilibrium value &%, which is a strong form of turnpike.®
As in the joint optimization case, we have the following

Proposition 4 A necessary condition for sV (z;),zY_, and V¥ (z) to be nonnegative is to have
p <p".

Proof. Similar to the proof of Proposition 2. ]

Profitability Again, we consider the profitability in a symmetric setup, i.e., with all z;; = 1. The
condition V;(0) > 0 translates into

PY() =t [(K,G7) ~ L@ QO | (0 — 9~ pp > 0.

We can see that the condition P2V(0) > 0 is more restrictive than condition (21) of the joint opti-
mization problem. In the same fashion, if it is satisfied, there exists a bound p?¥ < p» and p < p¥
that ensure existence and profitability of the equilibrium strategies.

3.3 Comparison

Now, we compare the steady-state values and the payoffs obtained in the two solutions. Recall that
the numbers of satellites in the steady state are given by

e =Q7'f, al=Q7'f.
Using the first order expansion in powers of 7, we have

o —aQ =7U N O - U)U f =70 ZMU ' f +O(r2).

o0 [e 9]

The turnpike principle in optimal control theory states that the optimal trajectory spends most of its time near a
steady-state solution. The analogy comes from the idea that a traveller takes a turnpike to a highway as soon as possible
after starting their journey and leaving it at the latest moment to reach their final destination.
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The first term is made of positive coefficients, hence has all its coordinates strictly positive, of the
order of 711/¢%, i.e., 107! to a few units. The remainder is of the order of 72/v%, i.e., 10~ at most.
Therefore, the number of satellites per constellation in the long term regime is larger in the case of
the Nash equilibrium, but may be in a insignificant way (if this “theoretical” difference is less than
one).

The dividend of cooperation (DC'), measured by the difference between the jointly optimal
solution and Nash equilibrium is defined as follows:

DC =V°(0) —zn: VN (0).

Proposition 5 In the symmetric case, if p < p" so that the Nash equilibrium yields a positive profit
for the players, then the jointly optimal solution is also profitable.
In the general case, the dividend of cooperation is positive and is small (in the order of 72).

Proof. See Appendix B. ]
The two comparative results were also obtained in Bernhard et al. (2023) with two constella-
tions. The reason is due to the fact that the players’ payoffs are lightly coupled.

4 Conclusion

This paper develops a model to study the economic trade-off between expanding the size of mega-
constellations and the resulting loss of profitability due to space congestion, whether arising from
collisions with debris or from interference among coexisting constellations. The model is delib-
erately simple and, as a result, necessarily incomplete. This is the cost of gaining an analytical
framework that can explore policy choices more transparently and more efficiently than repeated
large-scale simulations.

Our goal, however, is a model with enough adjustable parameters to be calibrated for a wide
range of scenarios. In particular, it must accommodate all relevant combinations of orbital regimes.
We also recognize that constellations can interfere in additional ways, notably through radio-
bandwidth spillover. These effects are diverse and technically intricate, and we set them aside
in order to keep the focus on debris and collision risks.

Several limitations follow from these modeling choices. We mention at least five. First, we
treat the z;, s; and y as real numbers even though they are integers; conducting the type of analysis
we seek using integer quantities is infeasible, and the approximation seems reasonable when the
populations are large. Second, although our framework allows constellations to differ in their
orbits, we assume that each constellation is internally homogeneous, consisting of a single orbital
population. Modern constellations are typically more heterogeneous. Third, operators generally
deorbit satellites after a prescribed lifetime, but a model tracking the deorbiting of thousands of
individual satellites is intractable. We therefore rely on a constant rate capturing both natural decay
and active disposal. Fourth, the number of debris fragments produced in a collision depends heavily
on the geometry and physical composition of the objects involved. Since capturing that variability
is out of reach, we employ a fixed debris yield v. Fifth, we adopt a concave economic value
function for constellation size, even though a more realistic representation would be sigmoidal: a

12



single satellite, or even a small handful, yields virtually no economic value. Because the system’s
dynamics are naturally linear, we forgo this realism and keep a non-homogeneous quadratic form
for the sake of analytical tractability.

Despite these simplifications, we hope the model isolates key qualitative insights, and that the
conclusions may guide practical policy choices by operators and strengthen the case for establishing
an international institution responsible for space debris removal.
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5 Appendix A: Orders of magnitude

As we used first order expansions in the small parameter 7 in our derivations, we need to have a
(rough) estimate of the order of magnitude for the other parameters. Table 2 provides the informa-
tion.

Table 2: Order of magnitude of the various parameters.

Nature Order Comments

7 Congestion coef. 1077 Based on literature, e.g., [12], and empirical data.

o; Satellite 3 depends on the altitude of the constellations considered.
decay If we consider that after 5 years, 80% of the satellites have
rate left the orbital altitude used (ignoring the possibility of

periodic raising of it) this leads to «; = .275.

oo Debris 107t Of the same order of «;. May be either positive
decay or negative due to debris decaying from higher orbits.

B; Natural 1071 A function of the technology involved.
breakdown Arbitrarily estimated as a fraction of «;.

a; Eqn(4) 1071

yo Number 103 Dangerous debris at the altitude considered. Kept
of debris constant via ADR per an international agreement.

p  Discount 9

¢, Satellite revenue 1 Following [3].

v, Saturation 1072 — 10~* If adding a satellite to the constellation i beyond
coefficient the N-th brings no new value, then ¢, = ¢,/N.

u; Half cost <5 It is the cost of a maneuver times 1/ F.
maneuver by expanding the orbit keeping propellant.

zi; Relative .1-10 We choose zgq = 1 by definition, and expect that
collision the z;; are never more than a few units. (Operators
frequency would not use exceedingly crowded orbits.)

¢;  Unit 2-4 Economic viability of the constellation requires
launch that ¢; < p¢,/(1 — pa;). Another consideration is
cost the time of return on investment in years.

n;, Eqn (6) 1072 Consequence of above estimations.

v #debris > 50 Is the least defined of our parameters. We take it
per as a fixed number for lack of a better model.
collision At least 50, possibly several thousands.

w Egn (5) 10 Or a few tens. Consequence of other estimations.
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6 Appendix B: Proofs

6.1 Proof of proposition 1
The criterion to be optimized is IT =}, I1;, i.e.:

=30t =000 — (o) + (0.0} — o

t=0
We make the informed guess that Bellman’s return function will be of the form
O 1 e
V& (z) = —§(x,Qx> + ) +m.

The fact that we succeed in solving Bellman’s equation with such a function will prove our guess
right. It reads

VO (r) = max{ — %(m,@x) —{c,8) + (b, z) — pw

s>0

1 _
+p [—§<Ax +5,Q(Ax +5)) + (¢, Ax + s) + m} }
The r.h.s. is strictly concave in s. Differentiating with respect to s and equating to zero, we obtain
1_
s = —Az+-Q pl - ¢).
P

Substituting in V¢ (x) is made easy by the fact that Az + s is simple. We find that the square term
in z is as “guessed”, and identifying other coefficients, we find

(=b+Ac = pl—c=pb— (I —pAc=Ff,

and thus

sO=—Az+¢9 with € =-Q7'f,

N

and . .
m=i_, 2—p<f,Q71f>—Pw :

These formulas coincide with the formulas expanded componentwise in the proposition.

6.2 Proof of proposition 3

We seek an Isaacs Value function of the form

Vi(z) = —%(x,@%) + (0 x) +m".

15



We write Isaacs’ equation in terms of ' = b;1° and ¢! = ¢; 1%

Si

Vi) = o] (0,2) = 30, Q') — () ~ G
+p {—%(Ax + 8, Q" (Ax + 8)) + (I, Az + s) + ml} }

The matrix Q¢ is not positive definite, but the right-hand side above is strictly concave in s;, with a
quadratic term —(1/2),s?. We will find the maximum over R by differentiating. Let Q! stand for
the line i of . Note that the derivative of (s, Q's) with respect to s; is 2Q’s, and that of (Q? Az, s)
is Q! Ax. Differentiating all V;" () with respect to s; each and equating to zero, we obtain

oV

i

= —¢; — pQis — pQiAz + pl; = 0.
Let Q denote the matrix whose line i is Q'. Regrouping these equations in a vector equation yields
pés = —p@Ax + plt — ",
Hence, with pfi — ¢ = f', we have
1~ . , 1~ o -
s=s"=—Av+-Q7'(pl' — ) = —Av + -Q"'f".
p p
Substitute in V;, we get

—%(x, Q'z) + (') +m' = (b, z) — %(x, Q'z) — (¢', —Ax + %@1]&) — pC,w
- 2—2(@‘% QQ ')+ (€. Q7 f) +pm'.
Identifying like powers of =, we get the right term in 22, and
0=b+ A = "= (b + aic;)1".
It follows that i = f;,1/ = fi.
Finally, the terms without x read

i_l i - _i A— i~— .
(L= g’ = (F.Q7 ) = 5@ £.QQ ) — .

6.3 Proof of proposition 5

In the symmetric case, we have seen that pY < p, which proves the first statement.

The dividend of cooperation in the general case is necessarily positive, the total profit under co-
operation being the maximum of the sum of the profits of the players over all n-uples of admissible
controls, it is larger than the same sum under the Nash equilibrium strategies. To get an order of
magnitude of the difference, we investigate the dividend of cooperation DC:

DC =V9(0) — zn: V:N(0).
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We compare the joint optimum profit V9(0) and the sum of the individual profits in the Nash
equilibrium. Let

o/ _ 1 o _
VE(0) = mw 2pwp
1
VN(0) = —— WV -
with )
WO = (f,Q7'f),

and, remembering that >, f* = fand >, Q° = @, we obtain

WY =2(£,Q7f) = (Q7',QQ7 ) =2(Q 7 £,QQ' ) = (@7 £,QQ7'F).

Using the fact that a quadratic form only depends on the symmetric part of the coefficient matrix
leads to

WY = (@ (Q+QNQ ) = (@R = (@ (Q+Q - QR ).
Note then that Q + Q' — Q = . Hence
WY = (@£, vQ ")
We expand both W and W to first order:
WO = (f, 071 f) = (T LUV ) + O(r%),

and
WN = (U f — 7O OO O — U TU ) + O(2)

Keeping terms of first order in 7, and noticing that U + U* = U, we get
WN = (£ 071 f) = 20(f, ¥ U ) + O(r%)

= (fUf) =T (f U U+ UYTf) + O(r?),
= (f, UL f) — 7O, OV ) + O(7?).

Therefore, WO = W + O(7?), i.e., the benefit of cooperation, which is by definition positive, is
of the order of 72, and therefore very small.
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