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Abstract

We propose a weighted minority voting mechanism within a two-round sequential voting
process, in which all individuals retain their voting rights in the second round but with
different weights depending on the first-round outcome. In a utilitarian framework where
individuals have a given utility function that depends on the outcomes of each round,
first-round winners are identified and vote with reduced weight in the second round, while
losers retain full weight. By giving greater weight to first-round losers, this design ensures
that first-round winners continue to contribute to the final decision without dominating it,
thereby mitigating repeated disadvantages for losers. We then compare the expected aggre-
gate utility of society across different levels of second-round weight assigned to first-round
losers, including both the simple majority rule — where all voters carry equal weight in both
rounds — and the limiting case of minority voting where first-round losers receive no weight
in the second round. To do so, we analyze two models: one in which individual utility derives
solely from material payoffs, and another in which a form of harmony is considered, whereby
individuals incur a utility loss if others repeatedly belong to the losing minority. This analysis

allows us to assess how strategic behavior affects the effectiveness of the proposed mechanism.
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1 Introduction

The world is changing at a rapid pace, and the challenges facing democracy today are numer-
ous. Across the globe, traditional democratic systems are struggling to meet citizens’ needs and
expectations, leading to growing distrust, particularly as minorities are systematically marginal-
ized. Indeed, around the world, grassroots movements are emerging to demand a fairer, more
inclusive, and more participatory democracy. For example, the Black Lives Matter movement
seeks greater recognition and stronger representation for Black communities. Climate activists
push for sustainable and responsible policies. Women’s rights advocates fight for gender equality
and increased political representation for women, among other goals. These demands for reform
and greater inclusion highlight a fundamental issue: the way decisions are made and the extent
to which all voices are genuinely heard.

Alongside grassroots efforts, institutional and academic debates have also addressed the limi-
tations of existing voting mechanisms. For instance, the European Union and the United Nations
have explored reforms to enhance representativeness and inclusivity in decision-making bodies
(see, e.g., United Nations Secretary-General, 2021). In the academic sphere, scholars such as Ar-
row (1951) highlighted the impossibility of designing a perfect voting system, while more recent
contributions (see, e.g., List and Goodin, 2001; Mackie, 2003; Raducha et al., 2023; Rau and
Stokes, 2025) have addressed broader challenges of collective decision-making, including issues
of legitimacy, resilience, fairness, efficiency, and inclusiveness. These discussions underscore the
need for innovative mechanisms to overcome the shortcomings of traditional voting rules.

In this vein, we refer the reader to Gersbach (2024), which surveys several innovative vot-
ing rules designed to improve democratic decision-making. Among them, Assessment Voting
(see, e.g., Gersbach, 1995, 2000, 2015; Gersbach et al., 2021) is a two-round procedure where a
randomly selected Assessment Group votes first, their choices are revealed, and then the rest
of the electorate decides whether to participate, with the final outcome determined by the ag-
gregate vote (ties resolved by a coin toss). Building on this framework, Pendular Voting (see,
e.g., Gersbach, 2024) introduces a third, intermediate option after the first-stage vote, allowing
the full electorate to choose between the status quo, the original proposal, and the compromise
alternative. Complementary to these sequencing mechanisms, Storable Votes' provides a sys-
tem for repeated binary decisions in which voters accumulate and strategically allocate votes
across issues, thereby capturing preference intensity, enhancing minority protection, and often
improving welfare relative to standard voting.

Along these lines, many contributions in social choice theory and political science have pro-
posed innovative mechanisms and voting rules aimed at enhancing minority protection. Demo-
cratic systems still grapple with the problem of the tyranny of the majority, where the majority
pursues exclusively its own objectives at the expense of minority interests. For this reason,

constitutional democracies also incorporate the minority principle — the idea that majority au-

!This mechanism was introduced in the literature by Casella (2012) as “Storable Votes” and, independently,
by Hortala-Vallve (2012) as “Qualitative Voting”. Note that Jackson and Sonnenschein (2007) generalized this
approach to a wide range of problems, including voting, bargaining, the allocation of indivisible objects, and
related settings.



thority should be limited to protect individuals or groups from excessively harmful outcomes.
The literature on this topic has grown rapidly in recent years, combining both theoretical ad-
vances and empirical investigations.? Our interest in the paper at hand focuses on Minority
Voting (henceforth MV), a mechanism introduced for sequential voting that operates in two
stages. In the first round, all individuals vote under a simple majority rule (henceforth SM); in
the second round, only the losers of the first round are allowed to vote. The goal is to give voice
to the minority by granting them exclusive decision-making power in the second stage, thereby
promoting inclusiveness and limiting majority dominance.

The MV mechanism has been explored in various contexts. In Gersbach (2009), the rule is
applied to public project decisions: the first round determines whether the project is adopted,
and the second round allows the minority to decide how it will be financed. The paper shows
that MV, by granting the losing minority exclusive rights to decide on the financing of a public
project approved by the majority, avoids inefficient projects and redistribution schemes, ensures
that only Pareto-improving projects are adopted, and generally achieves higher welfare compared
to SM. Fahrenberger and Gersbach (2010) extend this idea to sequential voting on two projects
with long-term consequences, showing that MV improves collective welfare compared to repeated
majority voting, especially when voters are risk-averse. Fahrenberger and Gersbach (2012)
extend the model by incorporating social preferences for harmony, whereby individuals care not
only about their own payoffs but also about whether others repeatedly belong to the losing
minority. The paper shows that when preferences for harmony are sufficiently strong — meaning
individuals value avoiding repeated disadvantage for others — MV outperforms SM in terms
of aggregate welfare, as it mitigates repeated minority disadvantage while balancing material
payoffs.

While effective in countering majority dominance, we argue that MV may go too far: by
granting exclusive power to the minority in the second round, it risks replacing the tyranny of
the majority with a form of tyranny of the minority. Thus, we propose a new mechanism —
Weighted Minority Voting (henceforth WMYV) — that offers a third path. This extension ensures
that the majority retains influence, but no longer holds a veto. The core idea is to allow all
voters to participate in both rounds and then always vote on both projects, but to reduce the
voting weight of first-round winners in the second round according to a parameter o € [0, 1],
while minority members keep their full voting weight (i.e., 1). This approach positions « as a
middle ground between exclusion and domination, i.e., between MV and SM.

Our contribution builds on a utilitarian framework to study the impact of the weight param-
eter o on strategic voting incentives and aggregate welfare in two (related) models. The first
focuses solely on material payoffs: individuals care only about their own gains from the outcomes
of both voting rounds. The second, inspired by Fahrenberger and Gersbach (2012), introduces

harmony preferences: individuals incur a utility loss when others repeatedly belong to the losing

2Let us give, without claiming exhaustivity, two recent examples that illustrate this trend. Kizilkaya and Kempe
(2025) propose the k-Approval Veto rule, a flexible class of voting systems that provides a level of minority
protection proportional to k, the number of approved candidates, while controlling overall welfare distortion.
Engelmann et al. (2023) provide experimental evidence showing how different voting mechanisms can strengthen
minority protection without undermining collective efficiency.



minority. In both settings, first-round winners vote in the second round with reduced weight,
while first-round losers retain full weight. By assigning greater weight to the losers, the mech-
anism ensures that first-round winners still contribute to the final decision without dominating
it, mitigating repeated disadvantages for losers.> We compare strategic voting behavior and the
expected aggregate utility of society across different levels of «, including the limiting case of
both SM and MV. Our results show that specific values of « often provide the best balance
between limiting strategic manipulation and enhancing collective welfare. They also show that
incorporating harmony concerns significantly broadens the range of « for which the mechanism
outperforms both SM and MV.

The structure of the paper is as follows. Section 2 introduces the basic framework, the
objective functions, and the alternative WMV mechanism, among others. Section 3 presents our
main findings in the two related models. Finally, Section 4 concludes and outlines avenues for

future research. All proofs are provided in the appendix.

2 The framework

2.1 The voting process

We consider a committee of w (with w > 3, w odd) individuals who vote sequentially on two
proposals, Project 1 and Project 2, through a two-ballot process.? Each individual — also referred
to as a voter, participant, or agent — is referred to as “she” throughout the paper for simplicity.
The two projects are indexed by = € {1,2}. In each ballot, participants cast “Yes” or “No”
votes. Project 1 is submitted to a vote in the first round and is adopted if it obtains a simple
majority of “Yes” votes. The outcome of the first round splits the voters into winners (the
majority, composed of wy individuals) and losers (the minority, composed of w; individuals),
where w = wy + ws.

As mentioned in the previous section, we consider WMV, a mechanism that allows majority
members to retain some influence in the second round through a reduced voting weight «,
thereby striking a balance between avoiding a “tyranny of the majority” and a “tyranny of the
minority”. More exactly, first-round winners vote in the second round with a reduced weight
a € [0, 1], while losers retain full weight 1. Project 2 is adopted if the cumulative weight of the

witows .
2

“Yes” votes strictly exceeds the majority threshold ¢ = ; it is rejected if below ¢, and a

tie-breaking rule (a fair coin toss) is applied in the case of exact equality, where the project is

3Recent work by Lackner (2020) introduces the framework of perpetual voting, which explicitly accounts for
decision histories in repeated collective choice settings. By taking past outcomes into consideration, this approach
ailms at achieving long-term temporal fairness, ensuring that minorities obtain a proportional share of favorable
decisions over time, without relying on strategic vote storage or the specification of utility functions. In this
sense, the underlying spirit of perpetual voting is closely aligned with our approach: both seek to mitigate the
systematic disadvantage of minorities in sequential decision-making by embedding fairness considerations directly
into the voting rule.

4Project 1 and Project 2 can be completely different. For example, Project 1 might involve building a daycare
center, while Project 2 could focus on constructing a garden. Alternatively, the two projects may be linked — for
instance, Project 1 could be an infrastructure initiative, and Project 2 might concern voting on how to finance it.
In such case, the interdependence between the two projects may affect the resolution. The latter case is beyond
the scope of this paper.



accepted or rejected with probability % The parameter « controls the influence of first-round
winners in the second round: (i) When « is close to 0, the system approximates MV, maximizing
protection for the minority but increasing the incentive for strategic behavior among majority
voters who seek to retain full voting weight. (ii) When « is close to 1, the system resembles SM,
reducing the likelihood of strategic behavior. By reducing the second-round weight of first-round
winners, our mechanism increases the chances that minority members can overturn the outcome,
lowering the probability that some individuals lose in both rounds. Finally we assume that in
our voting mechanism, abstention is not allowed,” meaning that each voter is required to cast a

vote in both the first and second rounds.

2.2 The utility function

We extend the two-round voting framework initially proposed by Fahrenberger and Gersbach
(2012). Our analysis explores two settings: one where voters are driven solely by material
payoffs, and another where voters’ preferences also reflect social cohesion through a harmony
component that values the success of others across ballots. For clarity and in order to avoid
unnecessary repetition, we introduce the general utility specification that combines both com-
ponents, although our initial results concentrate on material payoffs alone. We assume that

individual ¢’s utility is given by
w
U; = 21+Zb(5]) 5j. (1)
j=1
JF
It consists of two parts:

(i) Material Payoff: The utility derived from the projects is represented by z; = a1zi1 + a2z,
where z;, denotes the individual material payoff that individual ¢ receives if the project
x € {1,2} is implemented. The committee’s decision is represented by the indicator
variable a,, where a, = 0 indicates that the status quo is maintained, and a, = 1 indicates
that project = is adopted. We assume that z;, is distributed independently and uniformly
on the interval [—1, 1]. We assume that the material utility of the status quo is normalized
to zero. The first-round material payoffs of all individuals are commonly known, whereas

those of the second round are private information.%

In the model, individuals are divided into subgroups according to both their material
payoffs and their voting behavior. First, project winners are those who derive a non-
negative material payoff from the adopted project x, that is, z;; > 0; project losers are
those with a negative material payoff, z;, < 0. The committee also splits into majority and
minority groups based on numerical dominance of first-round material payoff types (non-
negative or negative). The majority represents the numerically dominant group: it consists
of members with z;; > 0 if they are more numerous, or those with z;, < 0 if negative-payoft

members are dominant. The minority is always the less numerous group with opposing

°In any case, it will become clearer in the model below that abstention is always weakly dominated and can
therefore be disregarded in what follows.
SA detailed discussion of this aspect will be presented in Section 2.3, among other key issues.



payoffs. Simultaneously, we classify individuals based on their material payoffs from the
implemented decision. For a given project x, voting winners are those with non-negative
payoffs (z;; > 0) if the project is adopted (a, = 1), or negative payoffs (z;; < 0) if the
project is rejected (a, = 0). Conversely, voting losers have z;; < 0 when a, = 1 or
Ziz > 0 when a, = 0. Crucially, these classifications are distinct. A majority member may
strategically vote and then follow the minority (for instance, by voting against her payoff
interest to retain full weight voting in the second round), creating potential mismatches
between first-round material and voting group affiliations. This strategic behavior explains
why the individuals in the majority (minority) not necessarily coincide with the group of

voting winners (losers).

(ii) Harmony payoff: The term + Y 1 b(d;)d;,” represents the part of the utility function
that captures preferences for hal“Hjlﬁ;ly. It consists of two components:

1. The variable §; = 01 + d;2, where 6;, € {d1,0} and 6 < 0, indicates whether in-
dividual j lost or won in each ballot. Specifically, d;, = dr, if the individual loses in
ballot z, and d;, = 0 if the individual wins. We assume that é;, = —Z, where y > 0
represents the degree of aversion to disharmony in society, and w denotes the number
of voters. The parameter y captures how strongly voters care about the repeated ex-
clusion of others: the higher y, the greater the utility loss an individual suffers when
observing that other members of the committee lose multiple times. Importantly,
since 07, is inversely proportional to the committee size w, the individual contribu-
tion to the harmony payoff becomes smaller as the committee grows, reflecting that
interpersonal concerns may weaken in larger groups. In other words, the threshold dy,
expresses how the discomfort caused by the repeated exclusion of others scales with

the sensitivity of society (y) and the number of voters (w).

2. The function b(d;) is defined as follows:

1, ifdé; <o
b(d;) = nos

0, otherwise.

Hence, there is a negative impact on individual i’s utility only when another individual
j loses twice. It is worth mentioning that the parameter « influences the likelihood of
repeated losses, which directly affects the preferences of harmony. When « is close to 0, the
first-round winners have very limited influence in the second round. This strengthens the
minority and increases their probability of winning in the second round, thereby reducing

the probability that individuals lose both rounds. As a result, disharmony is minimized,

" As in the original model by Fahrenberger and Gersbach (2012), the harmony term is restricted to > 2 0(85) 05
thereby excluding the individual’s own component. One could, however, consider an extension where the full sum
Z}”:l b(d;) 0; is used, so that voters also experience disutility from their own repeated exclusion. While such a
modification would slightly depart from the original setup, it would remain consistent with the idea that disutility
from harmony arises whenever a voter fails to retain both ballots, without altering the core structure or welfare
implications of the model.



which increases the aggregate utility. Conversely, when « is close to 1, the decision-making
process tends to favor the same majority in both rounds, leading to more repeated losers
and higher disharmony. Hence, lower values of o better meet the needs of both individuals

and the group in terms of harmony.

We present a simple example to illustrate the idea of strategic voting in our framework.
As previously noted and shown in this example, strategic voting may arise even in the basic
setting where individuals’ utility depends solely on material payoff. Naturally, a more complete

example, with a utility function including both components, could also be constructed.

Example 1 Consider a committee of five voters deciding sequentially on two projects under the
WMV mechanism with a = 0.6. The material payoffs of the voters with respect to the first
project are known and given by the list: v = (0.7, 0.2, 0.4, 0.1, —0.6). The project winners
are voters 1, 2, 3, and 4 (since they derive non-negative material payoffs from the adoption of
Project 1), while the project loser is voter 5. Under sincere voting, voters 1, 2, 3, and 4 (the
magjority) support the project, whereas voter 5 (the minority) votes against it. The outcome of
the first round is therefore the adoption of the project by 4 wvotes against 1. According to the
WMYV rule, each project winner receives a reduced weight of a = 0.6 in the second round, while
the project loser keeps full weight 1. The total voting weight is thus 3.4, yielding a majority
threshold of 1.7. In this configuration, voter & gains significant influence, as her weight alone is
almost equivalent to that of two other voters combined. Now suppose that voter 1, anticipating
the second round, decides to vote strategically against the project, despite having a positive utility
from its adoption. The vote tally becomes 3 in favor (voters 2, 3, and 4) and 2 against (voters
1 and 5). The project is still adopted by majority rule. However, the voting winners are now
voters 2, 3, and 4, while the voting losers are voters 1 and 5. Thus, voter 1 moves from the
winning coalition to the losing coalition without altering the collective outcome. Consequently,
instead of being assigned weight o = 0.6 in the second round, voter 1 retains full weight 1. This
example illustrates that a voter may cast a strategic ballot in the first round in order to remain
among the losers and preserve full voting weight in the second round, while the project outcome
remains unchanged. Notice, however, that if more than one voter from the majority were to
deviate strategically, the outcome of the first round could be overturned, and then the strategy
fails since Project 1 would be rejected and no utility from that project would be assigned to voters

with a positive payoff.

As mentioned earlier, we will later show that our model characterizes the conditions under
which strategic voting arises both in the setting described in Example 1 — where utility consists
solely of material payoff — and in the case where harmony is introduced. We will also show how
the value of a influences both the probability of a second-round victory and the incentives for
sincere versus strategic voting. Before doing so, and to set the stage for this comparison, we

first turn our attention to some properties of the framework.



2.3 Key considerations

e Payoffs: In the paper at hand, we assume that the payoffs from the first project (z;1) are
common knowledge, while those from the second project (z;2) are privately observed after
the first voting round. This assumption is theoretically plausible for several reasons: First,
it matches most standard dynamic game-theoretic models, where early decisions are made
with full information, but future outcomes are uncertain. This reflects real-life situations
where first-stage proposals are openly discussed and understood by all, while later decisions
involve more uncertain or personal effects that are harder to predict. Second, we consider
this assumption to be broadly consistent with the way many real institutions operate in
practice. In parliaments or company boards, for example, the first vote often concerns a
big-picture decision (like agreeing on a general reform), where everyone’s views are known.
Later votes (such as deciding how to fund the reform) are more detailed, and how they
affect each person is not always clear. This difference makes the first round strategic:
people may vote not only for today but also thinking about how the second round will
unfold.

e Equilibrium voting behavior: We search for the two-decision voting game’s perfect Bayesian
Nash equilibria. We eliminate weakly dominated strategies in order to eliminate implau-
sible voting behaviors. Our analysis proceeds by backward induction. Starting from the
second round, we evaluate each individual’s probability of belonging to a winning coalition,
which depends on her voting weight (either 1 or «), and these probabilities are later used

to compute the expected aggregate utilities.

3 Results

3.1 General insights

The first result of our paper is given in Lemma 1, which provides a formal characterization
of the voting dynamics under WMV. By establishing the exact probabilities that a weight-1
voter or weight-a belongs to a winning coalition in the second round, it will serve later as the
analytical foundation for examining strategic incentives and welfare implications. This result is
particularly important as it allows us to compare WMV across different levels of a: from SM

when a = 1, to MV when « = 0, as well as intermediate values of a.

Lemma 1 Consider a weighted voting system with wy weight-1 voters and wq weight-a. voters,
where 0 < a < 1. Fach voter votes independently “Yes” or “No” with probability %, contributing
her respective weight to the total. The majority threshold is given by the quota: q = % If
the total weight of “Yes” wotes is strictly greater than q, the decision is accepted. If the total
weight of “No” wvotes is strictly greater than q, the decision is rejected. If the total weight of
“Yes” votes is exactly equal to q, a random tie-breaking rule is applied (a fair coin toss) where

the decision is accepted/rejected with probability 1/2.



The probability that a given weight-1 voter belongs to a winning coalition in the second round is

o ¥ B IOREES e O

The probability that a given weight-a voter belongs to a winning coalition in the second round is

L fw fwe— 1) (1N 1 S fwy fwe — 1) (1)
=0 5 (0)(7)6G) 4 2 S )6)
a:+ay>q a w+ay q a

The proof of Lemma 1 is given in the Appendix. Note that Pj (w1, ws) and Py(w1,we) coincide
when o = 1, as all individuals vote with equal weight in the second round. Furthermore, our
probability expressions generalize those given in Lemma 2 of Fahrenberger and Gersbach (2010).
In particular, when o = 0, our formula for Pj(w;,ws) matches theirs when we identify our w;
with their w, which denotes the number of voters in the second round in their model. In this
limiting case, the value of P>(w1,w2) is equal to 1/2, reflecting the fact that voters with weight
« = 0 have no influence on the decision and are included in winning coalitions purely at random
(i.e., by coin toss). Finally, when a = 1, their total population size N corresponds to our
w = w1 + way, and both Pj(wi,wy) and Ps(wq,ws) again coincide with their expression.

Note that the probability Pj(w1,ws) is decomposed into two parts with distinct behaviors.
The first part corresponds to the sum over all configurations satisfying the strict inequality
r+ay > q—1, and the second part corresponds to the sum over all configurations satisfying the
tie condition = + ay = ¢ — 1. The probability P; (w1, ws) exhibits a nuanced relationship with
the weight parameter a. The general tendency is a decrease, and this behavior is driven by the

%, which raises the bar for a coalition to be considered

linear increase of the quota q =
winning. Specifically, the condition x + ay > ¢ — 1 becomes increasingly demanding as « rises,
reducing the number of (z,y) configurations and consequently lowering Pj (w1, ws).

The limiting cases offer useful benchmarks and clarify the role of the weight . When «
approaches zero, the quota simplifies to ¢ = %L, which is strictly lower than any other quota for
any a > 0, given fixed wi and wy. Only the wy welght-l voters participate in the vote, and all are
symmetric. Since the threshold for acceptance is lower, a randomly selected weight-1 voter tends
to have a higher probability of belonging to a winning coalition. Conversely, when « approaches
one, all voters carry equal weight, and the quota becomes ¢ = % In this setting, the
distinction between voter groups disappears and the total number of weight-1 voters increases,
making it harder for a given individual — particularly one of the original wy voters — to belong to
a coalition that exceeds the threshold. The symmetry among all w = w; +ws voters implies that
the individual probability of inclusion in a winning coalition is diluted. As a result, Pj(w;, w3)

8

reaches minimal values as « tends to one.® However, the discrete nature of the summations

in P;(wy,ws) introduces important exceptions to the monotonic trend described above: local

8Note that, in the special case where wy = 0, the outcome becomes entirely independent of «, since no voter’s
weight is affected by it. The probability Pi (w1, w2) is then fully determined by the configurations formed by the
wy weight-1 voters alone, reproducing the baseline structure of simple majority voting.



plateaus may appear as « crosses critical thresholds where the set of winning coalitions remains
unchanged. Such plateaus arise because small changes in @ may not immediately alter the set
of integer-valued configurations (z,y) satisfying the winning condition, thus leaving the overall
probability temporarily unchanged until a new configuration crosses the threshold. Figure 1
provides a graphical illustration of the behavior of the probability P;(w;,w2) as a function of
the weight parameter a for various values of w; and ws.

A concrete example with w; = 8 and we = 11 illustrates this phenomenon clearly: as
« increases from 0 to 1, the probability Pj(wi,ws) continues to overall decrease from 0.637 to
0.593. Contrary to the general decreasing trend, a plateau occurs when « increases, for example,
from 0.306 to 0.363, as the value of P;(wj,ws2) remains constant at 0.633. In contrast, the two
bottom graphs present the same analysis for a committee with higher values of w; and ws.
Clearly, as the committee size increases, the graphs reveal a much smoother and nearly strictly

decreasing pattern for the total probability P; (w1, ws), with fewer and less visible plateaus.
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Figure 1: Analysis of the variation of Pj (w1, ws) across varying weight parameters « for selected
values of w; and ws.

In contrast to P;(wy,ws2), the probability Ps(wy,ws) generally exhibits an opposite pattern,
reflecting the different roles and incentives of voters in the second round. Its overall trend is
increasing with respect to the weight parameter o, with minimal values as « tends to zero and
maximal values as « tends to one. As « increases, the quota becomes more demanding, but
so does the individual influence of weight-a voters, enhancing their chances of belonging to a
winning coalition. However, this pattern is not strictly smooth. As in the case of P (w1, ws),
the discrete nature of the underlying vote configurations induces local irregularities. In partic-
ular, plateaus may emerge when small changes in o do not immediately affect the set of (z,y)
configurations satisfying the winning condition. These discontinuities reflect the same threshold
effects seen previously, and they highlight the importance of integer-valued jumps in the under-
lying probability mass. Figure 2 illustrates these features through a set of graphs and values

constructed for Ps(wi,ws) in parallel to those for Pj(wq,ws).

10



w1y =8, w;=11 wi=21,w;=24 w1=51,w;=54
iemnras) 0.560 4 e 0.540 |

0.535
0.580 : 0.550 :

0.530

0.560 enrand Ll 0.540 4 0.525 4

0.530 - 0.520 4

Py
Py
Py

0.540 v ar
......... e - 0.515
£ 0.520 .

£ 0.510
0.520 "

4 0.510
0.505

0500 |+ 0.500 4—resr’ 0.500 4—++="

0.0 0.2 04 0.6 08 10 0.0 02 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
a a [

w1 =101, w2 =110 w1 =201, w; =220 w1 =501, wz =520
0.520 A

o 0512
0525 0517 4

0515 05109
0520
0512 o 0508

. 0515 0.510 4

P.
P2
Py

0.506
0.510 0.507 4
0.504
0.505
0.505

0502 1 0.502 4

0500 { == 0,500 1 =" 0500 +*
0.0 02 04 06 08 10 00 02 04 06 0.8 10 0o 02 04 06 08 10
a a a

Figure 2: Analysis of the variation of Ps(w1,ws2) across varying weight parameters « for selected
values of wi and ws.

Having derived the probabilities that voters of different weights belong to a winning coalition
in the second round, we now turn to the strategic implications of these results. In particular, we
investigate whether voters especially those in the majority have incentives to vote strategically
in the first ballot in order to retain their full voting weight in the second round. Clearly, minority
voters have no such incentive: if they vote strategically in the first round (i.e., contrary to their
true preference), they risk being classified as part of the majority and thus having their voting
weight reduced in the second round. Therefore, minority voters always have an incentive to vote
sincerely. In contrast, majority voters might behave differently as explained in Example 1. If
a majority voter anticipates that the majority group is sufficiently large to win the first ballot
without her support, she may choose to vote against the project strategically in order to retain
her full weight in the second round. This raises the question: Under what conditions would
such a strategy be beneficial? We then define the probabilities that a majority individual is part
of a winning coalition under both strategic and sincere voting behaviors. This leads us to the

following lemma.

Lemma 2 Let m be the size of the minority group. Suppose that k € {O, cee ”“UT% - m} denotes

the number of other majority members who vote strategically in the first round.® Consider
now a majority individual i who also votes strategically in that first ballot (a weight-1 voter).

Then, the total number of strategic majority voters is k 4+ 1, the corresponding quota is q1 =
(mtkt1)+a(w—(mtht1))
2

, and the probability that © belongs to a winning coalition in the second

9Note that the upper bound k < wT_l —1—-m (ork < “’T_‘?’ —m) ensures that the number of strategic deviations
remains below the level at which the first-round outcome would be overturned. If too many majority members
were to deviate, the result would be reversed, making the deviation ineffective.
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round when is: Py(m+ (k+1), w — (m + k + 1)), where and

Pi(m+ (k+1),w— (m+k+1)) mikw (gkﬂ) <m+k) <w(m+k+1)) (1>w—1

T Y 2
:E+ay>q1 1
1 mi:k v %’Hl m+k\ (w—(m+k+1)\ 1\
2 x Yy 2 ’
at+ay q1 1

Let Po(m+k,w — (m+k)) be the probability that a sincere magjority individual (weight-o voter)

belongs to a winning coalition in the second round, given that k majority members voted strate-
m+k+a(w—(m+k)) |
5 ;

gically, where qo =

st EE (1)) ()

Yy
x+ay>q2 [e%
n 1 nf:k w(szr:k)l m+k\/w—(m+k)—1 1 w=l
2 ot — x y 2 ’
stoy=ga—a O

The proof of Lemma 2 is given in the Appendix. The probabilities P; and P, in Lemma 2
generalize those of Lemma 1, reducing to the latter when & = 0 (i.e., when all voters behave
sincerely). When a=0, i.e., the voting rule becomes MV, the quota simplifies to ¢; = %’“H
and it is straightforward to show that the expression for P; corresponds to the probability of
being in a winning coalition in the second round in Fahrenberger and Gersbach (2012). It is
also straightforward to show that in this case P, converges to 1/2, reflecting the neutral effect
of weight-a voters who lose all influence in the second round since « is null.

A graphical analysis is provided in Figure 3 for selected values of w, m, k, and «. Plotting P;
and P; as functions of k (with fixed w, m, and «) reveals a general downward trend. Intuitively,
as the number of strategic voters k increases, more individuals retain full weight 1 in the second
round, which dilutes the influence of any single voter — regardless of whether she has weight 1 or
weight .10 Similarly, and as previously discussed, when « increases (for fixed w, m, and k), the
probability P; tends to decrease while P, tends to increase. This reflects the fact that sincere
voters gain more influence as their voting weight increases, whereas the relative advantage of
retaining full weight 1 through strategic voting becomes less pronounced. As in Lemma 1, the
discrete nature of coalition formation induces local discontinuities in both P; and P,. Small
variations in « or k may not immediately affect these probabilities until certain thresholds are

crossed — thresholds that change the set of winning configurations (x,y).

10We will comment in more detail later on this variation of P; as k increases. We will also show that, given the
discrete nature of our probabilities, 1 can even increase in some cases when k rises while the other parameters
remain fixed. This case occurs for instance, as shown in the middle bottom part of Figure 3, when o = 0.75 and
k increases from 1 to 2.
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for w = 21 and m = 4 across varying parameters k and a.

Let us mention that when o = 0, it is easy to show that P; > P, for all values of k and m.
This strict inequality highlights a strong incentive for majority individuals to vote strategically
in the first round in order to retain full influence in the second round. In contrast, when o = 1,
all voters — whether they voted sincerely or strategically — have the same weight in the second
round. Consequently, the two probabilities coincide, P; = P, for all k£ and m, eliminating any
strategic advantage. In this fully symmetric setting, strategic behavior becomes irrelevant, and
voters are indifferent between sincere and strategic voting. More generally, we will show later
that P; > P, for all admissible values of m, k, and w (with w odd in our framework). This
means that, regardless of the composition of the electorate and the level of strategic behavior,
the probability that a majority individual who voted strategically in the first round (and thus
retains weight 1) belongs to a winning coalition in the second round is always at least as high

as that of a sincere majority voter (whose weight is «).

3.2 Utility grounded in material payoffs

We now characterize the equilibrium behavior under our WMV mechanism. As stated in the
introduction, we start with the case where individuals care exclusively about their material
payoffs, without considering the harmony component. This is precisely the focus of Lemma
3, which addresses the second ballot, and Proposition 1, which characterizes the first ballot

behavior.
Lemma 3 In the second ballot, sincere voting is a weakly dominant strategy under WMYV.

The proof of Lemma 3 is given in the Appendix. A brief outline of the proof is as follows. In
the second round, payoffs for project 2 are private information, and each voter simply aims for

her preferred outcome. Given any fixed profile of votes by the others, casting a sincere ballot is
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never worse and may be strictly better, especially when the voter is pivotal. This ensures that
no one gains from deviating from sincere behavior.
Having clarified the logic of behavior in the second period, we now turn to Proposition 1,

which describes equilibrium behavior in the first round.

Proposition 1 Consider WMV with o € [0,1] and an odd number of individuals w, where
voters’ utility depends solely on material payoffs. The following optimal voting behavior emerges
in the first ballot:

(i) All minority individuals (of size m) vote sincerely in the first round.

i) The majority optimally divides into: Ezactly YL members voting sincerely to form a
2

minimal winning coalition. The remaining wal — m members voting strategically against

their true preferences.

In addition, for any majority voter, voting strategically in the first round is weakly dominant

over sincere voting. Specifically:

strat sinc
Eu;"™ > Eu™",

where the inequality is strict unless P(x,y) € {0,...,m+k}x{0,...,w—(m+k+1)} such that z+

ay € [1 — 1, g2 — a], with ¢1 and g2 are as defined in Lemma 2.

The proof of Proposition 1 is given in the Appendix. Points (ii) and the last statement of
Proposition 1 might at first seem contradictory, but this is not the case. Point (ii) describes an
equilibrium in which only part of the majority votes strategically, because if all of them did so,
the majority alternative might lose in the first round, which is not optimal for the majority. The
last statement focuses on individual incentives: if a member of the majority assumes that the
others vote as described in (ii), then for that individual, voting strategically is optimal. In other
words, the “’TH sincere votes ensure victory in the first round, while the other members benefit
from the strategy without changing the outcome. The proposition therefore combines both a
collective analysis and an individual one, and there is no contradiction as long as we consider
that the subgroup of wTH acts to secure the majority victory, while the others (wal —m) optimize
their utility given this behavior.

Note also that the condition Eu™®* = Eufinc holds only in the very specific case where no
voting configuration (z,y) allows a strategic vote to influence the outcome. That is, when the
quantity x+ ay systematically falls outside the critical interval [g; — 1, g2 —«]. This implies that
strategic voting offers no advantage when the institutional thresholds — namely «, ¢1, and ¢o —
are such that individual actions cannot affect the final outcome. In such cases, manipulation
becomes entirely ineffective, and voters are indifferent between voting sincerely or strategically.
Of course, the trivial case is when o = 1. Mathematically, in this case we have ¢1 = ¢2 = 7,
so the interval [¢g1 — 1, g2 — a] reduces to a single point. Since x + ay cannot exactly equal
this fixed point (w is odd) for any integer pair (x,y), the condition for equality is automatically
satisfied. Beyond this trivial situation, Figure 4 illustrates how the probabilities P, and Ps

evolve as functions of the weight parameter «, for different values of k, with fixed values w = 21
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and m = 4. The plots show that the equality P} = P» may occur for specific threshold values of
a, typically close to 1. In our example, the equality holds for o > 0.837 when k£ =0 and k = 2,
and for a > 0.878 when k = 3 and k = 5, up to a precision of 1072. This confirms our analytical
insight: in these specific configurations, voters have no incentive to manipulate the outcome, as

their strategic behavior yields no gain over sincere voting.
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Figure 4: Analysis of the possible equality between Pj(m + (k + 1),w — (m + k + 1)) and
Py(m + k,w — (m + k)) for w =21 and m = 4 across varying parameters k and «.

We continue our analysis of the model without harmony but we now focus on the expected
aggregate utility under WMV by considering two different weight parameters, o and o’. This
allows us to study how changes in the voting weight of majority members in the second ballot
affect the expected aggregate welfare and strategic behavior. We adopt an utilitarian criterion:
WMV with parameter « is said to outperform that with parameter o/ if the expected aggregate
utility under « is strictly greater than the one under o/. To compute the expected aggregate
utility, we rely on the probability that an individual ¢ belongs to a winning coalition in the second
ballot, under both strategic and sincere voting, as defined in Lemma 1 and Lemma 2. We focus
on the equilibrium described by (i) and (ii) in Proposition 1. Recall that P{(“;+, “H) is the
probability that individual ¢, with weight 1 belongs to a winning coalition in the second round
under WMV and PQO‘(“’T_l7 wTH) is the probability that individual i, with weight «, belongs to
a winning coalition in the second round. When we consider an alternative value o, the same
expressions of probabilities apply but with o instead of o. Taking into account the structure
of our model, it is worthwhile noting that we calculate the expected aggregate welfare after the
first ballot has taken place, yet before the second-project payoffs are revealed. We now establish
our main result regarding the expected aggregate utility without harmony.

In Proposition 2 we consider the configuration where exactly wT_l voters keep full weight and

11\We use the superscripts « and o’ in the notation of the probabilities to indicate that these are computed
under the WMV mechanisms defined by the parameters o and o', respectively.
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w+1 voters have reduced weight «. This represents the worst-case scenario for first-round losers:

when the number of full-weight voters is maximal, each has the least individual influence, which
maximizes their probability of losing again in the second round. Consequently, comparing two
weight parameters o and o/ under this setting provides a conservative test: if WMV with «

outperforms WMV with o' here, it will do so in any situation with fewer weight-1 voters.

Proposition 2 Consider WMV with an odd number of voters w, where individuals’ utility is
determined solely by material payoffs. Take wi; = wal and wy = “’TH WMV with parameter o

outperforms that with parameter o/ if:

w—m

Pf“(wl,wg) — Pf‘l (wl,wg) > (PQO‘/ (wl,wg) - Pgo‘(wl,wg)) .

The proof of Proposition 2 is given in the Appendix. The term Po‘(w—_l, “’T'H) —
Pf‘/ (wT_l, erl) captures the effect on the probability that a first-round loser belongs to a winning
coalition in the second round, when the weight assigned to first-round winners increases from o’
to a. Conversely, Ps* (U’T_l, wT‘H) — PQC“/ (wT_l, w—“) captures the effect on the probability that
a first-round winner remains in a winning coalition in the second round under the same increase
in weight. The coefficient “—™ reflects the relative size of the majority of size w —m and the
minority of size m. Altogether, the inequality in Proposition 2 expresses a dominance condition:
we say that WMV with parameter o outperforms that with o/ when the improvement in the
second-round influence of first-round losers outweighs the loss in the influence of first-round
winners, after adjusting for group sizes. This provides a criterion for preferring one rule over
another based on its overall effect on coalition formation.

It is worth noting that a closer examination reveals that the comparison between two levels
of expected social welfare under different weights o and o/, as captured by the condition in

Proposition 2, can also be interpreted as a comparison of the expression

w—1 w+1 w—1 w+1
Py —, —— P —, —— 2
for the two values of a and o’. Although, as previously discussed, the probability Py (;1, wTH)
generally decreases and Ps' (T_l, w—“) generally increases as « increases, their weighted sum

given in (2) turns out to be non-decreasing in «. This implies that the optimal value of « for
maximizing social welfare is a = 1, which corresponds to SM. However, and quite interestingly,
we can identify an infinite number of values of o — in addition to o = 1 — for which the expected
social welfare is also maximized. Table 1 reports these values for small committee sizes. For
instance, when w = 21, the welfare-maximizing values of « lie in the interval [0.859, 1]. Choosing
a value of « strictly less than 1 within this interval allows us to mitigate both majority and
minority tyranny, while still aiming to maximize collective welfare. Indeed, selecting a value of
« strictly less than 1 within the identified interval represents a deliberate compromise between
two extremes: the risk of majority dominance when « is close to 1, and the potential for minority
overrepresentation when « is too low. This intermediate choice helps to attenuate the effects of

both majority and minority tyranny, thereby promoting a more balanced and equitable decision-
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making process. At the same time, it enables us to preserve high levels of collective welfare, as

the interval is precisely characterized by values of o that maximize expected aggregate utility.

w | The weight @ maximizing W w | The weight & maximizing W
3 [0.505 ; 1] 5 [0.677 ; 1]
7 [0.758 ; 1] 9 [0.808 ; 1]
11 [0.838 ; 1] 21 [0.859 ; 1]
31 [0.879 ; 1] 41 [0.899 ; 1]
51 [0.909 ; 1] 101 [0.929 ; 1]

Table 1: Intervals of o maximizing the social welfare W for different values of w

3.3 Utility enriched by harmony

We now turn to the second part of the paper, which explores a richer behavioral setting. While
the first part of the paper focused exclusively on individuals who care only about their material
payoff, we now consider a scenario in which individuals are also averse to social disharmony.
Specifically, in addition to maximizing their own material payoffs, individuals experience disu-
tility when others suffer two consecutive losses across both voting rounds — these individuals are
referred to as double losers. To formally incorporate this social concern into the model, we rein-
troduce the harmony component into the utility function, as previously defined and discussed
in Subsection 2.2. This extended framework allows us not only to analyze how the interplay be-
tween material incentives and harmony aversion shapes both individual behavior and collective
outcomes, but also to compare the performance of different voting rules, as in the first part of
the paper.

Let us recall the complete utility function: u; = z; + Z;‘U:1 b(d;) 9;. To prepare for the
comparison, we first record how the loss parameter J; is determined, as it depends on the stage
of the voting procedure and the information available. In the first ballot, project payoffs are
common knowledge, so the losing parameter that individual ¢ assigns to j after the first ballot
is given by:

51 = o, if(zj1 >0Aa1 =0)or (zj1 <0Aa; =1),
0, otherwise.
In the second ballot (ex post), once the vote has taken place and the payoffs z;, are realized and

privately observed and since under WMV individuals observe others’ votes ajo. Thus
(Sjg = 5L <~ Qaj2 ;é as.

Ex ante for the second ballot, before z;5 is realized, let P; (wT_l, wT‘H) denote the probability that
a minority member wins. We do not take majority members into consideration because they
have ¢;1 = 0, and therefore do not contribute to the harmony payoff. For this reason, we focus

only on the minority members, who have ;1 = dz. Then:
E[b(dr + 6j2) (31 + bj2)] = (1 - Pt ) ) 20L.
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As the first part of the paper, Lemma 3 remains valid in the harmony setting. Since second-
project payoffs are private information, each voter knows only his own payoff realization and
has no way to infer how others will be affected by the final decision. In particular, an individual
cannot predict which members of the committee risk becoming double losers, nor how his own
vote could modify that probability. As a consequence, the harmony component of utility is
unaffected by any strategic deviation in the second round. The only part of expected utility that
a voter can influence is therefore his material payoff from project 2. This brings the problem
back to a standard private-value binary choice in which sincere voting is a weakly dominant
strategy. All voters with the right to vote thus choose their preferred alternative, knowing that
their behavior neither protects nor harms others in expected terms. This feature plays a central
role for the welfare comparison because it implies that the probability of winning in the second
round depends solely on the number of voters who retain voting rights, but not on any strategic
pattern of behavior at that stage.

Now, strategic voting behavior may emerge in the first round as individuals can choose to
intentionally lose in that stage in order to retain the full weight of their vote in the second round.
While this strategy may improve their material payoff, it can also reduce their harmony payoff.
Equilibrium voting behavior under WMYV is shaped by three key factors: the material payoff
obtained from the first round, the incentive to preserve full voting weight in the second round, and
the expected harmony payoff. As will become clear from the analysis of first-round incentives,
majority members face a trade-off between preserving their voting right and limiting the risk that
minority members become double losers. This generates a critical level of disharmony aversion
beyond which strategic voting is no longer profitable. We denote this cutoff by y"(k), and its
explicit expression will be derived formally in Proposition 3. For ease of reference, it can already

be written as

~wPim+k+1L,w—(m+k+1) — P(m+k, w—(m+k))]
T Am[Pim A4k, w—(m+k)—Pim+k+1,w—(m+k+1)]

y" (k)

Notice that when a = 0, i.e., when the voting rule reduces to MV, it is straightforward to
verify that the expression for P;(m+k+1,w—(m+k+1)) and P;(m+k,w—m—k) coincides with
the probability of being in a winning coalition in the second round as derived in Fahrenberger
and Gersbach (2012). In this case, it is also immediate to show that Pe(m + k, w — (m + k))
converges to 1/2, reflecting the neutral effect of weight-a voters, who lose all influence in the
second round since @ = 0. Using these probabilities, we recover exactly the threshold y” reported
in Fahrenberger and Gersbach (2012).

We will show in Propositions 3 and 4 that the equilibrium strategy hinges on the comparison
between y¥ (k) and y which measures the intensity of harmony aversion. A proper understanding
of this result requires a closer examination of the function y¥. The plots in Figure 5 illustrate
the highly irregular behavior of y”(k) in the example w = 51 and m = 5, evaluated for several

w—3

2
Similar patterns arise for many other combinations of w, m, and «.

values of « and for k € {1,..., —m}. This irregularity is not specific to this numerical case.
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Figure 5: Behavior of y¥(k) for w = 51 and m = 5, evaluated across a range of values of a and
ke{l,....,23 —m}.

A first observation is that, for some parameter values, the function y"(k) is not defined

because its denominator becomes equal to zero. That is,
y’(k) is not defined <= Pi(m+k+1,w—(m+k+1)) = Pilm+k, w— (m+k)).

This occurs, for instance, whenever m + k is even under o = 0, which is consistent with Fahren-
berger and Gersbach (2012). Further indeterminacies arise for several small values of k, typically
forming an interval when « is close to one, as illustrated in Figure 5 for o = 0.93. Similar phe-
nomena are observed for several large values of k when « is close to zero, as shown in Figure
5 for @ = 0.03. The indeterminate behavior of y”(k) in these regions calls for a more detailed
examination, which will be provided in a separate proposition.

Beyond these indeterminacies, the plots show that y¥(k) may also take negative values. Since
Proposition 1 ensures that the numerator of ¥ (k) is always nonnegative and strictly positive in
almost all cases (except for the specific configurations mentioned at the end of that proposition),

the sign of y”(k) is entirely determined by its denominator. Hence,
y'(k) <0 <= Pi(m+k+1,w—(m+k+1) > PA(m+k, w— (m+k)).

In other words, y¥(k) < 0 holds exactly when the probability P; increases as the number of
strategic voters rises from k to k + 1. This situation indeed arises, as illustrated for instance in
the middle bottom panel of Figure 3, where with w = 21, m = 4 and a = 0.75, the probability
increases when k& moves from 1 to 2. This also explains all negative values appearing in Figure
5.

More generally, Figure 5 shows that y"(k) may be increasing, decreasing, or oscillatory

depending on the parameter set. It may also display sharp local fluctuations instead of any
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stable monotone pattern. Moreover, its maximum does not necessarily occur at k = %‘3 —-m,
and its minimum does not always occur at k = 0. This diversity of shapes highlights the strong
sensitivity of y¥(k) to the underlying parameters and motivates our approach in characterizing
equilibrium behavior in Propositions 3 and 4.

Let us first consider the case in which the function y"(k) is well defined. In this situation,
the denominator in the expression of y"(k) does not vanish, so that both the sign and the
magnitude of y(k) can be meaningfully interpreted. This allows us to analyze how variations in
the number of strategic voters k affect the relative incentives captured by y”(k), and to determine

under which conditions these incentives support a given equilibrium behavior.

Proposition 3 Suppose a society with an odd number of voters w has preferences for harmony
with parameter 6 = —y/w, so that each individual’s utility includes both material and har-
mony payoffs. Suppose that the function y°(k) is well defined for every admissible value of
ke {0, ceey wT—:s — m} The following first-ballot behaviors are optimal under WMYV.

(i) All minority members vote sincerely.

(i1) If y*(0) < 0 or if y?(0) > 0 and y > y"(0), then there exists an equilibrium such that all

magority members vote sincerely.

(i1i) Suppose that y*(0) > 0 and y < y¥(0). If Ik € {1,...,“’7_3 —m} such that y > y°(k),
take k* = min{k : y > y"(k)}. The equilibrium then consists of k* strategic majority

members and w —m — k* sincere majority members. If Bk € {1, cees “’2_3 — m} such that
y > y¥(k), the equilibrium then consists of wT_l —m strategic magjority members and wT“

sincere magority members.

(i) If y*(0) < 0 or if y*(0) > 0, y > y”(0) and y"(k — 1) < y < y"(k) for some k €

{1, ceey “’T_?’ — m}, then there may exist an additional equilibrium such that:

o Ifk (< k) majority members vote strategically and y > y”(l;: —1), the equilibrium has
k*+1 strategic majority members and w—m—k* —1 sincere magjority members, where
k* = min{k € {1,...,k — 2} : y < y"(k)}; if no such k* exists, all majority members
are sincere. If instead y < y”(/%—l), the equilibrium has k* strategic majority members
and w — m — k* sincere majority members, where k* = min{k € {12:, ok —2}
y > yY(k)}; if no such k* exists, the equilibrium consists of k — 1 strategic majority
members and w —m — k 4+ 1 sincere majority members.

o Ifk (> k) majority members vote strategically and y > y”(l;: — 1), the equilibrium has
k*+1 strategic majority members and w—m—k* —1 sincere magjority members, where
k* =max{k € {k+1,....k =2} : y < y°(k)}; if no such k* exists, the equilibrium
consists of k + 1 strategic majority members and w — m — k — 1 sincere majority
members. If instead y < y”(/% —1), the equilibrium has k* strategic majority members

and w —m — k* sincere magority members, where k* = min{k € {k,..., wT_?’ —m}:

y > y'(k)}; if no such k* exists, the equilibrium has “’TH sincere majority members

and “’T_l — m strategic majority members.
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The proof is given in the Appendix. Table 2 clarifies point (ii) of Proposition 3 by showing
how the sign of y(0) governs strategic behavior in the first round. When y”(0) < 0, strategic
incentives vanish immediately. For o = 0.55 for instance, we have y¥(0) = —8.57, which implies
that even without any concern for harmony, a majority member has no profitable deviation.
The equilibrium therefore settles on fully sincere voting. When y*(0) > 0, the value becomes
a threshold determining the minimal harmony level y needed to eliminate strategic deviations.
For a = 0.50 for instance, y”(0) = 80.12, so as long as society’s preference for harmony remains
below this value, a majority voter may still find a deviation profitable. Once y reaches or exceeds
this threshold, no deviation is attractive. Overall, Table 2 shows how small variations in « may
shift the system from immediate sincerity (o = 0.55) to a situation where only sufficiently strong
harmony concerns can sustain sincere behavior (a = 0.50). Notice that the entries marked with
a dash in Table 2 correspond to values of a for which y¥(0) is not defined. This indeterminacy
arises exactly when the probabilities Pi(m + k,w —m — k) and Pi(m+k+1,w— (m+k+1))
coincide, causing the denominator of y¥(0) to vanish. In such cases, the usual comparison
between sincere and strategic incentives cannot be applied. These situations require a separate

analysis, which is provided in Proposition 4.

a y“(0) a y“(0)
0.00 12.75 0.55 -8.57
0.05 12.79 0.60 -20.05
0.10 16.30 0.65 -10.86
0.15 22.55 0.70 4.25
0.20 27.63 0.75 48.88
0.25 32.86 0.80 -7.65
0.30 28.86 0.85 -2.55
0.35 36.53 0.90 -
0.40 34.05 0.95 -
0.45 8.05 1.00 -
0.50 80.12

Table 2: Numerical values of y¥(k = 0) across a range of values of o with w = 51 and m = 5.

A further remark is needed concerning point (iii) of Proposition 3. For several parameter
configurations, the function y"(k) exhibits marked oscillations with pronounced local minima.
To illustrate, take @ = 0.67 with w = 51 and m = 5. We obtain: 3"(0) = 72.27, y(1) =
92.89, y¥(2) = 67.56, y"(3) = 99.36, y"(4) = 69.11, y"(5) = 104.36. Although the se-
quence shows an overall upward drift, the minimum is reached at k = 2. This has direct
implications for point (iii). If y < 67.56, then no k satisfies y > y"(k), so no cutoff k* exists and
the equilibrium moves to the extreme case described in point (iii). If instead 67.56 < y < 72.27,
then the first integer k satisfying y > y”(k) is k* = 2, and the equilibrium is accordingly deter-
mined at this level such that k£* = 2 majority members vote strategically and w — k* = 49 vote
sincerely (including the minority members). This example highlights that the identification of
k* crucially depends on the local minima of the function y¥(k), and that small variations in «

may generate substantial shifts in equilibrium behavior.
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We now present a numerical example that illustrates how the non-monotonicity of ¥ (k) and
the initial configuration of strategic voters jointly determine the equilibrium outcomes described
in point (iv) of Proposition 3. To clarify the intuition underlying our proof, we consider the
case where the initial number of strategic majority voters satisfies k > k. Consider a committee
of size w = 51, with m = 5 minority members, and let the weight parameter be a = 0.5. In
this setting, we obtain y"(0) = 80, y"(5) = 50.03, "(6) = 104, y"(7) = 53.98, y"(8) =
111.87, and y"(9) = 57.90. We focus on the case where the harmony parameter is y = 85,
which satisfies y > y¥(0) = 80. Since y¥(5) = 50.03 < 85 < 104 = y"(6), the condition
y'(k—1) <y < y"(k) is satisfied for kK = 6. Suppose that initially k = 10 majority members vote
strategically. Because y = 85 > y"(9) = 57.90, we are in the first subcase: one of the ten strategic
voters has an incentive to deviate to sincere voting. However, since y = 85 < y¥(8) = 111.87, an
additional majority member has no incentive to deviate and vote sincerely. Hence, k* = 8 is the
largest admissible value satisfying the inequality. As a result, the equilibrium features £*4+1 =19
majority members voting strategically and w — m — 9 = 37 majority members voting sincerely,
in addition to the five minority members who always vote sincerely. Importantly, even though
the process starts with a larger number of strategic voters (l% = 10), the equilibrium involves
fewer of them (9).

Now consider an example corresponding to the second subcase, where y < y*(k — 1) and
k = 10 majority members vote strategically (with k> k). Using a = 0.24, the relevant
thresholds are y¥(6) = 32.20, y"(7) = 175.44, y"(8) = 37.58, y"(9) = 187.32, ¢"(10) =
43.07, y¥(11) = 19843, y¥(12) = 48.67, y"(13) = 208.84, y"(14) = 54.39, y"(15) =
218.67, etc. Choose y = 42, which satisfies y > 3"(0) = 16.40 and y”(6) = 32.20 < 42 <
175.44 = y(7), so that k = 7. Since y = 42 < y”(9) = 187.32 (where k — 1 = 9), none of the
k=10 strategic voters has an incentive to deviate to sincere voting. However, a sincere majority
voter may have an incentive to deviate to strategic voting. The process therefore continues un-
til we find the smallest integer k* = min {k € {ff =10,..., “’7_3 - m} Dy > y”(k:)}. We check
sequentially. For k = 10, we have y"(10) = 43.07 > 42, so the condition fails. This implies that,
in addition to these 10 individuals, an eleventh majority member has an incentive to deviate
and vote strategically. For k = 11, y(11) = 198.43 > 42, and the condition again fails, meaning
that, in addition to these 11 individuals, a twelfth majority member has an incentive to deviate
and vote strategically. In fact, all thresholds y"(k) for & > 10 exceed 42. Therefore, no k*
satisfies y > y"(k*). This implies that all remaining majority members have an incentive to
vote strategically, up to the maximal level compatible with the profitability of the deviation.
Equivalently, in accordance with point (iv), the equilibrium consists of wT‘H sincere majority
voters and wal — m strategic majority voters.

While Proposition 3 characterizes equilibrium behavior when the threshold function y"(k) is
well defined, it remains to analyze the cases in which y”(k) is undefined. This occurs precisely
when the denominator of y"(k) vanishes, i.e., when Pi(m + k, w — (m + k)) = Pi(m + k +
1, w—(m+ k+ 1)) for some k € {0,...,“’7_3 —m¢. In such cases, the marginal effect of
an additional strategic voter on the first-round winning probability is null, so that the usual

incentive comparison underlying Proposition 3 is no longer informative. To streamline notation,
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we henceforth write P, = Py(m +k+1, w — (m+k+1)), P§"° = Py(m +k, w— (m +k)), and
Py = Py(m+k, w— (m+k)). Proposition 4 provides a complete characterization of first-ballot

equilibria under WMV in these cases, relying on a sequential equilibrium selection procedure.

Proposition 4 Suppose a society with an odd number of voters w has preferences for har-
mony with parameter 6, = —y/w, so that each individual’s utility includes both material and
harmony payoffs. Suppose that the function y*(k) is undefined for some admissible values of
ke {0, cees “’T_?’ — m} The first-ballot optimal behaviors under WMV are found as follows:

(i) All minority members vote sincerely.

(i1) If y¥(0) is well-defined and y*(0) < 0 or y*(0) > 0 and y > y"(0), then there exists an

equilibrium such that all majority members vote sincerely.

(i) 1) If y°(0) is undefined and Py, = Py = PP for k = 0, then all majority members vote
sincerely.
2) If y?(0) is well-defined, y’(0) > 0, and y < y%(0), or if y’(0) is undefined and
Py = Pjinc £ Py for k = 0, then one magjority member votes strategically. Then, set
k =1 and proceed to (iv).

(iv) Fork=1,2,..., wa?, —m, repeat the following procedure sequentially:

1) If y*(k) is well-defined and y > y"(k), then the equilibrium consists of k strategic
majority members and w —m — k sincere majority members. Otherwise, if y < y*(k),
then one additional majority member votes strategically. Proceed to evaluate the case

for k + 1 using this same procedure.

2) If y°(k) is undefined and Py = Py = P{"® for k, then the equilibrium consists of k
strategic majority members and w — m — k sincere magjority members. Otherwise, if
Py = Pjinc £ Py for k, or if y*(k) is well-defined and y < y*(k) then one additional
majority member votes strategically. Proceed to evaluate the case for k4 1 using this

same procedure.

(v) If y*(0) is defined and satisfies y’(0) < 0 or y*(0) > 0 and y > y¥(0), or if y*(0) is
undefined and P, = P§¢ = Py holds for k = 0, then additional equilibria may exist in
which a specific number of majority voters vote strategically. The exact condition and the
number of strategic voters depend on the initial number of majority members who vote
strategically in the first ballot and on the comparison between y and the values of y* (k)
(when defined), or on the equalities among Py, P{™¢, and Py (when y°(k) is undefined).

The proof is provided in the Appendix. Note that when o = 1, both the numerator and the

denominator of the expression vanish for every k € {0, ..., “’T_?’ —m}, this case is trivial because

setting @ = 1 removes any meaningful trade-off between sincere and strategic voting. Note also

that when o = 0, the equilibria identified in Fahrenberger and Gersbach (2012) become special
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cases within our framework. The situation can be summarized as follows: For y¥(0) < y <
yY (wa:), — m), multiple equilibria arise, whereas for y > y* (”“UT*:)‘ — m), the equilibrium is unique.

For intermediate a values, Proposition 4 addresses the situation in which 3" (k) is not defined
because its denominator vanishes for some admissible k. In this case the usual comparison
based on yY(k) cannot be applied, and a distinct analysis is required. It is important to note
that indeterminacies in y”(k) can occur in several distinct forms, as illustrated in Figure 5: for
a = 0.93 indeterminacies appear over an interval of consecutive k values before the function
becomes well-defined again; and for o = 0.03 the function is well-defined for small k& and then
enters a region where indeterminacies alternate. Proposition 4 covers all these cases, as well as
any other patterns that may occur.

We now present numerical examples that illustrate how the interplay between undefined
thresholds 3" (k) and the initial configuration of strategic voters determines equilibrium outcomes
according to Proposition 4. To clarify the intuition underlying our analysis, we consider three
distinct cases that demonstrate the sequential adjustment procedure.

First, consider the case where 3 (0) is undefined with P, = P, = P§i"°. Let a = 0.88, w = 51,
and m = 5. With P, = P,, no individual voter has an incentive to deviate from sincere voting,
as switching to strategic voting yields no additional material benefit while incurring harmony
costs. Consequently, all 5 minority voters and all 46 majority voters vote sincerely.

Second, consider a more complex scenario where thresholds alternate between defined and
undefined values. For a = 0.02, w = 51, m = 5, and y = 10, we obtain the following pattern:
y¥(0) = 12.75, y¥(1) is undefined with P, = Py £ P, y¥(2) = 17.85, y¥(3) is undefined with
Py = P¢ o£ Py y¥(4) = 22.95, and so on. Since y¥(0) = 12.75 > 0 and y = 10 < y(0), the first
majority member votes strategically. The maximum admissible k is k = (w — 3)/2 —m = 19.
Now we trace the sequential procedure step by step, where all undefined thresholds correspond
to the case where P, = Py £ P,. Beginning with k = 1 strategic voter: for k = 1, y%(1) is
undefined with P; # P», so one additional majority member votes strategically, bringing the
total to 2 strategic voters. For k = 2, y”(2) = 17.85 is defined and since y = 10 < 17.85 = y"(2),
one additional majority member votes strategically, bringing the total to 3. For k = 3, y”(3) is
undefined with P; # P5, so another majority member votes strategically, bringing the total to 4.
For k =4, y¥(4) = 22.95 is defined and since y = 10 < 22.95 = y"(4), one more majority member
votes strategically, bringing the total to 5. This pattern continues systematically: at each odd
k (undefined threshold with P; # P») we add one strategic voter, and at each even k (defined
threshold) we compare y with y”(k), and since y = 10 is always less than the defined thresholds
(which start at 12.75 and increase to 58.65), we again add one strategic voter. The process
continues unabated because neither stopping condition is met: we never encounter an undefined
threshold with P, = P, = P§'"°, and we never find a defined threshold y? (k) such that y > vy (k).
The sequential procedure therefore continues until £ = 19, the maximum admissible value. The
final equilibrium consists of “’T_l — m = 20 strategic majority voters and w — m — 20 = 26
sincere majority voters. All 5 minority members vote sincerely. The previous example considers
a situation in which strategic voting emerges from an initially sincere majority; we now turn to

a case where the initial configuration already involves more strategic voters than the relevant
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threshold &, and examine how undefined values of 4" (k) affect the subsequent adjustment process.

Consider the parameters w = 51, m = 5, a = 0.95, and y = 4. For these values, the
threshold function y¥(k) is undefined for k = 0 to k = 12 when P, = P{"® = P,. It remains
undefined but with P, = P§in¢ £ P, for k = 13 and k = 14, and finally becomes defined for
the remaining values up to k = 19. Specifically, y*(15) = —3.15 and y"(16) = 41.22, with the
actual value y = 4 satisfying y¥(15) = —3.15 < y < y"(16) = 4.22. Suppose initially k=13
majority members vote strategically ( with k <k ), so that y“(l;: — 1) = y¥(12) is undefined
with P, = finc = P,. This implies that none of the k strategic voters has an incentive to
switch to sincere voting. We then examine whether sincere majority voters have an incentive to
become strategic. Since y°(13) is undefined with Py = P{i"° £ P, one sincere voter deviates to
strategic voting, increasing the number of strategic voters to k = 14. At k = 14, y(14) is also
undefined under the same condition (P, = P{¢ # P,), so another sincere voter deviates, yielding
k = 15 strategic voters. At k = 15, y”(15) = —3.15 is defined and satisfies y > y"(15), which
stops the iterative process. Therefore, the equilibrium consists of 15 strategic majority voters
and w —m — 15 = 31 sincere majority voters, with all minority members voting sincerely. This
example illustrates how the sequential adjustment procedure accommodates undefined thresholds
and systematically determines the equilibrium number of strategic voters.

Having characterized the equilibrium voting behavior under harmony preferences, we now
turn to the welfare comparison between WMV mechanisms with different weight parameters.
When preferences for harmony are introduced, the welfare comparison between two weight pa-
rameters o and o/ must account for both material payoffs and the disutility from repeated losses.
We again consider the configuration wy = w?_l, wo = wT‘H, which corresponds to the worst-case
scenario in terms of disharmony: with the maximal number of weight-1 voters, each minority
member faces the highest probability of losing a second time, thereby generating the largest
expected harmony loss. Evaluating the threshold y* under this extreme setting provides a con-
servative benchmark: if WMV with « yields higher aggregate welfare than WMV with o/ when
disharmony is most severe, it will also do so when the disharmony concern is weaker (i.e., when

wy is smaller).

Proposition 5 Consider WMV with an odd number of voters w, where each individual’s utility
1s determined by both material payoffs and harmony payoffs. Take P, = Pl(“’T_l, wTH) and
P, = Pg(wT_l, wTH) WMV with parameter « outperforms that with parameter o if the degree
of disharmony aversion satisfies y > y*, where

o _ wl(w—=1) (P — PP) + (w+1)(P5 — P§)]

vy Sm(w — 1) (P — PYY) ' )

This result shows that incorporating harmony preferences affects both individual incentives

and the normative comparison between voting rules. When society becomes increasingly sensitive
to the possibility that some individuals may lose in both rounds, this concern introduces an
additional welfare cost. As this cost grows, the appeal of a rule that strengthens the influence

of the minority in the second round naturally increases. The threshold y* captures precisely
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the point at which this concern becomes strong enough for WMV with parameter « to yield a
higher level of social welfare than WMV with parameter o/. Whenever y > y*, the reduction
in the probability of repeated losses more than compensates for the change in the voting weight
allocated to first-round winners.

To illustrate this mechanism, consider two committee sizes, w = 51 and w = 101, each
with a minority of size m = 5. In both cases, suppose that the number of strategic voters
reaches its maximal admissible value, which corresponds to the upper bound of the equilibrium
range described in the model. Taking WMV with o/ = 0 as the reference rule, we compute,
for several alternative values of a, the critical threshold y* provided by Proposition 5. The
resulting values for both committee sizes, reported in Table 3, show how the degree of harmony
aversion determines which WMV mechanism is socially preferable. Each entry should be read as
follows: for a given o, WMV with parameter « yields higher social welfare than the benchmark
mechanism with parameter o/ = 0 whenever the degree of disharmony aversion satisfies y > y*.
For very low values of «, the threshold y* is high in both committee sizes, indicating that only
a very strong concern for harmony would justify adopting such strongly minority-favoring rules.
As « increases, the threshold y* gradually decreases and eventually stabilizes at very small
values. When o« becomes large, first-round winners retain substantial influence in the second
round, which reduces the incentive for strategic behavior and lowers the likelihood of repeated
losses. In this regime, the mechanism with a larger o almost always dominates the reference rule,
regardless of the committee size, because even minimal harmony aversion is sufficient to offset
the small remaining differences in second-round influence. Overall, Table 3 highlights the central
role of the weight parameter « in determining the social welfare ranking of WMV mechanisms

across different committee sizes.

w=>51l; m=5 w=101; m=5

a y* a y*

0.1 22239.57 0.1 45.83
0.2 41.05 0.2 20.43
0.3 12.32 0.3 14.12
0.4 7.46 0.4 10.60
0.5 5.52 0.5 8.19
0.6 4.38 0.6 6.76
0.7 2.96 0.7 5.93
0.8 2.83 0.8 4.83
0.9 2.23 0.9 3.99
1.0 2.21 1.0 3.75

Table 3: Critical values y* determining when WMV with parameter o outperforms WMV with
parameter o = 0.

4 Conclusion

We have introduced a weighted minority voting mechanism that modifies the second round of a

sequential voting process by adjusting the influence of first-round winners. This design creates
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a continuum between simple majority and minority voting while preserving participation by all
voters. Our analysis shows how strategic incentives, welfare outcomes, and harmony concerns
evolve as the weight parameter varies. We identify conditions under which sincere behavior arises,
characterize equilibrium manipulation patterns, and compare aggregate welfare for different
values of the weight.

Possible extensions to our model include introducing asymmetric information by allowing
voters to hold heterogeneous beliefs about the number of strategic voters k, which could sig-
nificantly affect their incentives and lead to different equilibrium behaviors. Another natural
direction is to explore how the choice of tie-breaking rule influences the outcomes, as our current
results rely on a specific tie-breaking mechanism (a fair coin toss); examining alternative rules
would help assess the robustness of our findings. Further extensions could also be explored.
One avenue is to allow voters to abstain at a cost, or to make abstention informative, which
may generate new strategic patterns in both rounds. Another is to consider correlated material
payoffs across voters, which would introduce richer coalition structures and possibly shift the
distribution of double losers. A dynamic extension with more than two rounds could reveal

propagation effects in voting weights and show how early decisions shape long-run equilibria.
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Appendix: Proofs

Proof of Lemma 1. To compute the probability that a weight-1 voter belongs to a winning
coalition, we take the perspective of that specific voter. The probability is computed by consid-
ering all possible coalitions that would still be winning if this voter were included. Removing this
voter leaves a system with w; — 1 weight-1 voters and we weight-« voters. The remaining voters
must form a coalition that is almost winning — more precisely, a coalition that, without the
individual 7, has a total weight strictly greater than g — 1. Indeed, if their weight is strictly less
than ¢ — 1, then even adding the voter ¢ will not achieve a majority. If their total weight exceeds

q—1, the individual ¢ simply reinforces an already winning coalition, which means that she is not
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pivotal. But if the coalition weight is exactly ¢—1, then the individual ¢ becomes pivotal, turning
the tie into a winning vote with probability % Therefore, the threshold = + ay > ¢ — 1 captures
the condition under which the individual ¢ contributes to a winning coalition. The remaining
voters must form a winning coalition on their own and vote in the same way, meaning their
total weight must strictly exceed ¢ — 1. The number of ways to choose x weight-1 voters from

Wi 1) and the number of ways to choose y weight-a voters from wsy is

the w; — 1 is given by (
( y ) Since each voter votes independently, the probability of a specific configuration occurring

is (%)wil. Summing over all valid configurations gives:

RRENES S o{ 0 |6

x+ay>q 1

When a coalition reaches exactly the threshold ¢ — 1, adding our weight-1 voter ¢ creates a tie,
which is resolved randomly with a probability of 1/2 for acceptance/rejection. Following the

same combinatorial reasoning, the contribution of these cases is given by:

oA wy; — 1\ (w
1= 2
= 2 2 (")(0)
x+ay q 1

Combining both contributions, we obtain the complete expression for P;(w).

For a weight-a voter, the same logic applies. Removing this voter leaves w; weight-1 voters and
wg — 1 weight-a voters. The condition for the remaining voters to be a winning coalition when
this voter votes in the same way as the coalition is that their total weight strictly exceeds g — a.

The computation gives:

Py(wy,ws) = 2w1_1 Z U:Zl <w1> ( 1)

7

$+ay>q [}

When the coalition reaches exactly ¢ — «, adding this voter results in a tie, which is resolved

with a probability of 1/2 for acceptance/rejection. The contribution of these cases is thus:
1 w1 w1 u@——l
s ()
z+ay q a

Summing these terms, we obtain the complete expression for Py(w1,ws), which completes the

proof. [

Proof of Lemma 2. We note that Pi(m+ (k+1),w— (m+k+ 1)) represents the probability
that a majority individual i, who voted strategically in the first ballot (and thus holds full
weight in the second round), belongs to a winning coalition in the second round, given that k41

majority members (including ¢) voted strategically. In this setting, there are m + k + 1 voters
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with weight 1 in the second round: the m minority members and the k + 1 strategic majority
voters. The remaining w — (m + k + 1) voters — those from the majority who voted sincerely
— have weight «. Since we compute the probability that voter ¢ is part of a winning coalition
from her point of view, we exclude her from the summation: the remaining weight-1 voters are
thus of size m + k, and the remaining weight-a voters are still of size w — (m + k + 1). The

(m+k+1)+a(w—(m+k+1))
2

quota in this setting is given by ¢; = , which corresponds to half of the

total weight (including 7). The condition x + ay > g1 — 1 ensures that the coalition excluding ¢
already meets or exceeds the quota once ¢ joins, making her vote pivotal.

We now focus on the expression Py(m + k,w — (m + k)), which represents the probability
from the point of view of a majority individual ¢ who voted sincerely in the first ballot and thus
retains only a weight-« in the second round. The k majority members who voted strategically
join the group of weight-1 voters, so this group has size m+ k. The remaining majority members
who voted sincerely form the group of weight-a voters, of size w — (m + k) — 1. As before, we
exclude individual 7 from the summation since we are evaluating the probability that she is part
of a winning coalition from her point of vue. The quota for success in the second round is given

by go = m+k+a(1§—(m+k))

weight «, the coalition without her must exceed the threshold go — « for her to be pivotal. The

, which corresponds to half the total weight, including i. Because i has

first term of the expression captures the configurations where this inequality is strictly satisfied.
The second term handles the tie case, where the total weight equals exactly ¢go — o and the

outcome is determined by a fair random draw, each side winning with probability % ]

Proof of Lemma 3. In the second ballot, let S denote the total Yes-weight contributed
by all voters except voter i. The proposal is accepted whenever the total Yes-weight exceeds
q =
if she belongs to the group of weight-a voters.

w1 tows
2

. Voter 7 has weight 1 if she belongs to the group of weight-1 voters, and weight «

Suppose first that ¢ prefers acceptance. If she votes No, the total Yes-weight remains S.
If she votes Yes, the total becomes S + 1 (if ¢ has weight 1) or S + « (if ¢ has weight «). A
simple case analysis shows that a sincere Yes-vote is never worse and sometimes strictly better:
(i) If S > g, both actions lead to acceptance. (ii) If S = ¢, voting No yields acceptance with
probability 1/2, while voting Yes ensures acceptance with probability 1. (iii) If ¢ — 1 < S < ¢
(for a weight-1 voter) or ¢ — a < S < ¢ (for a weight-a voter), voting No leads to rejection
whereas voting Yes leads to acceptance. (iv) If S = ¢ — 1 (weight 1) or S = ¢ — a (weight «),
a No-vote leads to rejection whereas a Yes-vote reaches the tie, accepted with probability 1/2,
which is strictly better. (v) If S < ¢—1 (or S < ¢ — « for a weight-a voter), neither action can
reach the quota, so both actions yield rejection. Thus, whenever i prefers acceptance, voting
Yes weakly maximizes her expected payoff for every possible value of S, and is strictly better
whenever she is pivotal.

By symmetry, if ¢ prefers rejection, voting No is weakly optimal: it strictly improves the
outcome on the pivotal region S € [¢ — 1,q] for weight-1 voters or S € [¢ — «,¢| for weight-
« voters, and yields the same payoff elsewhere. Since sincere voting weakly dominates any

deviation in every possible state of the world, it is a weakly dominant strategy in the second
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ballot. -

Proof of Proposition 1. (i) Follows directly from the structure of WMV: if a minority
individual votes strategically and ends up on the winning side, she loses her minority status and
therefore her full weight of vote in the second round, her overall influence. Thus, voting sincerely
is always optimal for minority individuals.

(ii) Suppose without loss of generality that the majority is in favor of the adoption of the
project while the minority is against it. In the first round, the project is adopted if it receives at
least wT‘H “Yes” votes. Given that minority members always vote sincerely (as shown in point

(1)), exactly m votes against the project come from the minority. To reach the required majority,

w—+1

we therefore need exactly “5= sincere votes in favor of the project from majority members. If

wtl majority members vote sincerely, the project is rejected, which leads to an

2
undesirable outcome. If more than “’T‘H vote sincerely in favor of the project, the project is still

accepted, but some of these individuals lose the opportunity to keep their full voting weight in

fewer than

the second round (by deviating and then voting in the same way as the minority, i.e., against

the project), which is also not optimal. Therefore, the optimal strategy for the majority group

w+1
2
w—m — wTH = “’Tfl — m majority members can then vote strategically without affecting the

is to have exactly of its members vote sincerely in favor of the project. The remaining
outcome of the first round. By doing so, they keep full voting weight in the second round and
increase their expected payoff. No majority member wants to deviate from this plan as long as
the others stick to it.

We now turn to the proof of the final statement of the proposition. If an individual ¢ from

the majority votes sincerely in the first ballot, her expected utility is given by:

Fuf™® = a1z + % (Pg(m +kw—(m+k))— ;)
The second term represents the expected material utility from the second ballot for individual %
who voted sincerely in the first ballot and thus votes with weight «, which explains the presence
of Py(m+k,w— (m+k)). The factor 3 captures the fact that belonging to a winning coalition
does not necessarily mean that the project aligns with the voter’s preferences — only half of
the time, the coalition votes in the direction that matches her material interest (i.e., project
adoption when z; > 0, or rejection when z;5 < 0). We recall that the individual payoff in the

second round z;y follows a uniform distribution over the interval [—1, 1], that is,
0 1 ! 1
/1 Zi2 dZZ‘Q = —5 and /O Zi2 dZZ‘Q = 5
If the individual ¢ votes strategically, her expected utility becomes:
strat 1 1
Eui™ = a1z +3 Pm+k+1w—(m+k+1))— 3

The second term represents the expected material utility from the second ballot for individual
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1 that voted strategically in the first ballot in order to retain the full weight of vote in the
second ballot, which explains Py(m + k + 1,w — (m + k + 1)). A majority voter will choose
to vote strategically in the first ballot if the expected utility under strategic voting exceeds the
one under sincere voting. That is, the individual prefers to retain her full weight of vote in the
second round, provided that this strategy increases her probability of belonging to a winning
coalition, formally

strat sinc
Eu; ™ > Eu; ™.

Expanding this inequality, we obtain:
Piim+k+1L,w—(m+k+1)) > P, (m+kw—(m+k))

Let us consider AP = Piim+k+ L,w— (m+k+ 1) — Po(m+kw—(m+k) >0

g = m+k+1+a(1;—(m+k+1))7 and ¢p = m+k+a(1;—(m+k))

. We can notice that go —av = ¢1 — 14+ 152

Since « € [0, 1], we have I_Ta > 0, which implies g1 — 1 < ¢» — . Now, let us consider the

conditions within the summations. If  + ay > ¢2 — a, then x + ay > ¢ — 1 + PT“ The

difference AP is given as follows:

oo ()7 (ETE (e )

33+ay>q1 1

SRR

:L‘+o¢y =q1—1

(T

m+ay>q2 a

AT ()

x+ay q2 @

We can simplify AP as follows:

(8 TR e

q1— 1<x+ay<q2 o

2 5 vl () TG )

Yy
:c+ay q1 1
_mZEkw nik m+k\ (w—(m+k)—1
x Y '
x—i—ay qg o
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We can further simplify AP as follows:

()78 TR ()
T y

q1— 1<w+o¢y<q2 a

(mizkw nik:-i—l (m+k><w(m+k+1)>
- T Y

z+ayq11
m—+k w—(m+k)—
m+k\ (w—(m+k)—1
55 ()
Y=
x—l—anga

Since the factor (%)w*1 is strictly positive, the sign of AP is entirely determined by the expression
inside the brackets. Each term in the summation is a product of combination numbers, which
are all non-negative. It follows that AP > 0, and AP = 0 if there exists no integer pair (z,y)
that satisfies the conditions of at least one of the three double summations. That is, AP = 0 if

there exists no integer pair
(x,y) €{0,...,m+k}x{0,....,w—(m+k+1)},
such that
r4+ayclp—1, gg—af

(An example of such a case will be given just after Proposition 1). This completes the proof. m

Proof of Proposition 2. We begin with the case where the first project is adopted in
the first round, i.e., a1 = 1. We assume that the equilibrium described in Proposition 1 holds,
where strategic behavior may arise among majority individuals in the first ballot, while minority

voters have no incentive to vote strategically at this stage We note that these majority members,

together with the minority, are indexed from 1 to ¥51. Consequently, the first ¥t individuals
retain their full voting weight in the second round, Wlth a winning probability of Pf‘(T_l, “’T‘H)

in the second round. In contrast, the remaining w“ individuals have a a-weighted vote in
the second ballot and therefore a winning probablhty of PQa(wT_l, w‘H) Recall that the quota

required for acceptance in the second round is defined as
w=1 4 aw?"rl

_ 2
1= 2
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w—1

We then obtain
2

wWe = Z %Pfé <w2—1’ w;l) <Zi1+/olzi2dzi2>+;<1_Pla< - w—i—l))
eaor (S e (- (52 25 (s [ )|

%Pza <w2_17 w—;l> (Zil-l-/olzﬂdzz'z)-l-;(l—fjfé( ! w;l))

+%P2a <w2_1, w_;1> Z¢1+% <1—P2a (102_17 w;—1>> <211+ 27,2de2 ]

. . 0 1
Our assumptions imply: f—l Zio dzjo = —% and fo Zio dzjo = % As a consequence,

1 w—1 w+1 1 1 w—1 w+1

pef - 21 - . z (1 pof 2=~ == ,

() (rg) 2 (- (M 5 )
1

) (-3)]

.
o

=1
1 w—1 w41 1 w—1 w+1
) =1 Bl VT I O =1 (e

+21(2 ’ 2>Z“+2< 1(2’

+ Z

-1 w+1 +1

a8 0 2 71 2
. w+1
1 -1 w+1 1 w—1 w+1 1
+2P2a< 5 g >Zzl+ < P2a(2 y g >> <Zi12>]-

w

In the first sum of W<, from ¢ = 1 to T_l (weight-1 voters), the material payoff is di-

vided into four cases: (i) having positive z;2 with probability % and winning with probability
Pt Wty (fe., ap = 1); (ii) having positive z;» with probability 4 and losing with probabil-
ity 1— P (“5~ ! wg'l) (i.e., az = 0); (iii) having negative z;o with probability % and winning with

probability Pf‘(T_l, wtl) (ie., az = 0); and finally, (iv) having negative z;» with probability 3
and losing with probability 1 — Pf‘(“’T_l, wtly (ie., ag = 1). In the second sum of W, from

2
vt to w (weight-a Voters) the material payoff is also divided into four cases: (i) having

Z. pu—
p081t1ve zi2 with probability 3 and winning with probability Pg'(“5t, “H) (ie., az = 1);(ii)
having positive 22 with probability 2 and losmg with probability 1—Pg'(“51, “H) (ie., ap = 0);
(iii) having negative z; with probability & 5 and winning with probability Pg(%7 ”“"TH) (i.e.,
az = 0); and finally, (iv) having negative z; with probability % and losing with probability

1— Po(ust, vt (ie., ag = 1).
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The equation can be rearranged to

w

1 w—1 w+1
e el (5 25 )
— 4 2 2
afw—1 w+1
o [4(om( 21 )

Similarly, the expression for WMV with the parameter o/ is given by:

/ v 1 fw—1 w+1
o ; “ep(——, — ) -1
we = Y |5 (on (M 1) 1))

o (55 55) )

Using the previously derived expressions for W and W‘ll yields the following welfare differ-

, v 1 w—1 w+1
a_ Cv: 7 72]304 Ty T _]-
we et = (S (arr (U5 ) )]

+(w—m) 1 (5 5) 1))
(S b (5 ) )

e o (52 55) )

By simplifying the expression above, we observe that the two sums over » ;” | z;; cancel out.

ence:

This yields the following form of the welfare difference:

/ 1 w—1 w+1 fw—1 w1
a o _ = polZ2_—- Z T\ _po/ (2~ Z '~
weE=w 2%<1<2 " > 1<2 " T »

() ()

In order for W — W' to be strictly positive, the following condition must be satisfied:

w—m

Pf(w1,w2) — Plal (wl,wg) > <P2a/ (wl,wg) — Pg(wl,wg)) .

This completes the proof of the case where a; = 1. Note that in the case where a; = 0, the first
project is rejected, and no material payoff is realized from it. Therefore, the expected welfare
remains unchanged under both voting mechanisms, as it depends only on second-round outcomes
and associated probabilities. Consequently, Proposition 2 continues to hold under a; = 0, and

the comparison between the two voting schemes remains valid. ]

Proof of Proposition 3.

Point (i): The argument follows the same line as in the proof of point (i) of Proposition 1.
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All minority members vote sincerely in the first ballot, since voting strategically would reduce
their weight in the second round without any material gain. This reasoning also extends when
harmony considerations are present: a deviation would not only weaken their weight in the
second round, but could also generate additional disutility from disharmony.

For majority members, we first show under what condition they vote strategically, let k €
{O, ey wa‘q’ — m} be the number of strategic majority voters (other than individual 7). The
expected utility of a sincere voter ¢ includes the material payoff from the first round and the
harmony payoff associated with the probability that the minority wins in the second round. For
a strategic voter ¢, the first-round material payoff remains unchanged, but the voting weight in
the second round increases to 1, which changes the probability of being in a winning coalition
and therefore modifies both the material and harmony components of the utility. The expected

utility from sincere voting is given by
Eu?nc = a1z + %(Pg(m +k,w—(m+k))— %)
+2mdér (1 — Pi(m+k, w— (m+k))),
while strategic voting yields

Bus™ = a1z; + 5 (Pi(m+k+1, w— (m+k+1)) — §)
+2méoL (1 —Pi(m+k+1,w—(m+k+1))).

Using 67, = %y, we compare both expressions. By simplifying the difference and isolating vy,

strategic voting is optimal when

wPm+k+1lLw—(Mm+k+1)—Po(m+kw—(m+k)))
dm(Pr(m+k,w— (m+k)) —Pi(m+k+1,w—(m+k+1)))

y < = y" (k)

In other words, when k voters vote strategically: (a) a sincere voter has an incentive to
deviate to strategic voting if y < yY(k); (b) a sincere voter has no incentive to deviate to
strategic voting if y > y"(k); (c) a strategic voter has no incentive to deviate to sincere voting
if y <y"(k); and (d) a strategic voter has an incentive to deviate to sincere voting if y > y"(k).

Point (ii): According to the first case of point (ii), since the model assumes y > 0, we
immediately obtain y > y"(0). Hence y < y"(0) can never hold, and no majority member
has an incentive to deviate. Therefore an equilibrium exists in which all majority members
vote sincerely. Now consider the second case: By definition of 3"(0), we have EufinC > Fuftrat
whenever y > y¥(0). Hence no majority member finds it profitable to deviate, and sincere voting
by all majority members again forms an equilibrium. This proves part (ii).

Point (iii): Assume y"(0) > 0 and y < y"(0), so that a single majority member strictly
prefers to deviate from sincere voting when all others vote sincerely. Consider now the case
where k£ > 1 majority members vote strategically. By definition of y”(k), a (k + 1)-th majority
member finds it profitable to deviate if y < yY(k). Hence, for every k such that y < y"(k),
strategic voting strictly dominates sincere voting for any majority member not yet deviating.

Therefore such configurations cannot form an equilibrium. If there exists a smallest integer
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k* € {1,...,%“3 — m} such that y > y¥(k*), then when exactly k* individuals deviate, no
remaining majority member has an incentive to deviate further. Thus the profile with k£* strategic
majority voters and w — m — k™ sincere majority voters constitutes an equilibrium. If no such &
exists, i.e. y < yY(k) for all k € {1,..., wa3 — m}, then every majority member strictly prefers
to deviate as long as this does not overturn the first-round outcome. The maximal number of
strategic deviations compatible with the acceptance of project 1 is k = U’Tfl — m. At this point,
no further deviation is feasible, and no strategic voter has an incentive to switch back to sincere
voting. Hence this configuration forms an equilibrium.

Point (iv): Suppose that y > y"(0) and that y satisfies y"(k — 1) < y < y"(k) for some
k € {1, ey wa?’ — m} First, assume that k (< k) majority members vote strategically. Two
subcases arise: (1) If y > y¥(k—1): A strategic voter among the k has an incentive to deviate to
sincere voting, and the other strategic voters may have the same incentive. Deviations continue
until we find the smallest k* € {1,...,k — 1} such that y < y”(k*). If such a k* exists, the
equilibrium has k* + 1 majority members voting strategically and w — m — k* — 1 majority
members voting sincerely; otherwise, if such a k* does not exist, the equilibrium has 0 strategic
voters (all sincere). (2) If y < y”(k — 1): No strategic majority voter among the k wants to
deviate. However, a sincere voter may have an incentive to deviate to strategic voting, and the
process continues until we find the first k* € {k,...,k — 2} such that y > y*(k*). If such a k*
exists, the equilibrium has k* strategic majority voters and w — m — k* sincere majority voters;
otherwise, we will certainly find k* = k — 1 such that y > y"(k — 1) according to our hypothesis,
in which case the equilibrium consists of £ — 1 strategic voters and w — m — k + 1 sincere voters.

Second, assume that k (> k) majority members vote strategically. Again two subcases
appear: (1) If y > y”(l;: —1): A strategic voter among the k has an incentive to deviate to sincere
voting, and the remaining k—1 strategic voters may follow, initiating a sequence of deviations.
This process continues until we find the largest integer k* = max{k € {k+1,...,k—2} : y <
y’(k)}. If such a k* exists, the equilibrium consists of k* + 1 strategic majority voters and
w —m — k* — 1 sincere majority voters. If no such k* exists, we proceed to the final value of k.
Since by hypothesis y < y¥(k), the condition y < y”(k) holds, resulting in an equilibrium with
k+1 strategic majority voters and w—m—k—1 sincere majority voters. (2) If y < y”(l%—l): None
of the k strategic voters may have an incentive to deviate to sincere voting. However, a sincere
voter may have an incentive to deviate to strategic voting, potentially followed by others. The
process continues until we find the smallest integer k* = min{k € {k, ..., w23 _m} oy > y0(k)}
If such a k* exists, the equilibrium consists of k* strategic majority voters and w—m — k* sincere
majority voters. If no such £* exists, the equilibrium consists of wT‘H sincere majority voters and
qu — m strategic majority voters. This completes the proof of the proposition. [
Proof of Proposition 4.

Point (i): The argument follows the same line as in the proof of point (i) of Propositions 1.

For majority members, we already know from the proof of Proposition 3 that strategic voting
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is optimal when

wP(m+k+1Lw—(m+k+1) = FPo(m+kw—(m+Ek)))
dm (Pi(m+k,w—(m+k)) —Piim+k+1,w—(m+k+1)))

y< =y (k).

Recall that in Proposition 3 we established the conditions under which voters have incentives to
deviate between sincere and strategic voting. In particular, when k voters vote strategically: (a)
a sincere voter has an incentive to deviate to strategic voting if y < y”(k); (b) a sincere voter
has no incentive to deviate to strategic voting if y > y"(k); (c) a strategic voter has no incentive
to deviate to sincere voting if y < y¥(k); and (d) a strategic voter has an incentive to deviate to
sincere voting if y > y¥(k).

Point (ii): The argument follows the same line as in the proof of point (ii) of Propositions 3.

Point (iii): First, (iii)-1, when y"(0) is undefined, all three probabilities coincide for k = 0,
that is, P, = P{'"° = P, Hence, Euftrat = Eufinc, and no majority member has an incentive to
deviate from sincere voting. Second, (iii)-2, if P, = P§in¢ # Py, the numerator (P, —P) # 0 while
the denominator is zero, implying EuS"?" > Eu?inc. Alternatively, when 4" (0) is well defined and
satisfies ¥ (0) > 0 with y < y"(0), the condition for strategic voting is met. Consequently, one
majority member votes strategically, and we set k = 1 for the sequential procedure in point (iv).

Point (iv): We proceed sequentially for k = 1,2,. .., “’T_?’ —m. At each step k, we consider
whether an additional majority member would prefer to vote strategically given that k£ majority
members are already voting strategically. When y?(k) is undefined (P, = P for k), two
subcases occur. If P = Pi"® = P, for k, all probabilities are equal, so no further deviation
is profitable. The equilibrium consists of k strategic majority members and w — m — k sincere
majority members. If P = P # P, for k, the marginal material gain is positive. One
additional majority member votes strategically, and we proceed to evaluate k + 1. When 3 (k)
is well-defined, we compare y with y*(k). If y > y”(k), the condition for strategic voting is
not satisfied for an additional voter. The equilibrium consists of k strategic majority members
and w — m — k sincere majority members. If y < y”(k), an additional majority member prefers
strategic voting. We add one strategic voter and proceed to evaluate k + 1. The procedure
continues until either a stopping condition is met or we exhaust all admissible k.

Point (v): The logic follows that of Proposition 3 (iv), but at each step we must check
whether the threshold y¥(k) is defined or not. Consider an initial configuration with k < k
strategic voters. First examine whether these strategic voters wish to deviate to sincere voting.
They do not wish to deviate if 3 (k — 1) is defined and y < y*(k—1), or if y*(k — 1) is undefined
(with either P, = P{"® = P, for k = k — 1, so Eu" = B, or P; = P{™° = P, implying
Euftrat > Euzs»mc) . In this case, a filling process may occur: one additional sincere voter may
have an incentive to become strategic if, for a given number k of strategic voters, y¥ (k) is defined
with y < y?(k) or if y¥(k) is undefined with P; = P{"® # P». The filling stops at the smallest
ke {k,... k—2} where y°(k) is undefined with P, = P{™ = P, (no further incentive to add
strategists) or where y > y*(k) (if y*(k) is defined). Denote this k by k*; the equilibrium then
has k* strategic voters (if such a k* exists) or, if no k* is found, k — 1 strategic voters (since by

~ ~

hypothesis y > y¥(k—1)). Conversely, if y”(k —1) is defined and y > y"(k — 1), a strategic voter
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may wish to deviate, initiating an emptying process. This emptying continues as long as, for a
given number k of strategic voters, y¥(k) is defined and y > y"(k). It stops as soon as y"(k)
becomes undefined or y < yY(k). Let k* be the smallest k' < k — 1 where this stopping condition
is met; the equilibrium then consists of k* 4+ 1 strategic majority voters (if y¥(k*) is defined),
with the remaining majority members voting sincerely. The case k > k is treated analogously,
following the same emptying/filling procedure as in the second subcase of Proposition 3 (iv),
while carefully accounting at each step for whether y”(k) is defined. Thus all cases are covered
by adapting the reasoning of Proposition 3 (iv) to accommodate the possible undefinedness of

yY(k). This completes the proof of the proposition. [ |

Proof of Proposition 5. We focus on the situation where the first project is accepted in the
first round, that is a; = 1. The same conclusion still holds when a; = 0, and the comparison

between the two voting procedures remains unchanged We note that the majority members,

together with the minority, are indexed from 1 to ¥51. Consequently, the first ¥t individuals
retain their full voting weight in the second round, w1th a winning probability of PO‘(“’ wol wT‘H)
in the second round. In contrast, the remaining “+! individuals have a a-weighted vote in
the second ballot and therefore a winning probablhty of Pg(%“5 1, w‘H) Recall that the quota
w— w+
required for acceptance in the second round is defined as ¢ = —2 —; . We then obtain
w—=1
211 ! 1
we = 30| 3Pr(et o) (s + [ madan) + g (- PR )
i=1 0
1 afw—1 w+l 1 w w41 0
+ P (M ) s+ 5 (L= PR(% #)) (n + | zidze
-1

_|_
(= "

- 1 afw—1 w+l !
i s ) 7 7 0
[b(5L+(52)(5L+(5j2)] Z 2P2( 5 5 ) (Zl—i-/ z2d22>
j=1 o1 0
j#i T2
1 P w+1 1Fm w—1 w+l1
5(1_ 2( 2))Zi1+§ 2(27 Q)Zil
1 0 "
+5 (=Pt =) (Zu +/ Zia dzi2> + ) E[b(SL + 652)(01 + 5j2)]
-1 =

Our assumptions imply
0 1
1 1
/_1 zig dziz = 5 /0 zig dziz = 2

E[b(6L + 62) (61 + 652)] = 261, (1 — P (452, 24L)) forall j=1,...,m.

and
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Then,

w—1
we= 3 |5t ) (s g ) + 5 (- PR ) s
i=1
_,_lpa(w—l w;rl)z‘ 4 1 (1_1304(107—1 L‘H)) 2 1
9 1 \72 2 Zl2 R ) 112
% - 1 o wW— w
+;E[b(5L+5j2)(5L+512)] +'zw;1 §P2( 7 5) (Zi1+2>
J#i =T
1 afw—1 w 1 a(w—1 w
+5 (L= P (25, #50)) za + 55 (M5, #57) 2a
1 1 “
5 (1= PR 2) (= 5 )+ Do BIDGL + 80+ 0] |
j=1

w

In the first sum of W%, from ¢ = 1 to Tfl (weight-1 voters), the material payoff is di-
vided into four cases: (i) having positive z;2 with probability % and winning with probability
Pzt w4l (ie., ap = 1); (ii) having positive z;» with probability 3 and losing with proba-
bility 1 — PP(“52, 2H) (ie., as = 0); (iii) having negative z;» with probability 1 and winning
with probability P(“5t, “H) (ie., ap = 0); and finally, (iv) having negative z; with prob-
ability 3 and losing with probability 1 — Pf(%5t, “H) (ie., ap = 1). In the second sum of
W<, from i = “H to w (weight-o voters), the material payoff is also divided into four cases: (i)

having positive z;2 with probability % and winning with probability Ps'(%52, ¥l (i.e., ag = 1);

2 0 2 ;
(ii) having positive z;» with probability 3 and losing with probability 1 — Pg(“51, “H) (ie.,
ay = 0); (iii) having negative z;o with probability % and winning with probability Ps'( “’T_l, “’?‘H)

(i.e., ag = 0); and finally, (iv) having negative z; with probability % and losing with probability

1— Pf‘(wT_l, “’TH) (i.e., ag = 1). That is, the equation can be rearranged to

v 1
W= 3z mg (2P (2 wgl)—1)+2<m—1>6L(1—Pf“(“’21,w;1))]
=1
-1 1
+(“’2 —m> 7 2P (e ”;1)—1)+2m6L(1—Pf*(”;1,“’5“)>]

1

1
w1 p s ’”5”)—1)+2m5L(1—P1"‘(”51a“’§1))]-

2 |4 2

. w—1 af w—1 w4+l w+1 af w—1 w4+l
= Zzi1+T(2P1(TvT) —1) +T(2P2(T’T) —1)
=1

_2m(w —1)

y(1-Pr(et ).
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Similarly, the expression for WMV with the parameter ' is given by:

w
’ w—1 Lo w+1 ’ _
wWe = zi1 + 3 <2P104(w217w;-1) _1> 4 2 <2P204(w21’w;-1) _1>
i=1

2 -1 /
2Oy (1 Pyt ).

Using the previously derived expressions for W and Wa/, we now consider the difference
W — W, which can be simplified as follows:

we - e = P (g ) - (g )
w41 _ 1 ow—
e (et ) - (et )

2m(w — 1) _ o
t— Y (Pf<levaH) —Pf(levaH>>-
Rearranging terms, the inequality W — W< > 0 is clearly equivalent to the condition:

v ((w=1) (P = Pp) + (w+1) (Pg' - )]
’= sm(w —1) (Pf = PY)
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