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Abstract

We consider cooperative games where the coalition structure is given by the set of winning

coalitions of a simple game. This type of games models some real-life situations in which some

agents have economic performances while some others are endowed with a political power.

On this class of cooperative games, the Myerson value has been identified as the Harsanyi

power solution associated to the Equal Division power index and has been characterized in

the large class of Harsanyi power solutions with respect to the associated power index. In

this paper, we provide a characterization of the Myerson value for this class of games without

focusing on the whole family of Harsanyi power solutions and therefore, without taking into

account any power index. We identify the Myerson value as the only allocation rule that

satisfies efficiency, additivity, modularity, extra-null player property, and Equal Treatment

of Veto.

Key words: TU-game, Voting structure, Harsanyi dividends, Harsanyi power solution,

Myerson value.

JEL classification: D71, D72.

1 Introduction

A cooperative game is with transferable utilities (TU-game) is a game in which individuals (or

agents, or players) can cooperate with each other in order to increase their benefits. A coalition is

a group of players who have decided to act together. In general, it is conceded that any coalition

arise, that is, any player can cooperate with any other player, and then any coalition is feasible.

However, several real-life situations highlight the plausible lack of cooperation between some

agents, which implies that the set of feasible coalitions cannot be considered as the collection

of all subsets of the set of players. This type of cooperative games with limited cooperation

has been originally brought out by Myerson (1977), through the communication graph games.

Such games are modelled by a (undirected) graph wherein each player is represented by a vertex

and the edges represent the possible cooperation between players. This work paved the way for

many other works such as Gilles et al. (1992), Meessen (1988), and Algaba et al. (2000) among

others. The work of Algaba et al. (2000) is particularly interesting because it introduces a

cooperation structure called union stable structure, which generalizes the communication graph

structure proposed by Myerson (1977). A union stable structure is characterized by the following
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property: Given any two feasible coalitions with a non-empty intersection, the union is another

feasible coalition. Recently, Algaba et al. (2019) has studied a particular type of union stable

structures called voting structures, which capture some real-life situations where the economic

power of an agent emerges if and only if it is endowed with a political power. An example of

such situations is given by Algaba et al. (2019) through the Peasants and Owners problem (see

Algaba et al. (2019), Example 1).

The problem of sharing the benefits resulting from the cooperation of agents remains the

central problem of any cooperative game. For the class of cooperative games on union stable

structures, the well-known family of allocation rules is the family of Harsanyi power solutions,

which distributes the benefit of each coalition among its members, proportionally to a power

measure. A power measure is a mapping that assigns to each player, a non-negative real number

that represents his cooperation power. In the specific case of voting structures, a power mea-

sure is called a power index. The work of van den Brink et al. (2011) provides an axiomatic

characterization of the Harsanyi power solutions for graph restricted games, and Algaba et al.

(2015) provides a general characterization of Harsanyi power solutions for cooperative games

on union stable structures. Next, Algaba et al. (2019) provides a characterization of these so-

lutions for the specific class of games on voting systems. From this latter work, the Myerson

value (Myerson, 1977) which is the Shapley value of the classical TU-game associated to each

voting structure (generally each union stable structure), has been identified as the Harsanyi

power solution associated to the equal division power index, yielding the same political power

to all players. However, the characterization of the Myerson value as a Harsanyi power solution

is fundamentally based on its underlying power index. Indeed, any Harsanyi power solution

requires that the political power of each agent should be known in advance and the sharing

of the benefits should be made with respect to the political power of agents. In other words,

the Harsanyi power solutions give more credit to the political ability of agents, which is further

justified by the fact that the characterization of this class of solutions uses axioms based on the

(given) power index. However, since the underlying power index inducing the Myerson value

yields the same (political) power to all agents, we believe that this solution can stands out from

this class of rules. In this paper, we claim that for cooperative games on voting structures, the

Myerson value does not need to be identified as a Harsanyi power solution and therefore, one

does not need any power index to characterize the Myerson value on this class of cooperative

games. To prove this claim, we provide a simple characterization of the Myerson value for games

on voting structures, using five desirable axioms. The asset of this characterization is that it

uses three axioms well-known in the literature, namely efficiency, additivity and modularity. We

add two simple and understandable axioms to reach our result. The first additional axiom is

the Extra-Null player property, which requires that for any game on a political structure (voting

structure), if a player has no political power and no economic performance, his payoff should

be zero. The second axiom we add is Equal Treatment of Veto, requiring that any player who

is crucial for economic productivity has the same payoff than any player who is crucial for the

political authority.

The rest of the paper is organized as follows: Section 2 lays out the model with some

preliminary definitions, Section 3 is devoted to defining of our axioms and presenting the results,
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and Section 4 concludes and gives the main direction for further work on this path.

2 Preliminaries

Throughout the paper, the cardinality of a finite set S will be denoted by |S| and the collection

of the subsets of S will be denoted by 2S . Moreover, for the sake of simplicity, any singleton {i}
will be written as i.

2.1 Cooperative games

Let N = {1, · · · , n} be a finite set of agents called players. Any subset S of N is called coalition

and N is called the grand coalition. A cooperative game with transferable utilities (TU-game) is

a pair (N, v), where N is the set of players and v : 2N −→ R is the coalition function satisfying

v(∅) = 0. For each coalition S ⊆ N , v(S) is the worth of S if its members cooperate. We denote

by GN the set of all TU-games on the player set N . Since the set of players is fixed throughout

the paper1, any TU-game (N, v) will be identified by v to simplify notations.

We say that two distinct players i, j ∈ N are symmetric in the game v is v(S ∪ i) = v(S ∪ j)

for all S ⊆ N \ {i, j}. Player i is called null player in v if v(S ∪ i) = v(S) for all S ⊆ N \ i.
For each coalition S ⊆ N , the unanimity game US is defined by US(T ) = 1 if S ⊆ T

and US(T ) = 0 otherwise. It is well-known that GN is a vector space and that the family of

unanimity games (US)∅≠S⊆N forms a basis of GN . More precisely, each TU-game v can be

uniquely decomposed as

v =
∑

S⊆N,S ̸=∅
∆v(S)US . (1)

The coefficients ∆v(S) are called the Harsanyi dividends (Harsanyi, 1959) of the coalitions S ⊆ N

in the game v, and are calculated with the following recursive formula:

∆v(S) = v(S)−
∑

T⊊S

∆v(T ), ∀S ⊆ N,S ̸= ∅. (2)

A solution on GN is any mapping φ that assigns to each game v ∈ GN and each player

i ∈ N , the numerical value φi(v) ∈ R called the payoff of player i in the game v. The most

known solution in the literature of cooperative games is the Shapley value Φ (Shapley, 1953),

which shares the benefit of cooperation (the Harsanyi dividend) of each coalition equally among

its members. Formally, the Shapley value is defined as follows:

Φi(v) =
∑

S⊆N,i∈S

1

|S|∆v(S), ∀i ∈ N. (3)

2.2 Voting games

A voting game is a cooperative game in which the value of each coalition is either 1 or 0. Any

coalition with a value of 1 is called a winning coalition, and any coalition with a value of 0 is

1The of players is not variable.
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called a losing coalition. A voting game is usually denoted by W , where W is the set of all

winning coalitions, satisfying the following three properties:

1. W ̸= ∅;

2. ∅ /∈ W ;

3. For all S, T ∈ 2N , if S ⊆ T and S ∈ W , then T ∈ W .

Properties (1) and (2) require that there is at least one winning coalition and that the empty

set is not a winning coalition. Property (3) is the monotonicity property, which requires that

any superset of any winning coalition is also winning. This implies that the grand coalition is

a winning coalition. We denote by M(W ) ⊆ W the (non-empty) subset of all minimal winning

coalitions; that is, the subset of winning coalitions T ∈ W such that there is no S ∈ W with

S ⊂ T . For any minimal winning coalition T ∈ M(W ), we denote by WT the set of all winning

coalitions containing T ; i.e,

WT = {S ∈ W : T ⊆ S} (4)

It is obvious to check that

W =
⋃

T∈M(W )

WT .

Moreover, it is straightforward that if W and W ′ are two voting games on the player set N ,

then W ∪W ′ and W ∩W ′ are also voting games. Furthermore, for any two minimal coalitions

T1 and T2, it holds that

WT1 ∩WT2 = WT1∪T2 .

The ubiquitous query in any voting game is how to measure each player’s ability to turn

winning any coalition. This problem has led to the definition of several measures commonly

referred to as power indices. Formally, a power index is a mapping σ that assigns to each voting

game W and each player i ∈ N a numerical value σi(W ) ∈ [0, 1], which is the voting power of

player i in the voting game W .

The most well-known power indices in the literature are the Shapley-Shubik power index

(Shapley and Shubik, 1954) and the Banzhaf power index (Banzhaf, 1964).2 Another well-known

power index is the Equal division power index (ED) defined by

EDi(N,W ) =
1

n
, ∀i ∈ N.

Roughly speaking, the Equal Division power index yields the same fraction of power to each

player.

2We do not recall the definitions of theses two power indices since this paper is not interested in.
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2.3 Cooperative games on voting structure

As mentioned in the introductory section, many real-life situations highlight the restriction of

the set of feasible coalitions in a cooperative game, to a specific collection of coalitions. In this

paper, we are interested in situations where the set of feasible coalitions is a set W such that W

is a voting game on the player set N . This type of cooperation system, which we call a voting

system, captures situations where a coalition of players may have some economic capacity, but

does not have the legal authority. A good illustration of this type of situation is given in Example

1 of Algaba et al. (2019).

Recall that the family of voting systems is included in the family of union stable systems

introduced and studied by Algaba et al. (2000) and Algaba et al. (2001). Formally, a union

stable system on the player set N is a collection F of coalitions such that, for any two coalitions

A,B ∈ F , if A ∩B ̸= ∅, then A ∪B ∈ F . Roughly speaking, if any two feasible coalitions have

at least one common player, then that player ensures the connection between the two coalitions

in such a way that the union is still feasible. Since every voting system is monotonic (property

(3)), it is clear that every voting system is union stable. Therefore, denoting by UN and V N

the families of union stable and voting systems on N respectively, it holds that V N ⊂ UN .

A union stable structure on N is a pair (v,F) such that v is a cooperative game and F is

a union stable system on N . Similarly, a voting structure on N is a pair (v,W ) where v is a

cooperative game and W is a voting system on N . We denote by GUN the set of union stable

structures on the player set N and by GV N the set of voting structures on N ; it then follows

that GV N ⊂ GUN . Since not all of the coalitions are feasible, each union stable structure (v,F)

is associated with a TU-game vF , called the F-restricted game associated to (v,F). The game

vF is defined by

vF (S) =
∑

T∈CF (S)

v(T ) (5)

where CF (S) is the set of maximal feasible coalitions contained in S. It is not hard to check

that the W -restricted game associated to a voting structure (v,W ) is defined by

vW (S) =

{
v(S) if S ∈ W

0 otherwise
(6)

This is due to the monotonicity property which requires that S should be feasible whenever S

contains any feasible coalition.

An allocation rule on GUN is any mapping φ assigning to each union stable structure (v,F)

and each player i ∈ N the numerical value φi(v,F) ∈ R which is the payoff of player i in the

structure (v,F). The best known family of allocation rules on GUN is the family of Harsanyi

power solutions, which share the Harsanyi dividends of the coalitions in the F-restricted game

among their members, proportionally to a power measure. A power measure on UN is a mapping

σ assigning to each union stable system F and each player i ∈ N a non-negative real number

σi(F), which represents the cooperation power of player i in the cooperation system F . A power

measure on V N is called power index, and some examples of power indices were given earlier

in Section 2.2. Given a power measure σ, the Harsanyi power solution associated to σ is the
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allocation rule φσ defined by:

∀i ∈ N, φi(v,F) =
∑

S⊆N,i∈S∑
j∈S σj(S,FS)>0

σi(S,FS)∑
j∈S σj(S,FS)

∆vF (S) (7)

where FS = {F ∈ F : F ⊆ S}.
For a voting structure (v,W ) it is clear that for all coalitions S /∈ W , ∆vW (S) = 0.3 The

Myerson value µ on GV N is the allocation rule defined as the Shapley value of the W -restricted

game associated to each voting structure (v,W ); that is, for each (v,W ) ∈ GV N ,

µi(v,W ) =
∑

S⊆N,i∈S

1

|S|∆vW (S) =
∑

S⊆N,S∈W
i∈S

1

|S|∆vW (S), ∀i ∈ N. (8)

From (7) and (8), it is clear that the Myerson value µ on GV N is the Harsanyi power solution

associated to the Equal Division power index (ED).

The works of van den Brink et al. (2011) and Algaba et al. (2015) provide a characterization

of the Harsanyi power solutions on the classes of graph-restricted games and games on union

stable systems and, next, Algaba et al. (2019) provide a characterization of the Harsanyi power

solutions for games on voting systems. This latter work characterizes the Myerson value within

the family of Harsanyi power solutions, based on the underlying power index. In this paper, we

provide a simple characterization of the Myerson value in the large class of allocation rules on

GV N , without considering the family of Harsanyi solutions and without using any power index.

3 Axioms and characterization

3.1 Axioms

The axioms considered in this paper are not related to any power index and some of them are

well-known in the literature. The first two axioms are Efficiency (E) and Additivity (A).

� Efficiency (E): For all (v,W ) ∈ GV N ,

∑

i∈N
φi(v,W ) = v(N);

� Additivity (A): For all u, v ∈ GN , W ∈ V N , and i ∈ N ,

φi(u+ v,W ) = φi(u,W ) + φi(v,W ).

Remark that there is no ambiguity with Efficiency since for a voting system, the grand coalition

is feasible.4

3It has been shown in Algaba et al. (2015) that this result holds for any union stable structure.
4For union stable system, efficiency is defined for each maximal feasible coalition and this version of efficiency

is called component efficiency.
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The third axiom considered is the modularity axiom (M), which is equivalent to the transfer

axiom of Dubey (1975).5

� Modularity (M): For all (v,W ), (v,W ′) ∈ GN , and i ∈ N ,

φi(v,W ∪W ′) = φi(v,W ) + φi(v,W
′)− φi(v,W ∩W ′).

The next axiom is a strong version of the Null player axiom that merges both the economic

and political abilities of a player; we call it the Extra-Null player axiom (EN). Recall that a

player i is a null player in v if for all S ⊆ N \ i, v(S ∪ i) = v(S); a player i is then a null player

in W for all S ⊆ N \ i, S /∈ W ⇒ S ∪ i /∈ W . A player i is said to be an extra-null player in

(v,W ) if i is a null player in both v and W .

� Extra-Null player (EN): For all (v,W ) ∈ GV N , if i ∈ N is an extra-null player in

(v,W ), then

φi(v,W ) = 0.

The last axiom aims to ensure a fairness between the economic and political abilities of

players.

Definition 1 Let (v,W ) ∈ GV N be a voting structure and i ∈ N be a player.

We say that player i has a political veto if for all S ⊆ N,S ∈ W ⇒ i ∈ S.

We say that player i has an economic veto if for all S ⊆ N, v(S) ̸= 0 ⇒ i ∈ S.

Let PV (v,W ) and EV (v,W ) the sets of players who have the political and the economic veto

respectively.

� Equal Treatment of Veto (ETV): For all (v,W ) ∈ GV N and i, j ∈ N , if i ∈ PV (v,W )

and j ∈ EV (v,W ), then

φi(v,W ) = φj(v,W ).

The next section is devoted to the characterization of the Myerson value as the only allocation

rule on GV N satisfying (E), (A), (M), (EN), and (ETV).

3.2 Characterization

We start this section with a simple but useful result.

Proposition 1 Let W,W ′ ∈ V N be any two voting systems on N . The W ∪W ′-restricted game

associated to (v,W ∪W ′) is defined by

vW∪W ′
(S) = vW (S) + vW

′
(S)− vW∩W ′

(S), ∀S ⊆ N

Proof. Let S ⊆ N .

� Case 1: if S /∈ W ∪W ′, then vW (S) = vW
′
(S) = vW∩W ′

(S) = 0 = vW∪W ′
(S).

5Another version of modularity can be found in Laruelle and Valenciano (2001).
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� Case 2: if S ∈ W \W ′, then vW∪W ′
(S) = v(S) since S ∈ W ∪W ′ and vW (S) + vW

′
(S)−

vW∩W ′
(S) = vW (S) = v(S) = vW∪W ′

(S). Similarly, if S ∈ W ′ \W , vW∪W ′
(S) = v(S) =

vW
′
(S) = vW (S) + vW

′
(S)− vW∩W ′

(S).

� Case 3: if S ∈ W ∩W ′, then vW∪W ′
(S) = v(S) = vW

′
(S) = vW (S)+ vW

′
(S)− vW∩W ′

(S).

Now let W be a voting game and M(W ) be the set of its minimal winning coalitions.

Without loss of generality, let us write M(W ) = {T1, · · · , Tm}, and let A(W ) be the set of

coalitions defined as follows:

A(W ) =
{
A ⊆ N : A =

⋃

p∈H
Tp; H ⊆ {1, · · · ,m}

}
. (9)

In other words, A(W ) stands for the set of all coalitions that can be written as a union of

minimal winning coalitions. Moreover, similar to (4), let us set WA = {S ∈ W : A ⊆ S} for all

A ∈ A(W ).

Proposition 2 Let φ be an allocation rule on GV N . If φ satisfies modularity, then for any

voting structure (v,W ), φ(v,W ) is entirely defined by the family of voting structures (v,WA), A ∈
A(W ). More precisely, for any i ∈ N , we have

φi(v,W ) =

m∑

p=1

φi(v,WTp)−
∑

p<q≤m

φi(v,WTp∪Tq) + · · ·+ (−1)m+1φi

(
v,W∪m

p=1Tp

)
. (10)

Equation (10) is equivalent to the Poincaré formula for the cardinality of any finite union of

finite sets.

Proof. Let φ be an allocation rule on GV N satisfying modularity. Let (v,W ) be voting structure

such that M(W ) = {T1, · · · , Tm}.

� If m = 1, the result is straightforward since in this case, we have M(W ) = {T1} and

W = WT1 .

� If m = 2, we have M(W ) = {T1, T2} and for every coalition S ⊆ N , it holds that

φi(v,W ) = φi(v,WT1 ∪WT2) = φi(v,WT1) + φi(v,WT2)− φi(v,WT1 ∩WT2)

= φi(v,WT1) + φi(v,WT2)− φi(v,WT1∪T2)

since WT1 ∩WT2 = WT1∪T2 .

For the rest of the proof, we will denote φi(W ) to mean φi(v,W ) to simplify the notation,

since the game v remains fixed.

� Assume that the result holds for |M(W )| = m > 2, and let us show that it remains true

for |M(W )| = m+ 1.
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If |M(W )| = m+1, we can write W = W ′ ∪WTm+1 where W ′ = ∪m
p=1WTp . It then follows

that

φi(W ) = φi(W
′) + φi(WTm+1)− φi(W

′ ∩WTm+1)

= φi(W
′) + φi(WTm+1)− φi

(
∪m
p=1 (WTp ∩WTm+1)

)

=

m∑

p=1

φi(WTp)−
∑

p<q

φi(WTp∪Tq) + · · ·+ (−1)m+1φi

(
W∪m

p=1Tp

)

+ φi(WTm+1)− φi

(
∪m
p=1 (WTp ∩WTm+1)

)

=
m1∑

p=1

φi(WTp)−
∑

p<q

φi(WTp∪Tq) + · · ·+ (−1)m+1φi

(
W∪m

p=1Tp

)

− φi

(
∪m
p=1 (WTp ∩WTm+1)

)

Now we can apply Equation (10) to φi

(
∪m
p=1 (WTp ∩WTm+1)

)
and have

φi(W ) =
m+1∑

p=1

φi(WTp)−
∑

p<q≤m+1

φi(WTp∪Tq) + · · ·+ (−1)m+2φi

(
W∪m+1

p=1 Tp

)
.

Thus, combining additivity and modularity leads to the following corollary.

Corollary 1 Let φ be an allocation rule on GV N . If φ satisfies Additivity (A) and Modularity

(M), then for any voting structure (v,W ), φ(v,W ) is entirely defined by the family of voting

structures (αUS ,WA), with S ⊆ N , α ∈ R, and A ∈ A(W ).

Before running to the main result of this paper, let us recall that the Shapley value on GN

satisfies the symmetry property. A solution φ on GN satisfies the symmetry property if for any

game v and any two symmetric players i, j ∈ N , we have φi(v) = φj(v). The next theorem

provides the first part of the main result of this paper.

Theorem 1 The Myerson value µ on GV N satisfies (E), (A), (M), (EN), and (ETV).

Proof. It is not hard to show that µ satisfies Efficiency and Additivity since for every voting

structure (v,W ), µ(v,W ) is simply the Shapley value of the W -restricted game vW and since

the Shapley value satisfies (E) and (A), it immediately follows that µ satisfies (E) and (A) as

well.

Similarly, it is not hard to show that µ satisfies the Extra-Null player property. Indeed, if

i ∈ N is an Extra-Null player in the voting structure (v,W ), we can easily check that i is a null

player in the W -restricted game vW as follows: for any subset S ⊆ N \ i,
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vW (S ∪ i) =

{
v(S ∪ i) if S ∪ i ∈ W

0 otherwise
=

{
v(S) if S ∈ W

0 otherwise
= vW (S).

Hence, since µ is the Shapley value of the game vW , we have

µi(v,W ) = Φi(v
W ) = 0

since the Shapley value Φ satisfies the Null player property.

Let us show that µ satisfies modularity. For any two voting structures (v,W ) and (v,W ′)

and any player i ∈ N , we have

µi(v,W ∪W ′) = Φi(v
W∪W ′

) =
∑

S⊆N,i∈N

1

|S|∆vW∪W ′ (S)

By Proposition 1, we have

∆vW∪W ′ (S) = ∆vW (S) + ∆vW ′ (S)−∆vW∩W ′ (S).

Therefore, it follows that

µi(v,W ∪W ′) =
∑

S⊆N,i∈S

1

|S|∆vW (S) +
∑

S⊆N,i∈S

1

|S|∆vW ′ (S)−
∑

S⊆N,i∈S

1

|S|∆vW∩W ′ (S)

= Φi(v
W ) + Φi(v

W ′
)− Φi(v

W∩W ′
)

= µi(v,W ) + µi(v,W
′)− µi(v,W ∩W ′).

Hence, µ satisfies modularity.

Finally, Let us show that µ satisfies Equal Treatment of Veto (ETV). Let (v,W ) be a voting

structure and let i, j ∈ N be any two players such that i ∈ PV (v,W ) and j ∈ EV (v,W ). It

holds that i and j are symmetric in the game vW . Indeed, for all S ⊆ N \ {i, j}, we have

vW (S ∪ i) = 0 since j /∈ S ∪ i;

and

vW (S ∪ j) = 0 since i /∈ S ∪ j and then S ∪ j /∈ W.

Thus it follows that vW (S ∪ i) = vW (S ∪ j) which implies that i and j are symmetric in vW and

since the shapley value satisfies symmetry property, it follows that

µi(v,W ) = Φi(v
W ) = Φj(v

W ) = µj(v,W ).

Hence, µ satisfies (ETV).

The following theorem completes the main result of this the paper.
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Theorem 2 The Myerson value µ on GV N is the only allocation rule on GV N that satisfies

(E), (A), (M), (EN), and (ETV).

Proof. We showed in Theorem 1 that the Myerson value satisfies (E), (A), (M), (EN), and

(ETV).

Let φ be any allocation rule on GV N that satisfies these five axioms. Let (v,W ) ∈ GV N . To

show that φ(v,W ) = µ(v,W ), we just have to show that φ(αUS ,WA) = µ(αUS ,WA) for each

S ⊆ N,α ∈ R, and A ∈ A, since φ satisfies (A) and (M) (Corollary (1)).

Let (αUS ,WA) such a voting structure. The WA-restricted game (αUS)
WA associated to

(αUS ,WA) is simply the game αUS∪A. Indeed,

(αUS)
WA(K) =

{
αUS(K) if A ⊆ K

0 otherwise
=

{
α if S ∪A ⊆ K

0 otherwise
= αUS∪A(K).

Moreover, remark that PV (αUS ,WA) = A and EV (αUS ,WA) = S. Since φ satisfies (ETV), we

have

∀i, j ∈ S ∪A,φi(αUS ,WA) = φj(αUS ,WA).

Moreover, any player i who does not belong to S ∪ A is an extra-null player in (αUS ,WA) and

since φ satisfies the (EN), it holds that

φi(αUS ,WA) = 0 ∀i /∈ S ∪A.

Now, since φ satisfies (E), we have

∑

i∈S∪A
φi(αUS ,WA) = αUS(N) = α ⇒ |S ∪A|φi(αUS ,WA) = α, ∀i ∈ S ∪A.

Hence it follows that for all i ∈ S ∪A,

φi(αUS ,WA) =
α

|S ∪A| = Φi(αUS∪A) = Φi

(
α(US)

WA
)
= µi(αUS ,WA)

and for all i /∈ S ∪A,

φi(αUS ,WA) = 0 = Φi(αUS∪A) = Φi

(
α(US)

WA
)
= µi(αUS ,WA)

As result, we have φi(αUS ,WA) = µi(αUS ,WA) for all i ∈ N and by Corollary (1), we deduce

that φi(v,W ) = µi(v,W ) for all i ∈ N.

4 Concluding remarks

The goal of this paper was to provide an axiomatic characterization of the Myerson value on the

class of cooperative games on voting systems without considering the large family of Harsanyi

power solutions in which this solution is included. The main worth of this work is that the

characterization uses simple and understandable axioms that do not depend on any power index.
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The main pending challenge of this work is to generalize this characterization on the wide class

of union stable structures GUN .
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