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Abstract

In this paper, we optimize and allocate the costs of a non-rival common-pool resource among
several users. In such a so-called schedule situation the players have different demands given
by distinct subsets of periods satisfying their needs. The total costs resulting from shared use
of the resource are allocated by natural allocations called Equal Pooling allocations, in which
the cost of each needed period is shared equally among the users of this period. The associated
schedule game gives, for each coalition of players, the minimal cost of a period configuration
satisfying the needs of all its members. We have three main contributions. First, we provide
several sufficient conditions for the non-emptiness of the core of a schedule game. Second, we
prove that under some of these conditions the Shapley value is in the core and coincides with
some Equal pooling allocation. Third, we establish connections with other classes of operational
research games. Furthermore, we present an application to the allocation of the common costs
of the mail carrier route of La Poste, the french postal operator.

Keywords: (B) Game theory, Schedule, OR-game, Cost allocation, Equal pooling allocations.
JEL codes: C71, L87.

1. Introduction

In this article we introduce a new scheduling cost allocation problem called a schedule sit-
uation. Several players share a non-rival common-pool infrastructure whose consumption is
possible during several periods but is costly. The per-period cost can vary from one period to
the next. The needs of each player are expressed in the form of consumption schedules, i.e. each
schedule specifies a minimum set of periods that meets the player’s needs.

The objective is to find the combination of consumption schedules for all the players that
minimizes the overall cost while all the needs are satisfied, in particular through potential mu-
tualisation since the resource is non-rival. Once this total cost has been determined, the natural
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next step is to allocate it among the participating players, taking into account how they man-
aged to jointly use the infrastructure. We investigate this cost allocation problem by means of
the theory of cooperative games with transferable utility. The resulting game specifies, for each
coalition of players, the cheapest cost of a set of periods that meets the needs of all members of
the coalition.

Our approach originates from the concrete problem of allocating the common cost of the mail
carrier route in France, which is an ongoing challenge for La Poste, the postal operator in charge
of the postal universal service in France, and Arcep2, the French national regulatory authority.
The European directive 97/67/CE in article 14-3 states that the universal service providers shall
keep separate accounts within their internal accounting systems between the postal products
belonging the universal service scope and the other. For that reason, the common cost of the
mail carrier is allocated between the different postal products that are delivered. In addition,
this article states that “ whenever possible, common costs shall be allocated on the basis of
direct analysis of the origin of the costs themselves; [...]”. Therefore, to allocate the common
cost of the mail carrier route two cost drivers are taken into account, the delivery speed and
the format/volume of the postal products. Currently, the common cost of the mail carrier route
is allocated in two steps. In the first step, postal products are grouped into three categories
according to their delivery speed: D7, D3 and D1 with a delivery target on the 7st, 3rd and
1th business day after posting, respectively. Given that La Poste must organize the delivery
network in order to be in capacity to visit all recipients’ addresses six days a week and given
the logistical constraints, a theoretical delivery frequency of one, three, and six days per week
would be required to respectively deliver D7, D3 and D1. Arcep’s decision 2008-0165 states
that the common cost of the six weekly mail carrier routes is allocated to the three categories
in proportion to their aforementioned delivery frequency: 60% of the delivery costs to D1, 30%
to D3 and 10% to D7. In the second step, the share of the cost previously calculated for each
category is then allocated to the postal products belonging to this category according to their
format/volume.

The schedule situations provide a good insight into the first step of this process (a detailed
description of the second step can be found in Bohorquez Suarez and Munich, 2023). The infras-
tructure is the mail carrier route, which can be used six days/periods per week with an identical
daily cost, and the players are the three postal product categories. The cheapest/minimal con-
sumption schedules for the three categories are as follows. For D1, the unique consumption
schedule is the set of all six days of the week (or equivalently a mail carrier route every business
day) since the postal products in this category must be delivered on the next business day. On
the contrary, for D7, there are six singleton possible alternative consumption schedules, one for
each day of the week (one mail carrier route is enough, no matter which day), since a postal
product belonging to this category must be delivered not later than 7 days after being posted.
For D3, due to the logistic constraints, the set of minimal consumption schedules contains all the
triple of days which are not consecutive two by two such as, for example, {day 1,day 4,day 6}.
In the last part of the article, we explain how our model of schedule situations can lead to a
relevant alternative allocation.

2The french’s electronic communications, postal and print media distribution regulatory authority. It has
various responsibilities with respect to the postal sector. Notably exercising accounting and price supervision
over the postal products in the universal service scope and monitoring the quality of the service provided.
https://en.Arcep.fr/
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We make two types of contributions to the literature, on the structure of schedule games
and on cost allocations. These contributions provided sufficient conditions of the non-emptiness
of the core of a schedule game and highlight natural allocations lying in the core.

Regarding the first type of contributions, Proposition 1 is a characterization of the class of
schedule games: a cooperative game is a schedule game if and only if it is monotonic and sub-
additive. One of the particularities of this new class of games is that specific schedule situations
can be linked to other classes of operational research games. First, a schedule situation is called
uniform if, for each player, only the number of consumption time periods matters but not their
timing. Proposition 2 shows that a schedule game is uniform if and only if it is an airport
game (Littlechild and Owen, 1973). This result follows Bohorquez Suarez and Munich (2023) in
which the aforementioned postal allocation problem is addressed by an airport game. The latter
article draws an analogy with airport games, but does not deepen or generalize the analysis as
in the present article. Second, a schedule situation is called singleton if, for each player, there
is a unique minimal schedule satisfying its needs. Proposition 4 proves that a schedule game is
a singleton schedule game in which each period costs one unit if and only if it is a carpool game
(Naor, 2005).

Regarding the second type of contributions, we provide natural allocations for schedule sit-
uations based on an equal pooling principle. According to given subsets of periods, one for
each player, the cost of each period is shared equally among the users of the period. On the
subclass of uniform schedule situations, Proposition 3 shows that there is always at least one
optimal consumption time schedule for the grand coalition such that the corresponding Equal
pooling allocation is a core allocation and coincides with the Shapley value of the associated
schedule game. On the subclass of singleton schedule situations, there is a unique Equal pooling
allocation and, similarly, Proposition 5 demonstrates that it is a core allocation and coincides
with the Shapley value of the associated schedule game. Since airport games are concave, uni-
form schedule games are concave too. Moreover, we also show in Proposition 6 that singleton
schedule games are concave as well. In these types of schedule games the core is nonempty.
Proposition 1 reveals that some schedule games have an empty core. Nevertheless, we provide
two more general sufficient conditions for the non-emptiness of the core by proving that the core
contains specific Equal Pooling allocations. In the first condition, an optimal configuration for
the grand coalition is called “coherent” if its restriction to each sub-coalition remains optimal.
Corollary 1 establishes that the Equal Pooling allocation constructed from any coherent con-
figuration is a core allocation and coincides with the Shapley value of the associated schedule
game. Coherent schedule situations include the aforementioned classes of uniform and singleton
schedule situations. The second condition is weaker and relies on specific subsets of periods,
one for each player, constituting what we call a coherent covering. Proposition 8 shows that the
Equal Pooling allocation constructed from any coherent covering is a core allocation even if it
can be different from the Shapley value of the associated schedule game.

Our model is formally equivalent to one model presented in Moulin (2013), even if the
formulation and the interpretation are quite different. The interpretation is different in the sense
that periods are called items and that these items are often associated with the sharing of network
connectivity costs (for instance, the items are the costly edges that help to connect a network).
The formulation is also different: while we express the needs of a players by the minimal suitable
sets of items/periods, Moulin (2013) lists all suitable such sets and not just the minimal ones.
The formulation of the associated cooperative game is different as well, although equivalent
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to ours. Moulin (2013) only highlights some basic properties and then suggests directions for
further research that have been followed by Moulin and Laigret (2011) and Hougaard and Moulin
(2014). These articles differ from our approach in two important aspects. Firstly, the cost of all
items/periods is shared among the players even if some items/periods are not necessary (or even
not demanded) to meet the needs of the players. To the contrary, we only share the minimal cost
of a set of items/periods satisfying the players’ needs. In many cost problems such as the one
concerning La Poste, there is a real stake in selecting an optimal schedule in order to minimize
the use of a costly infrastructure. Minimum cost spanning trees (see Norde et al., 2004) and
their variants (see, for instance, Hougaard and Tvede, 2022) are classical examples of such cost
problems. Secondly, a solution in Moulin and Laigret (2011) and Hougaard and Moulin (2014)
only specifies an allocation of the costs (of all items/periods) whereas a solution in our setting
is a pair consisting of an optimal schedule and an associated allocation of the total cost induced
by this schedule. In other words, we consider that an allocation is inextricably linked to the
resource’s usage schedule and to the precise demands of the players within this schedule.

Moulin and Laigret (2011) impose a non-redundancy condition: dropping any single item
implies that at least one user is no longer being satisfied. They share the cost of all items by
the so-called Equal Need solution: the cost of each item is divided equally among the group of
players whose needs cannot be met in the absence of this item. Unless in trivial cases, the Equal
need solution is different from our Equal Pooling allocations. Moulin and Laigret (2011) provide
an elegant axiomatic characterization of the Equal Need solution and show that it is a core
allocation. Hence, the non-redundancy condition is another sufficient condition to ensure the
non-emptiness of the core of schedules games. Nevertheless, the class of non-redundant schedule
situations is a bit narrow since it cannot model the fact that different disjoint subsets of periods
can alternatively satisfy a player’s needs, which is often realistic. Furthermore, our Proposition
9 shows that the non-redundancy condition is stronger than our condition based on coherent
coverings. Hence, our analysis of the core of schedule games substantially extends the existing
literature.

As in our article, Hougaard and Moulin (2014) do not impose the non-redundancy condition.
Again, they consider the problem of sharing the costs of all items, which prevent them from
relying on cooperative games and therefore limits comparisons with our approach in terms of
core. They propose a family of cost ratios and axiomatically characterize it. These allocation
rules divide the total cost of each item in proportion to some indice which, roughly speaking,
represents the importance of the item for each user. Except in very specific cases, this family
does not include our equal pooling allocations. We present these allocation rules and the Equal
Need solution in detail in Section 3.2. To be complete, let us mention that Fopa et al. (2022)
provide an axiomatic characterization of one of the allocation rules studied in Hougaard and
Moulin (2014), and that Hougaard and Moulin (2018) extend the analysis by assuming that
items may fail because they have limited reliability.

More generally, this article is in line with the growing literature on operations research
(OR) games in which the players wish to minimize total joint costs and then must distribute
these joint costs among them. Borm et al. (2001) and Fiestras-Janeiro et al. (2011) provide
a general view of the literature of OR problems and applications of cooperative games to cost
allocation in transportation, connection, sequencing/queuing, production and inventory issues,
among others (see Csóka et al., 2022; Slikker, 2023, for more recent references). Our model
can also be considered as a generalization of airport games and thus is in line with the other
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generalizations of the class of airport games proposed in Fragnelli et al. (1999), Kuipers et al.
(2013), Rosenthal (2017) and Sudhölter and Zarzuelo (2017), among others.

The rest of the article is organized as follows. After giving the preliminaries on cooperative
games in Section 2, we introduce the schedule situations and the associated games in Section 3.
The equal pooling allocations are also presented in this section. In Section 4, we link schedule
games to airport games and carpool games. In Section 5, we provide the two most general
sufficient conditions for the non-emptiness of the core. Section 6 comes back to the application
of allocating the cost of the mail carrier route in France. Section 7 concludes.

2. Preliminaries on cooperative games

Let N be a nonempty and finite set of players. Each subset E ∈ 2N is referred to as a
coalition of cooperating players. The grand coalition N represents a situation in which all
players cooperate. Coalition ∅ represents a situation in which no player cooperates, it is called
the empty coalition. For each E ∈ 2N , the integer |E| ∈ N denotes the cardinality of coalition
E.

A transferable utility game, or simply a TU-game, is a couple (N, v) consisting of a finite
players set N and a characteristic function v : 2N → R, with the convention that v(∅) = 0.
The real number v(E) can be interpreted as the worth the players in E generate when they
cooperate. This worth can be perceived by the players as desirable (like profits) or, on the
contrary, undesirable (like costs). We will focus on the second case: the players share cost.
Thus the game (N, v) is a cost game. For ease of writing the game (N, v) will be designated by
its characteristic function v where N is fixed. A game v may satisfy some interesting properties:

Monotone For each E ⊆ S ⊆ N, v(E) ≤ v(S).

Adding a player to a coalition does not reduce its cost.

Sub-additive For each couple of coalitions E,S ⊆ N such that E ∩ S = ∅, v(E ∪ S) ≤
v(E) + v(S).

When two disjoint coalitions come together, the resulting joint cost is at most equal to the sum
of their initial costs. Merging two coalitions is not detrimental to their members.

Concave For each i ∈ N and each E ⊆ S ⊆ N\{i}, v(E ∪ {i})− v(E) ⩾ v(S ∪ {i})− v(S).

This property indicates that the incremental cost due to the arrival of a new player in a coalition
does not increase if this coalition grows.

The basic issue in the theory of cooperative games is to divide fairly the cost of the grand
coalition among its members. This issue may be addressed using allocations for TU-games. An
allocation x ∈ R|N | is a |N |-dimensional vector that assigns a share of the cost xi ∈ R to each
player i ∈ N .

An efficient allocation shares exactly v(N) among the players and it is called coalitionally
rational if no coalition would be better off by splitting from the grand coalition and paying its
cost. The core of a game v, is the set Core(v) of efficient and coalitionally rational allocations:

Core(v) =
{
x ∈ RN :

∑

i∈N
xi = v(N) and for each E ⊆ N,

∑

i∈E
xi ⩽ v(E)

}
.
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The core of a game can be empty. However, Shapley (1971) demonstrates that the core of a
concave game is nonempty. The core can contain often several allocations from which it can be
difficult to choose one and only one. Alternatively, the Shapley value assigns to each game v a
unique allocation Sh(v) such that for each i ∈ N :

Shi(v) =
∑

E⊆N\{i}

|E|!(|N | − |E| − 1)!

|N |!
(
v(E ∪ {i})− v(E)

)
.

Shapley (1971) proves that the Shapley value of a concave game lies in its core.

3. Schedule situations and schedule games

A group of players share a common-pool resource whose consumption is possible during
several periods. The use of this resource induces a cost that can vary from one period to the
next. The players have different demands represented by the subsets of periods allowing to
satisfy their needs. Let us formalize this framework and illustrate its features.

3.1. Schedule situations and schedule games

Let N be a fixed finite set of n players. A schedule situation on N is a tuple M =
(T, (Ti)i∈N , (ct)t∈T ) where

• T = {1, . . . , |T |} is a finite set of time periods;

• for each i ∈ N , Ti ⊂ 2T is the nonempty set of minimal (w.r.t. inclusion) time configu-
rations satisfying the needs of player i;

• for each t ∈ T , ct ∈ R+ is the cost of using the resource in period t.

The minimality condition in the definition of set Ti implies that if S,E ∈ Ti, then neither
S ⊂ E nor E ⊂ S. In words, each player needs a certain schedule for the consumption of a
common-pool resource. Such a schedule specifies the needed subset of consumption time periods.
The set Ti collects all minimal (with respect to set inclusion) schedules or time configurations
satisfying the consumption needs of player i. Although Ti is always nonempty, it can contain
the emptyset. In this case, the emptyset is the unique element of Ti, i.e. Ti = {∅}, and this
should be interpreted as the fact that player i has no need (over the time span T studied). The
common-pool resource is non-rival but costly, so that the objective is to minimize the overall
cost of a set of consumption time periods while satisfying the needs of all players. In order
to do so, we introduce an associated cooperative game called the schedule game. For each
E ⊆ N , if TE :=

∏
i∈N Ti denote the time configurations satisfying E, then the schedule game

vM associated with M is defined, for each E ⊆ N , by

vM (E) = min
R∈TE

∑

t∈∪Q∈RQ

ct.

The real number vM (E) is the minimal cost of a subset of periods that satisfies the need of
all the members of E. For each nonempty coalition E, we also denote by O(E) the set of all
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optimal time configurations, i.e. those which minimize the overall cost of a set of consumption
time periods satisfying the needs of E:

O(E) =

{
R ∈ TE :

∑

t∈∪Q∈RQ

ct = vM (E)

}
.

The periods belonging to this set of optimal time configuration of the grand coalition O(N) are
called active.

Example 1. Set N = {A,B,C}, T = {1, . . . , 8}, TA = {{1, 2}, {3, 4, 5}}, TB = {{1, 2}, {7, 8}},
TC = {{3, 4, 5}, {6, 7, 8}} and the costs:

t 1 2 3 4 5 6 7 8

ct 1.1 0.8 2 0.6 0.4 0.5 1.4 0.9

Then, the resulting schedule game is given by:

E {A} {B} {C} {A,B} {A,C} {B,C} {A,B,C}
vM (E) 1.9 1.9 2.8 1.9 3 2.8 4.7

As an example, consider coalition {B,C}, which can be satisfied by the following four minimal

schedules

T{B,C} = TB × TC =
{
({1, 2}, {3, 4, 5}), ({1, 2}, {6, 7, 8}), ({7, 8}, {3, 4, 5}), ({7, 8}, {6, 7, 8})

}
,

with corresponding costs 4.9 for ({1, 2}, {3, 4, 5}), 4.7 for ({1, 2}, {6, 7, 8}), 5.3 for ({7, 8}, {3, 4, 5})
and 2.8 for ({7, 8}, {6, 7, 8}). Hence,

vM ({B,C}) = min
{
4.9, 4.7, 5.3, 2.8

}
= 2.8,

which means that player B can completely pool its two-period demand {7, 8} with the de-

mand {6, 7, 8} of player C in order to save on costs within this two-player coalition. Here,

we have O({B,C}) = {({7, 8}, {6, 7, 8})}. There may be multiple optimal time configurations

for a given coalition. For instance O(N) contains two elements: ({1, 2}, {1, 2}, {6, 7, 8}) and

({1, 2}, {7, 8}, {6, 7, 8}). □

The first result below characterizes the class of schedule games.

Proposition 1. The class of all schedule games on N coincides with the class of monotone
sub-additive TU-games on N .

Proof. It is obvious that vM is monotone for each schedule situation M . Furthermore, for
a schedule situation M on N , consider any pair of coalitions E,S ⊆ N such that E ∩ S = ∅.
Pick any time configurations R1 ∈ O(E) and R2 ∈ O(S). Since (R1, R2) ∈ TE∪S , i.e., the time
configurations R1 and R2 for E and S are still available, when combined, as a time configuration
for E ∪ S, we immediately get vM (E) + vM (S) ≥ vM (E ∪ S), proving that vM is sub-additive.
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Conversely, let v be any monotone subadditive game on N . To show: there is a schedule
situation M on N such that vM = v. Consider any ordering π of the 2n−1 nonempty coalitions
on N , where, for each nonempty coalition E, π(E) stands for the position of E according to π.
For each nonempty E ⊆ N , let AE = {π(E)}. These sets being singletons, for each E,S ⊆ N
with E ̸= S, it holds that

AE ∩AS = ∅. (1)

We construct the schedule situation M = (T, (Ti)i∈N , (ct)t∈T ) such that |T | = 2n − 1, i.e.
there are as many periods as the number of nonempty coalitions. Moreover, for each player
i ∈ N , define Ti = {AE : E ∋ i}. In words, Ti contains 2n−1 singletons, one for each coalition
containing player i. Hence, any time configuration R for any nonempty coalition E is of the form
R = (ASi)i∈E where, for each i ∈ E, Si is a coalition containing player i. In addition, for each
nonempty coalition E ⊆ N , set cπ(E) = v(E). From now on, we focus on an arbitrary nonempty
coalition E in order to prove that vM (E) = v(E). From E and any time configuration R ∈ TE ,
R = (ASi)i∈E , define x

E(R) = {S ⊆ N : ASi = AS for some i ∈ E} and yE(R) =
∑

t∈∪i∈EASi
ct.

It holds that vM (E) = minR∈TE
yE(R) or equivalently, from (1) and the fact that cπ(S) = v(S)

for each nonempty S ⊆ N , vM (E) = minR∈TE

∑
S∈xE(R) v(S). Consider the configuration

RE := (AE
i )i∈N such that AE

i = AE for each i ∈ E. Remark that RE belongs to TE and that
xE(RE) = {E}, which yields yE(RE) = cπ(E) = v(E). It remains to show that if R ∈ TE ,

R = (ASi)i∈E , then yE(R) ⩾ v(E). Given R and S ∈ xE(R), define ER(S) = {i ∈ E : ASi = S}
and note that

∅ ⊊ ER(S) ⊆ S. (2)

From R, construct the collection R̄ = (AER(Si))i∈E , which implies that R̄ ∈ TE . By definition,

xE(R̄) is a partition of E. We can write that

yE(R) =
∑

S∈xE(R)

v(S) ⩾
∑

S∈xE(R)

v(ER(S)) =
∑

S′∈xE(R̄)

v(S′) = yE(R̄) ⩾ v(E),

where the first inequality comes from the monotonicity of v and equation (2), and the second
inequality comes from the subadditivity of v and the fact that xE(R̄) is a partition of E. We
conclude that vM (E) = v(E), as desired. ■

Proposition 1 implies that not all schedule games have a nonempty core as pointed out in the
introduction. This is illustrated by 1. Assume that an allocation x is candidate to belong to the
core. Note that xA + xB ≤ 1.9 and efficiency of any core allocation leads to xC ≥ 2.8. Similarly
the use of efficiency together with xA + xC ≤ 3 and xB + xC ≤ 2.8 yields that xB ≥ 1.7 and
xA ≥ 1.9. Summing these three inequalities, we get xA + xB + xC ≥ 6.4, which is incompatible
with the efficiency constraint. Thus, Core(v) = ∅. Two conditions ensuring the non-emptiness
of the core are introduced in section 5.

In order to illustrate the proof, we consider the following four-player game in which brackets
and commas are omitted in order to save space and in which π orders coalitions by size and
lexicographically within a given size.

E a b c d ab ac ad bc bd cd abc abd acd bcd abcd

π(E) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

v(E) = cπ(E) 1.2 0.7 3.5 5 1.6 4.7 6 3.9 5.2 7.9 5 6.5 8.5 8.1 9.1
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It is easy to check that v satisfies the conditions imposed in Proposition 1. As a start, let us
build the schedule situation M as in the proof. Focusing on player a, we have

Ta = {A{a}, A{a,b}, A{a,c}, A{a,d}, A{a,b,c}, A{a,b,d}, A{a,c,d}, A{a,b,c,d}},

where, for instance, A{a,b,c} = {π({a, b, c})} = {11} since coalition {a, b, c} is in position 11
according to π. We now focus on the previous coalition E = {a, b, c} in order to sketch why that
vM ({a, b, c}) = v({a, b, c}). We proceed in three steps.

Step 1. We show that a specific time configuration for E costs exactly v(E). In fact, since
A{a,b,c} belongs to Ta, Tb and Tc, R

{a,b,c} := (A{a,b,c}, A{a,b,c}, A{a,b,c}) ∈ T{a,b,c}. Obviously,

yE(R{a,b,c}) = cπ({a,b,c}) = c11 = 5 = v({a, b, c}), so that vM (E) ≤ v({a, b, c}). In the final two
steps, we show that no other time configuration R ∈ T{a,b,c} can do better. We only illustrate
these steps with R = (A{a,b,c,d}, A{a,b,c,d}, A{c,d}).

Step 2. This step is a “reduction” step in which the individual time configurations in R are
reduced by eliminating unnecessary needs, in some sense. From R and E, we have xE(R) =
{{a, b, c, d}, {c, d}} so that yE(R) = v({a, b, c, d}) + v({c, d}). We drop from coalition {a, b, c, d}
the two players c and d that do not choose A{a,b,c,d} in R and similarly, we drop d from {c, d}.
The resulting coalitions, called ER({a, b, c, d}) = {a, b} and ER({c, d}) = {c} in the proof,
are subsets of the original coalitions and R̄ := (A{a,b}, A{a,b}, A{c}) is also in T{a,b,c}. The
monotonicity of v yields that v({a, b}) ≤ v({a, b, c, d}) and v({c}) ≤ v({c, d}), which is equivalent
to cπ({a,b}) ≤ cπ({a,b,c,d}) and cπ({c}) ≤ cπ({c,d}), respectively. Hence, yE(R̄) ≤ yE(R). Thus, R̄ is
already not worse than R for coalition E.

Step 3. This step is a “partition” step in which non-pooled consumption in R̄ are compared
to the fully pooled consumption in R{a,b,c} from step 1. To see this, note that {a, b} and {c}
form a partition of E so that the sub-additivity of v yields that v({a, b, c}) < v({a, b})+ v({c}).
Equivalently, cπ({a,b,c}) ≤ cπ({a,b})+cπ({c}). Thus, we conclude that yE(R{a,b,c}) < yE(R̄), proving

thatR{a,b,c} from step 1 cannot be worse than R̄ for coalition E. Thus vM ({a, b, c}) = v({a, b, c}).

3.2. The equal pooling principle

Several types of allocations have been studied in the literature, all of which are based on
a general equal pooling principle. This section presents the new relevant way in which we
use this equal pooling principle and highlights the differences with other related articles in the
literature.

For schedule situations, the equal pooling principle can be formulated in two steps. Firstly,
for each player, a subset of time periods is selected. Secondly, according to the chosen subsets,
the cost of each period is shared equally among the users of the period. The resulting allocation
is called the Equal Pooling allocation.

Definition 1. Fix any schedule situation M . Let R = (A1, ..., An) be a time configuration
such that, for each player i ∈ N , Ai ⊆ T . The Equal Pooling allocation EPR(M) on M
associated with R is such that, for each i ∈ N ,

EPR
i (M) =

∑

t∈T :t∈Ai

ct
|{j ∈ N : t ∈ Aj}|

.

In this article, we almost always use the Equal Pooling allocation in which the chosen time
configuration is optimal for the grand coalition, i.e. when R ∈ O(N). We advocate that this
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choice is the most natural one in our context. Clearly, there can be numerous optimal time
configurations in O(N), which implies that many Equal pooling allocations can be computed for
a given schedule situations. For instance, in Example 1, there are two optimal time configurations
for N : O(N) = {R1, R2} where R1 = {{1, 2}, {1, 2}, {6, 7, 8}} and R2 = {{1, 2}, {7, 8}, {6, 7, 8}},
leading to two equal pooling allocations:

EPR1
(M) = (0.95, 0.95, 2.8) and EPR2

(M) = (1.9, 1.15, 1.65).

In the next sections, we identify conditions guaranteeing that our Equal Pooling allocations
belong to the core of the associated schedule game. Furthermore, we weaken theses conditions
in section 5.2, but at the cost of a change in the application of the equal pooling principle.
More specifically, instead of computing the Equal Pooling allocation from an optimal time
configuration R = (A1, ..., An) in O(N), we restrict ourselves to specific subsets of sets Ai.

We can now compare our Equal Pooling allocations based on optimal time configurations and
the Equal Need solution introduced in Moulin and Laigret (2011). For any schedule situation
M = (T, (Ti)i∈N , (ct)t∈T ), define Gi(M) = ∩Ai∈TiAi the set, possibly empty, of critical periods
for player i, i.e. the set of periods that are necessary to satisfy the needs of player i.3 Similarly,
define H i(M) = ∪Ai∈TiAi as the set of periods that are relevant to player i. Moulin and Laigret
(2011) only consider the subclass of so-called non-redundant schedule situations in which each
period is critical for at least one player, i.e. M such that ∪i∈NGi(M) = T . The Equal Need
solution applies the equal pooling principle to the configuration G := (G1(M), . . . , Gn(M)):
for each i ∈ N ,

EPG
i (M) =

∑

t∈T :t∈Gi(M)

ct
|{j ∈ N : t ∈ Gj(M)}| .

There are at least two major differences between the Equal Need solution and our Equal Pooling
allocations. The first one is that any of our Equal Pooling allocations is inseparable from the
associated optimal schedule. Hence, not only the Equal Pooling allocation provides a relevant
cost allocation but it also highlights an actual schedule showing which players use the resource
at which periods. This is not the case of the Equal Need solution which can be seen as a
global approach that does not select a specific schedule. The second difference is that the Equal
Need solution ignores the periods that are relevant but not necessary for a player, which leads
sometimes to puzzling allocations. For instance, in the context of Example 2, The Equal Need
solution leads player C to pay entirely the cost of all periods even if players A and B need to
consume the resource one period and four periods, respectively. This is explained by the fact all
periods are critical for player C, who needs to consume the resource every period while players
A and B have more flexibility in their consumption needs.

Let us add that Moulin and Laigret (2011) provide an axiomatic characterization of the
Equal Need solution on the class of non-redundant schedule situations by means of three axioms
(their definition of a solution already include the requirement that the cost of all periods is
entirely distributed). Additivity in cost imposes that the sum of the two solutions in two
schedule situations that only differ with respect to their cost vectors is equal to the solution of
the schedule situation obtained by summing the two cost vectors. The symmetry axiom imposes
to assign the same cost share to two players i and j for which the the sets Ti and Tj are identical

3In this section, we use the formulation of our model to define the concept introduced in the related literature.
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when restricted to the set of periods with a strictly positive cost. The third axiom requires that
the solution always selects a core allocation of the associated schedule game, which implies that
the non-redundancy is an alternative condition to ours to ensure the non-emptiness of the core
(see sections 4 and 5 and the picture in the conclusion).

Hougaard and Moulin (2014) apply variants of the Equal Pooling principle. More specifically,
for each schedule situation, they share the cost of all periods, without considering the possible
existence of a strict subset of less expensive periods that would be sufficient to satisfy the needs of
all players. Even on the class of non-redundant schedule situations, the family of solutions they
study does not contain the Equal Need solution and differs from ours Equal Pooling allocations
except in very special cases. This family is constructed as follows. Firstly, a solution is supposed
to satisfy the axiom of additivity in cost. As a consequence, Hougaard and Moulin (2014) focus
on schedule situations in which there is a unique costly period, the cost of which is one:

M t∗ = (T, (Ti)i∈N , (ct)t∈T ),

with ct∗ = 1 and ct = 0 if t ∈ T\{t∗}. A solution on the class of such schedule situations is
called a cost-ratio index if it satisfies four properties (in addition to the fact that the sum of the
players’ ratio is equal to one):

1. If t∗ is critical for some player i, then i’s share is not less than in any other schedule
situation obtained by replacing Ti by any other set of time configurations Ti′ ;

2. If t∗ is relevant for player i, then i’s cost share is strictly positive;

3. If t∗ is not relevant for i but relevant for at least one other player, then i’s share is null;

4. If t∗ is relevant for no player, then each of the n players’ share is 1/n.

Moulin (2013) characterize the following family of cost ratio indices with a proportional flavor:

fi(M
t∗) =

θ(Ti, t
∗)∑

j∈N θ(Tj , t∗)
,

where

θ(Ti, t
∗) =

( |{Ai ∈ Ti : Ai ∋ t∗}
|Ti|

)α

for any number α ≥ 0. The case α = 1 yields the so-called counting cost ratio index, which is
studied in Fopa et al. (2022).

Rather than presenting the axioms that characterize this family in detail, we would like
to come back to the major differences that distinguishes this family from our Equal Pooling
allocations. Sharing the cost of all periods/items as in Moulin (2013) can make sense in network
connection problems. Note that this prevent the authors from re-exploiting the approach in
terms of cooperative games. In our context of selecting an optimal time schedule, sharing the
cost of all periods is rather questionable since there is no obvious reason to charge players when
the resource is not being used. Finally, as for the Equal Need solution, and even if the non-
redundancy condition is further imposed, this family of cost ratio indices does not allow to
exhibit an optimal schedule.

11



4. Particular schedule situations

In this section we introduce two specific schedule situations and show their close links with
other classes of operational research games.

4.1. Uniform schedule situations and airport situations

In the first particular category of schedule situations, the number of consumption time
periods matters for a player but not their timing.

Definition 2. A schedule situation is called uniform if for each player all time configurations
of a certain size satisfy the needs of this player. Formally, for each i ∈ N , there is pi ∈ {1, . . . , t}
such that Ti = {Q ⊆ T : |Q| = pi}.

This definition can be illustrated by the following example:

Example 2. Let N = {A,B,C}, T = {1, . . . , 6},

TA = {{t}, t ∈ T},
TB = {E ⊆ T : |E| = 4},

TC = {T},

and
t 1 2 3 4 5 6

ct 2.5 1.2 4.1 3.1 1.9 2

Then the resulting game is:

E {A} {B} {C} {A,B} {A,C} {B,C} {A,B,C}
vM (E) 1.2 7.6 14.8 7.6 14.8 14.8 14.8

□

Uniform schedule situations are closely related to airport situations. An airport situation
(Littlechild and Owen, 1973) on N is a tuple A = ((Nj , coj)j∈{1,...,m}) where Nj denotes the
set of nj aircrafts of type j, for j = 1, ...,m, and N = ∪m

j=1Nj and n =
∑m

j=1 nj . The cost
associated with an aircraft of type j is given by coj . These types of aircraft are ordered so that
co0 < co1 < ... < com, where co0 = 0 by convention. Any airport situation A gives rise to an
airport game vA such that for each E ⊆ N ,

vA(E) = max
j∈{1,...,m}:E∩Nj ̸=∅

coj .

Note that the schedule game in Example 2 coincides with the airport game induced by the
airport situation in which N1 = {A}, N2 = {B}, N3 = {C} and co1 = 1.2, co2 = 7.6, co3 = 14.8.
We show below that this property holds for any uniform schedule situation. To see this,

The next result shows the converse implication as well: any airport game can be obtained
from some uniform schedule situation.

Proposition 2. A game v is an airport game if and only if v = vM for some uniform schedule
situation M .
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Proof. Firstly, we prove the “only if” part. From any uniform schedule situation M , construct
the airport situation AM = ((NM

j , coMj )j∈{1,...,m}) as follows. First, let p(0) = 0. Then, for each
j ∈ {1, . . . ,m}, define

p(j) = min
i∈N :pi>p(j−1)

pi,

coMj = min
Q⊆T :|Q|=p(j)

∑

t∈Q
ct, (3)

and
NM

j = {i ∈ N : pi = p(j)}.
Now, let E be any nonempty coalition in N . Define further p∗ = maxi∈E pi and A∗ as a subset
of p∗ periods such that

∑
t∈A∗ ct = minQ⊆N :|Q|=p∗

∑
t∈Q ct. We will prove that,

vM (E)
Step 1
=

∑

t∈A∗
ct

Step 2
= vAM (E).

Step 1. Denote by i one of the players in E such that pi = p∗. Then since the schedule
situation M is uniform, any Ai ∈ Ti is such that |Ai| = p∗. We immediately get that vM (E) ⩾∑

t∈A∗ ct. Next, for each k ∈ E, there is A∗
k ∈ Tk such that |A∗

k| = pk and A∗
k ⊆ A∗. Hence,

∪k∈EA∗
k = A∗ and (A∗

k)k∈E belongs to TE , which implies that vM (E) ⩽
∑

t∈A∗ ct.
Step 2. Consider the airport situation AM . By definition of an airport game, for each

nonempty E ⊆ N , we have:

vAM (E) = max
j∈{1,...,m}:E∩NM

j ̸=∅
coMj .

It is clear that player i ∈ E such that pi = p∗ is the player belonging to the group NM
j∗ with the

greatest index j∗ among E, from which one gets,

vAM (E) = coj∗ = min
Q⊆T :|Q|=p∗

∑

t∈Q
ct =

∑

t∈A∗
ct.

This completes “only if” part.
Secondly, we deal with the “if” part. From any airport situation A on N , construct the

uniform schedule situation MA = (TA, (TA
i )i∈N , (cAt )t∈TA) on N as follows. Letting co0 = 0

and p(0) = 0, consider a sequence of integers (p(j))j∈{1,...,m} such that p(0) < p(1) < · · · <
p(m). Since the two sequences (coj)j∈{1,...,m} and (p(j))j∈{1,...,m} are non negative and strictly
increasing, the sequences (coj−coj−1)j∈{0,...,m} and (p(j)−p(j−1))j∈{0,...,m} are strictly positive.
Therefore, it is always possible to specify the sequence (p(j))j∈{1,...,m} so that, for each j ∈
{1, . . . ,m− 1},

coj − coj−1

p(j)− p(j − 1)
<

coj+1 − coj
p(j + 1)− p(j)

. (4)

Now, define TA = {1, . . . , pm}, for each j ∈ {1, . . . ,m} and each i ∈ Nj , define pAi = p(j) and
for each j ∈ {1, . . . ,m} and each t ∈ TA with t ∈ {p(j − 1) + 1, . . . , p(j)},

cAt =
coj − coj−1

p(j)− p(j − 1)
. (5)

13



As in the “only if” part, For an arbitrary nonempty coalition E, let p∗ = maxi∈E pAi and
A∗ = minQ⊆N :|Q|=p∗

∑
t∈Q cAt . Moreover, denote by j∗ the index of the group N∗

j in A to which

belong the player(s) i such that pAi = p∗ in MA. Let us show that

vA(E)
Step 1
= coj∗

Step 2
= vMA(E).

Step 1. It is clear that player i ∈ E such that pi = p∗ is the player from to the group Nj

with the greatest index j among E, i.e. Nj∗ , so that we immediately get vA(E) = coj∗ .
Step 2. Because MA is uniform, we know that vMA(E) =

∑
t∈A∗ cAt . From (4), this equality

can be rewritten as vMA(A) =
∑p∗

t=1 ct or equivalently, by definitions of j∗ and of cAt in (5), as:

vMA(E) =

j∗∑

j=1

(
p(j)− p(j − 1)

)
× coj − coj−1

p(j)− p(j − 1)
= coj∗ ,

as desired. ■

It is well-known that airport games are concave. According to the Proposition 2, uniform
schedule games are concave too. The next result below reveals that for uniform schedule sit-
uations, there is always an optimal time configuration for the grand coalition such that the
associated equal pooling allocation is the Shapley value of the uniform schedule game.

Proposition 3. If M is an uniform schedule situation on N , then there is R∗ ∈ O(N) such
that the Equal pooling allocation EPR∗

(M) coincides with the Shapley value of game vM .

Proof. Consider any uniform schedule situation M on N . For the sake of simplicity and
without any loss of generality, we can assume that

c1 ⩽ c2 ⩽ · · · ⩽ c|T | (6)

and that
p1 ⩽ p2 ⩽ · · · ⩽ pn. (7)

In this demonstration, we make use of the specific airport situation AM constructed in the proof
of Proposition 2. Littlechild and Owen (1973) give the following expression for the Shapley value
of an airport game: for each j ∈ {1, . . . ,m} and each i ∈ NM

j ,

Shi(vAM ) =

j∑

q=1

coMq − coMq−1∑m
g=q |NM

g | . (8)

The Equal pooling allocation associated to some R∗ = ({A∗
i })i∈N ∈ O(N), according to defini-

tion 1, is given, for each i ∈ N , by

EPR∗
i (M) =

∑

t∈T :t∈A∗
i

ct
|{k ∈ N : t ∈ A∗

k}|
. (9)

To prove Proposition 3, firstly, we select a specific optimal time allocation R∗ forN and, secondly,
we rewrite (9) in the form of (8). So, choose R∗ = (A∗

i )i∈N such that A∗
i = {1, . . . , pi} for each
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i ∈ N . From (6), minQ⊆T :|Q|=pi

∑
t∈Q ct =

∑pi
t=1 ct, which means that A∗

i ∈ Ti and in turn that

R∗ ∈ O(N). Now, we can rewrite EPR∗
i (M):

EPR∗
i (M)

(9)
=

∑

t∈T :t∈A∗
i

ct
|{k ∈ N : t ∈ A∗

k}|
(7)
=

pi∑

t=1

ct
|{k ∈ N : pk ≥ t}|

=

p(j)∑

t=1

ct
|{k ∈ N : pk ≥ t}|

=

j∑

q=1

p(q)∑

t=p(q−1)+1

ct∑m
g=q |NM

g |

=

j∑

q=1

∑p(q)
t=1 ct −

∑p(q−1)
t=1 ct∑m

g=q |NM
g |

(3)
=

j∑

q=1

coMq − coMq−1∑m
g=q |NM

g |
(8)
= Shi(vAM ),

which completes the proof. ■

4.2. Singleton schedule situations and carpool situations

In the second particular category of schedule situations, the players have no flexibility: each
seeks a unique particular minimal time configuration.

Definition 3. A schedule situation is called singleton if for each player there is a unique
minimal time configuration satisfying the needs of this player. Formally, for each i ∈ N we have
|Ti| = 1. In this case let us denote by Ai the unique element of Ti, for each i ∈ N . Furthermore,
a singleton schedule situation is called unit-cost if ct = 1 for each t ∈ T .

Example 3. Consider the singleton unit-cost schedule situation M such that N = {A,B,C},
T = {1, ..., 6}, TA = {{1}}, TB = {{5}} and TC = {{1, 3, 5}} and ct = 1 for each t ∈ T . Then,

E {A} {B} {C} {A,B} {A,C} {B,C} {A,B,C}
vM (E) 1 1 3 2 3 3 3

□

The singleton schedule situations are closely related to the class of carpool situations. A
carpool situation (Naor, 2005) is a situation in which players form a carpool and decide to
use it on different days. Formally, a carpool situation on N is a tuple D = (Dj)j=1,...,l where
each Dj ⊆ N corresponds to the nonempty set of players who showed on day j ∈ {1, ..., l}. The
use of the carpool system is costly: any carpool situation D gives rise to a carpool game vD
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such that, for any subset E ⊆ N , vD(E) associates for each coalition E a cost measured by the
number of days on which at least one player of the coalition E shows up, i.e.,

vD(E) =
∣∣{1 ⩽ j ⩽ l : Dj ∩ E ̸= ∅}

∣∣.

From any singleton cost-unit schedule situationM it is possible to construct a specific carpool
situation DM = (DM

j )j=1,...,l, such that l = |T | for each j ∈ {1, ..., l}, DM
j = {i ∈ N : j ∈ Ai},

where Ai is the unique element in Ti. It is easy to get the correspondence between a carpool
situation and a singleton cost-unit schedule situation. In Example 3, the set of periods T can
represent the set of days where the players A, B and C “showed up” or must be distributed.
The following table gives the relationship between the carpool and the schedule situations:

j\i A B C DM
j

1 X X {A,C}
2 ∅
3 X {C}
4 ∅
5 X X {B,C}
6 ∅
Ai {1} {5} {1, 3, 5}

Table 1: Relationship between carpool and singleton unit-cost schedule situations

Proposition 4. A game v is a carpool game if and only if v = vM for some singleton unit-cost
schedule situation M .

Proof. Regarding the “only if” part, let M = (T, (Ti)i∈N , (ct)t∈T with Ti = {Ai}, i ∈ N , and
ct = 1 for each t ∈ T , be any singleton unit-cost schedule situation. For any E nonempty subset
of N , vM (E) can be rewritten as:

vM (E) =

∣∣∣∣
⋃

i∈E
Ai

∣∣∣∣. (10)

Let us show that vDM (E) = vM (E). Since l = |T |, we have

vDM (E) = |{1 ≤ j ≤ |T | : DM
j ∩ E ̸= ∅}|

= |{1 ≤ j ≤ |T | : {i ∈ N : j ∈ Ai} ∩ E ̸= ∅}|
= |{1 ≤ j ≤ |T | : j ∈ Ai for some i ∈ E}|
= |⋃i∈E Ai|
= vM (E),

as desired.
The “if” part follows an inverted but similar straightforward path compared to the “only if”

part and is not detailed here. ■
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In a carpool game Fagin and Williams (1983) and Ajtai et al. (1998) propose and study an
equal share of the cost of each days between the players who used it. The resulting allocation
rule, denoted by α, assigns to each D and each i ∈ N the share

αi(D) =
∑

j∈{1,...,l}:i∈Dj

1

|Dj |
.

Naor (2005) demonstrates that α(D) is the Shapley value of the game vD, i.e. α(D) = Sh(vD).
Note that there is trivially a unique optimal time configuration R∗ ∈ O(N) such that R∗ =
({Ai})i∈N for each singleton schedule situation M .

Proposition 5. If M is a singleton unit-cost schedule situation on N , then the unique Equal
pooling allocation EPR∗

(M) coincides with the allocation α(DM ) of the carpool situation DM .

Proof. The claim follows from viewing the allocation rule EPR∗
(M) as the sum of the inverse

of the number of players who consume the active time period t simultaneously. In the carpool
situation the active time period t is expressed by a set of days DM

j ⊆ N corresponding to

the players who showed on day j and |DM
j | is the number of these players. Hence, |DM

j | and
|{t ∈ T : t ∈ Ai}| express the same thing and EPi(M) = αi(D

M ). See table 1. Therefore,
EPR∗

i (M) is the Shapley value of the game vM when M is a singleton schedule situation on N .
■

Singleton (not necessarily unit-cost) schedule games are concave as demonstrated below.

Proposition 6. If M is a singleton schedule situation on N , then the associated schedule game
vM is concave.

Proof. Let M be a singleton schedule situation on N with Ti = {Ai} for each i ∈ N . We will
prove that for each E ⊆ S ⊆ N\{i}, vM (E ∪ {i})− vM (E) ⩾ vM (S ∪ {i})− vM (S). From (10),
we can rewrite both sides of the inequality as follows:

vM (E ∪ {i})− vM (E) =
∑

t∈Ai\(∪j∈EAj)

ct,

vM (S ∪ {i})− vM (E) =
∑

t∈Ai\(∪j∈SAj)

ct.

Next, since E ⊆ S, we have that:

∪j∈EAj ⊆ ∪j∈SAj ⇐⇒ Ai

∖(
∪j∈E Aj

)
⊇ Ai

∖(
∪j∈S Aj

)
,

which implies that ∑

t∈Ai\(∪j∈EAj)

ct ⩾
∑

t∈Ai\(∪j∈SAj)

ct

and thus
vM (E ∪ {i})− vM (E) ⩾ vM (S ∪ {i})− vM (S),

for each i ∈ N and E ⊆ S ⊆ N\{i}. ■

From Propositions 4 and 6, we conclude that carpool games are concave.
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5. Non-emptiness of the core of schedule games

Proposition 1 reveals that the core of a schedule game can be empty (see Example 1).
Nevertheless, uniform and singleton schedule games have nonempty cores as concave games
as underlined in section 4. In this section, we provide two sufficient conditions for the non-
emptiness of the core of a schedule game. The resulting classes of schedule situations encompass
uniform and singleton schedule situations. The two conditions are based on the specification of
the subset of time periods used by the players and thus explicitly provide core allocations.

5.1. Coherent schedule situations

An optimal time configuration R∗ ∈ O(N) with R∗ = ({A∗
i })i∈N is called coherent for M

if for each nonempty E ⊆ N , it holds that R∗
E ∈ O(E), where R∗

E is the restriction of R∗ to
E. In words, a time configuration for N is coherent if no player has an incentive to change its
consumption schedule in smaller coalitions.

Definition 4. A schedule situation is called coherent if it admits a coherent optimal time
configuration.

This type of schedule situation is illustrated in the example below.

Example 4. Let M be given by N = {A,B,C}, T = {1, . . . , 5}, TA = {{1, 2}, {2, 3, 4}, {2, 5}},
TB = {{1, 3, 4}, {1, 5}}, TC = {{2, 4, 5}, {3, 4, 5}} and the costs:

t 1 2 3 4 5

ct 2.3 0.8 4 1.1 2.3

There are two optimal time configurations for N :

O(N) = {{R1}, {R2}} where R1 = ({1, 2}, {1, 5}, {2, 4, 5}) and R2 = ({2, 5}, {1, 5}, {2, 4, 5}).
These time configurations and those of smaller coalitions are listed in the table below in which

the game vM is reported as well.

E vM (E) O(E)

{A} 3.1 ({1, 2})
({2,5})

{B} 4.6 ({1,5})
{C} 4.2 ({2,4,5})

{A,B} 5.4 ({1, 2}, {1, 5})
({2,5}, {1,5})

{A,C} 4.2 ({2,5}, {2,4,5})
{B,C} 6.5 ({1,5}, {2,4,5})

{A,B,C} 6.5 R1 = ({1, 2}, {1, 5}, {2, 4, 5})
R2 = ({2,5}, {1,5}, {2,4,5})

Table 2: The set of all optimal time configurations
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The time configuration R2 is the unique coherent time configuration (this is highlighted in

bold characters in Table 2). □

The presence of a coherent time configuration is sufficient to guarantee that the core is
nonempty as a corollary of the next result.

Proposition 7. If M is coherent, then vM = vM ′ for some singleton schedule situation M ′.

Proof. Let R∗ = (A∗
i )i∈N be any coherent time configuration on M . From M and R∗,

construct the schedule situation MR∗
such that MR∗

= (TR∗
, (TR∗

)i∈N ) with TR∗
= T and

TR∗
i = {A∗

i }. Consequently, MR∗
is a singleton schedule situation. In addition, R∗ is coherent

for MR∗
. Therefore, vMR∗ = vM follows from the fact that R∗ is coherent for both MR∗ and

M . ■

From Propositions 5, 6 and 7, we get the following corollary.

Corollary 1. If R∗ on M is coherent, then the Equal pooling allocation EPR∗
(M) is in the

core of vM and coincides with the Shapley value of vM .

The condition in Corollary 1 is sufficient but not necessary. In the following example an
allocation EPR∗

(M) is in the core of vM even if R∗ ∈ O(N) is not coherent for a schedule
situation M .

Example 5. LetN = {A,B,C}, T = {1, . . . , 5}, TA = {{1, 2, 3}, {1, 4}, {2, 4}}, TB = {{1, 5}, {2, 5}},
TC = {{1, 2, 3, 5}} and ct = 1 for each t ∈ T . Then we obtain the following table,

E vM (E) O(E)
∑

i∈E xi

{A} 2 ({1, 4}) 1

({2, 4})
{B} 2 ({1, 5}) 1

({2, 5})
{C} 4 ({1, 2, 3, 5}) 2

{A,B} 3 ({1, 4}, {1, 5}) 2

({2, 4}, {2, 5})
{A,C} 4 ({1, 4}, {1, 2, 3, 5}) 3

({2, 4}, {1, 2, 3, 5})
{B,C} 4 ({1, 5}, {1, 2, 3, 5}) 3

({2, 5}, {1, 2, 3, 5})
{A,B,C} 4 ({1, 2, 3}, {1, 5}, {1, 2, 3, 5}) 4

({1, 2, 3}, {2, 5}, {1, 2, 3, 5})

Table 3: The set of all optimal time configurations
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Here, only the number of time periods matters. The time configuration of player A used

to compute vM (N) is not its smaller time configuration. More specifically, the selected time

configuration for A is ({1, 2, 3}) whereas on its own its smaller time configurations are ({1, 4})
or ({2, 4}). Hence, none of the two optimal time configurations on N is coherent. However, the

core of this example is nonempty since it contains allocation x = (1, 1, 2) as shown by the above

table. Remark that the two Equal pooling allocations constructed from O(N) are also in the

core. □

5.2. Coherent covering

This section introduces a new condition for the nonemptiness of the core of a schedule game.
It is weaker than the coherence condition: the condition is automatically met when the corre-
sponding schedule situation is coherent but is also satisfied on a larger class of schedule situations.

Fix any schedule situation M and let R∗ = (A∗
i )i∈N be any optimal configuration in O(N).

A time configuration R̄∗ = (Ā∗
i )i∈N is called a coherent covering of R∗ if the following three

conditions are satisfied:

(a) For each player i ∈ N , Ā∗
i ⊆ A∗

i ;

(b) ∪i∈N Ā∗
i = ∪i∈NA∗

i ;

(c) For each E ⊊ N , there is RE ∈ O(E), RE = (AE
j )j∈E , such that Ā∗

i ⊆ AE
i for each i ∈ E.

Before going any further, let us comment on these conditions. Condition (a) means that we
only select a subset of time periods for each player. This condition even allows an empty subset
(see Example 6 below for an illustration). Condition (b) means that grouping the aforementioned
subsets is optimal for the grand coalition. Put differently, subsets Ā∗

i , i ∈ N , cover all active
time periods in R∗. Condition (c) means that Ā∗

i is a subset of A∗
i that player i is always able

to use optimaly in each coalition she belongs to. In other words, sets Ā∗
i , i ∈ N , can be seen as

coherent subsets.

Example 6. Here, we slightly modify Example 1. Set N = {A,B,C}, T = {1, . . . , 8}, TA =

{{1, 2}, {3, 4, 5}}, TB = {{1, 2}, {7, 8}}, TC = {{3, 4, 5}} and the costs given by:

t 1 2 3 4 5 6 7 8

ct 1.1 0.8 2 0.6 0.4 0.5 1.4 0.9

Then, the resulting game and the coalitions’ optimal time configurations are summarized in the

following table.
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E vM (E) O(E)

{A} 1.9 ({1, 2})
{B} 1.9 ({1, 2})

({7, 8})
{C} 3 ({3, 4, 5})

{A,B} 1.9 ({1, 2}, {1, 2})
{A,C} 3 ({3, 4, 5}, {3, 4, 5})
{B,C} 4.9 ({1, 2}, {3, 4, 5})

({7, 8}, {3, 4, 5})
{A,B,C} 4.9 R1 = ({1, 2}, {1, 2}, {3, 4, 5})

R2 = ({3, 4, 5}, {1, 2}, {3, 4, 5})
R3 = ({3, 4, 5}, {7, 8}, {3, 4, 5})

Table 4: A schedule situation that is not coherent but admits a coherent covering

The only change compared to Example 1 is that TC is now a singleton. This schedule situation

is not coherent (and obviously neither uniform nor singleton). In fact, R1 is not coherent since

player A does not use {1, 2} within the optimal configuration of coalition {A,C}, R2 is not

coherent since player A does not use {3, 4, 5} within the optimal configuration of coalitions

{A} and {A,B}, and R3 is not coherent since player B does not use {7, 8} within the optimal

configuration of coalition {A,B}. To the contrary, it is easy to check that R̄ = (∅, {1, 2}, {3, 4, 5})
is a coherent covering of both R1 and R2. □

Remark that if R is a coherent time configuration on M , then R is trivially a coherent cover-
ing of itself. This means that any coherent schedule situation admits a coherent covering while
the converse implication is not always true as illustrated by Example 6.

It can be checked that the core of the schedule game vM in Example 6 is the singleton
Core(vM ) = {x} where x = (0, 1.9, 3). Furthermore x is different from the two distinct equal
pooling allocations that can be obtained from the optimal time configurations R1, R2 and R3

and different from the Shapley value of vM . Still, we provide below a variant of the equal pooling
allocation which coincides with x in Example 6.

More precisely, instead of applying the Equal Pooling principle directly to an optimal time
configuration R∗, we apply it to any of its coherent covering R̄∗. Before stating the main result
of this section, consider the unique coherent covering R̄ = (∅, {1, 2}, {3, 4, 5}) of an optimal time
configuration (either of R1 or R2) in Example 6. We easily obtain EP R̄(M) = (0, 1.9, 3) = x. In
words, in Example 6, the equal pooling allocation associated with the unique coherent covering
singles out the unique core allocation.

Proposition 8. If a schedule situation M admits a coherent covering R̄∗ of some optimal time
configuration R∗ ∈ O(N), then EP R̄∗

(M) ∈ Core(vM ).

21



Proof. Let M be any schedule situation which admits a coherent covering R̄∗ of some optimal
time configuration R∗ ∈ O(N) and let R∗ = (A∗

i )i∈N and R̄∗ = (Ā∗
i )i∈N . As a start, construct

the singleton schedule situation M R̄∗
induced by R̄∗, i.e., M R̄∗

= (T, (T R̄∗
i )i∈N , (ct)t∈T ) with

T R̄∗
i = {Ā∗

i } for each i ∈ N . By definition of M R̄∗
, it holds that

EP R̄∗
(M) = EP R̄∗

(M R̄∗
). (11)

Furthermore, from Propositions 5 and 6, we know that EP R̄∗
(M R̄∗

) ∈ Core(vM R̄∗ ). Combined
with (11), we get

EPR∗
(M) ∈ Core(vM R̄∗ ). (12)

Now, from condition (b) in the definition of a coherent covering, we obtain vM R̄∗ (N) = vM (N).
Moreover, for each nonempty E ⊊ N , condition (a) in the definition of a coherent covering
implies that

vM R̄∗ (E) =
∑

t∈∪i∈EĀ∗
i

ct ≤ vM (E),

from which (12) yields that

∑

j∈E
EP R̄∗

j (M) ≤ vM R̄∗ (E) ≤ vM (E).

Hence, we conclude that EP R̄∗
(M) ∈ Core(vM ). ■

Example 6 is a rather extreme case in which the Equal Pooling allocation obtained from
the unique coherent covering results in player A paying no costs. Therefore, even if such an
allocation is a core allocation in this example, it can be considered more unfair than equal pooling
allocations calculated from O(N). To sum up, in a schedule situation that is not coherent but
admits a coherent covering, there may be a trade-off to be made between the stability of an
allocation (in the sense of the core) and the fairness of an allocation (in the sense of the equal
pooling of all active time periods of a given optimal time configuration for the grand coalition).

Example 4 is an example of a schedule situation which admits multiple coherent coverings
of a non-coherent optimal time configuration. In order to see this, consider the optimal time
configuration R1 = ({1, 2}, {1, 5}, {2, 4, 5}) which is not coherent as shown is table 2. The
time configuration R̄1 = ({2}, {1, 5}, {2, 4, 5}) is the unique maximal coherent covering of R∗

with respect to set inclusion. However R̄′ = ({2}, {1}, {2, 4, 5}) and R̄′′ = (∅, {1, 5}, {2, 4})
are two other coherent coverings of R∗, among others. From Proposition 8, we obtain that the
corresponding Equal Pooling allocations EP R̄1

(M) = (0.4, 3.45, 2.65), EP R̄′
(M) = (0.4, 2.3, 3.8)

and EP R̄′′
(M) = (0, 4.6, 1.9) are in the core of vM .

The condition in Proposition 8 is sufficient but not necessary. In the following example, the
core is nonempty even if the underlying schedule situation admits no coherent covering.

Example 7. Assume that N = {A,B,C}, T = {1, . . . , 9}, TA = {{1, 2}, {3, 4}, {7, 8, 9}},
TB = {{1, 2}, {5, 6}, {7, 8, 9}}, TC = {{3, 4}, {5, 6}, {7, 8, 9}} and ct = 1 for each t ∈ T . Then

we obtain the following table.
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E vM (E) O(E)
∑

i∈E xi

{A} 2 ({1, 2}) 1

({3, 4})
{B} 2 ({1, 2}) 1

({5, 6})
{C} 2 ({3, 4}) 1

({5, 6})
{A,B} 2 ({1, 2}, {1, 2}) 2

{A,C} 2 ({3, 4}, {3, 4}) 2

{B,C} 2 ({5, 6}, {5, 6}) 2

{A,B,C} 3 ({7, 8, 9}, {7, 8, 9}, {7, 8, 9}) 3

Table 5: The set of all optimal time configurations

The time configuration used to compute vM (N) contains, for each player, time periods that

are never used to compute the worth of smaller coalitions. Therefore, the unique optimal time

configuration on N neither is coherent nor admits a coherent covering. However, the core is a

singleton containing allocation x = (1, 1, 1). □

The previous example does not ensure that the game vM cannot be obtained as the schedule
game of an alternative schedule situation which admits a coherent covering. In other words, the
following question remains open: Can every schedule game with a nonempty core be obtained
from a schedule situation admitting a coherent covering?

We conclude this section by pointing out the relationships between schedule situations that
admit coherent configurations and/or coherent coverings and non-redundant schedule situations
studied in Moulin and Laigret (2011). It is easy to figure out that the non-redundancy condition
implies that the corresponding game admits a coherent covering consisting, for each player, of
her set of critical periods (see section 3.2 for the definition).

Proposition 9. Let M be a non-redundant schedule situation, that is ∪i∈NGi(M) = T , where
Gi is the set of critical periods for player i ∈ N . Then, for each R ∈ O(N), G = (Gi)i∈N is a
coherent covering of R.

Proof. Let M be a non-redundant schedule situation and R ∈ O(N), R = (A∗
i )i∈N . By

definition, since A∗
i ∈ Ti,

Gi(M) =
⋂

Ai∈Ti

Ai ⊆ A∗
i

for each i ∈ N , which means that condition (a) in the definition of coherent covering is satisfied.
Next, the non-redundancy condition implies that

⋃

i∈N
Gi = T =

⋃

i∈N
A∗

i ,
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so that condition (b) in the definition of coherent covering is satisfied as well. Finally, Gi(M) ⊆
Ai for each Ai ∈ Ti yields that for each E ⊆ N and each RE ∈ O(E), RE = (AE

i )i∈E , we
have Gi(M) ⊆ AE

i . Hence condition (c) in the definition of coherent covering is satisfied for all
optimal configurations for E (and not just at least one as required in the definition of a coherent
covering). ■

Example 7 illustrates that the converse implication does not hold: some schedule situations
admit some coherent covering but fail non-redundancy. Finally, non-redundancy and coherence
conditions are not related to each other. Non-redundancy does not implies coherence. To see
this, it is to enough revisit Example 7 by adding player D with TD = {{1, 2, 6, 7, 8}}, ceteris
paribus. The new augmented schedule situation becomes non-redundant but is not coherent
because its sub-schedule situation induced by coalition {A,B,C} is not as underlined in Example
7. Similarly, Coherence does not imply non-redundancy as highlighted by Example 4.4

6. An application to the French postal case

Below, we present once again the problem of allocating the cost of the mail carrier route
in France which was already mentioned in the introduction. To meet its universal service obli-
gations, La Poste must organize the delivery network in order to be in capacity to visit all
recipients’ addresses six days a week and meet the delivery speed of the postal products.
The delivery speed refers to the time period within which a particular postal product must
be delivered, from the moment between it is posted until its actual delivery at the customers’
location choice. In its decision 2008-0165 the French national regulatory authority Arcep, in
charge of defining the allocation rules of universal products’ costs, distinguished three delivery
speed categories: D7 for a delivery target on the 7th business day after posting, D3 for a delivery
target on the 3rd business day after posting and D1 for a delivery target on the 1st business day
after posting. Considering logistical constraints, a delivery frequency of one day per week
would be enough to satisfy D7, delivery frequency of three days per week would be enough to
satisfy D3 and delivery frequency of six days per week would be required to satisfy D1. Arcep’s
decision states that the common cost of the six weekly mail carrier routes, first, is allocated to
the three categories in proportion to their aforementioned delivery frequency, i.e. 10% of the
delivery costs to D7, 30% to D3 and 60% to D1. Secondly, the share of the cost previously
calculated for each category is then allocated to the postal products belonging to this category
according to their format/volume. We will only focus on the first part of this process which can
be apprehended by an uniform unit-cost schedule game.

We can use the rich possibilities offered by the schedule situations in order to model the
cost sharing of the mail carrier route as the following unit-cost schedule situation M1. The
infrastructure is the mail carrier route which can be used once during six days per week. The
costs are quantified in number of routes, i.e. one tour used equal to one unit of cost. So that
T = {1, 2, 3, 4, 5, 6} and ct = 1 for each t ∈ T . Period 1 represents the delivery day Monday and
so on. The players are the three postal product categories, i.e. N = {D7, D3, D1}. For category
D7, there are six singleton possible alternative consumption schedules, one for each day of the
week, since a postal product in this category must be delivered not later than 7 days after being

4In Example 4, period 3 is never selected, for any nonempty coalition, in any optimal time configuration. This
property no longer holds if one adds period 6 which costs c6 = 0.6 and {3, 6} in TB .
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posted. On the contrary, for category D1, the unique consumption schedule is the set of all
six days of the week since the postal products in this category must be delivered on the next
business day. For category D3, the set of minimal consumption schedules contains all the triple
of days which are not consecutive two by two5. Therefore:

TD7 = {{1}, {2}, {3}, {4}, {5}, {6}},
TD3 = {{1, 3, 5}, {1, 3, 6}, {1, 4, 6}, {2, 4, 6}},

TD1 = {{1, 2, 3, 4, 5, 6}}.
We obtain the associated schedule game vM1 below, where superscript 1 is here added to dis-
tinguish the two schedule situations presented in this section.

E {D7} {D3} {D1} {D7, D3} {D7, D1} {D3, D1} {D7, D3, D1}
vM1(E) 1 3 6 3 6 6 6

The content of decision 2008-0165 only considers the number of delivery days. This process
could naively be formulated as the following uniform unit-cost schedule situation M2 where
T = {1, 2, 3, 4, 5, 6}, N = {D7, D3, D1} and:

TD7 = {{1}, {2}, {3}, {4}, {5}, {6}},
TD3 = {E ⊆ T : |E| = 3},
TD1 = {{1, 2, 3, 4, 5, 6}}.

However, the set TD3 does not reflect correctly the constraints imposed on category D3. As
an example, {1, 2, 3} ∈ TD3 which means that postal products in category D3 can, a priori,
be distributed in the three consecutive days Monday, Tuesday and Wednesday. However, this
would prevent postal products posted on Wednesday to be delivered on time. This is legally
not possible because La Poste has to meet the delivery speed of each postal product. This may
seem inconsequential from the point of view of cost sharing since the resulting uniform unit-cost
schedule game vM2 is identical to vM1 . This will no longer be the case if further changes are
incorporated to this problem. As an illustration, imagine that we add a new category of postal
products that must be delivered on some specific days, such as newspapers or advertisements,
the mutualization of the time configurations can be different from vM1 to vM2 . More specifically,
suppose that we add a fourth category of postal products D2 corresponding to direct marketing
mail that must be distributed in two specific consecutive days {2, 3}. Consider for instance
a first advertisement sent Tuesday that proposes discounts on Wednesday and, to encourage
consumers, the store send back coupons on Wednesday, as a reminder. We get the following set
of minimal time configurations for category D2:

TD2 = {{2, 3}}.
Denote by vM1′ and vM2′ the two four-player schedule games obtained by adding player D2 to
the schedule situations M1 and M2, respectively. These two games are distinct. To see this
consider coalition {D2, D3}. In the schedule game vM1′ , the delivery category D2 pools only
one of its two days with D3, which yields that vM1′ ({D2, D3}) = 4, i.e. four routes per week are

5Time periods 1 and 6 belonging to TD3 are not consecutive due to Sunday which is not a delivery day.
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needed. On the contrary, in the uniform unit-cost schedule game vM2′ the label of the delivery
days does not matter, hence the delivery category D2 can completely (but inaccurately) pool
its time periods with category D3, which implies that vM2′ ({D2, D3}) = 3.

To conclude this application, let us back to the original three-player problem. To deter-
mine allocations of the schedule game vM1 we will apply the Equal pooling allocation to a
coherent optimal time configuration R∗ and to a non-coherent optimal time configuration R.
Let R∗ =

{
{1}, {1, 3, 5}, {1, 2, 3, 4, 5, 6}

}
and R =

{
{1}, {2, 4, 6}, {1, 2, 3, 4, 5, 6}

}
. According to

proposition 3 the Equal pooling allocation of a coherent optimal time configuration is the Shap-
ley value. It gives the following percentages: D7 incurs 5.56% of the costs, D3 incurs 22.22%
and D1 incurs 72.22% of the costs. This corresponds to the efficient allocation (13 ,

4
3 ,

13
3 ) in the

game vM1 , as calculated in Bohorquez Suarez and Munich (2023). The Equal pooling allocation
on R gives the following percentages: D7 incurs 8.33% of the costs, D3 incurs 25% and D1

incurs 66.67% of the costs. This corresponds to the efficient allocation (12 ,
3
2 , 4) in the game

vM1 . Compared to the two previous allocations the current allocation incurs less costs to D1.
Although, the three allocations are close to each other, they rely on distinct principles. The
Shapley value is based on the incremental costs of each category to coalitions, the Equal pooling
allocation takes into account the routes needed by each category and the current allocation
shares the costs according to a proportional principle. Hence, the Equal pooling allocations can
be considered as an alternative to the current allocation.

7. Concluding remarks

We conclude briefly with a summary of the relation between schedule games and schedule
situations and propose possible extensions for future works. Figure 1a illustrates the relation
between schedule games and Figure 1b the relation between schedule situations. Proposition
1 states that the class of all schedule games on N coincides with the class of monotone and
sub-additive TU-games on N thus, some schedule games may have an empty-core. However, the
schedule games arising from schedule situation with a coherent covering (CCSG) have a non-
empty core. Coherent schedule situations are a subset of the class of schedule situations that
admit a coherent covering: any coherent M admits some coherent covering while the converse is
not always true. Therefore, schedule games resulting from a coherent schedule situation (CSG)
are included in the CCSG set. In addition, Proposition 7 states that CSG coincide with singleton
schedule games (SSG). However, as pictured in Figure 1a, coherent schedule situations include
singleton schedule situations while the converse is not always true, unlike the corresponding
classes of schedule games. Uniform schedule games (USG), by definition, are coherent schedule
situations so that they are included in the set of singleton schedule games (SSG). However,
sets of uniform schedule situations (USS) and singleton schedule situations (SSS) obviously are
disjoint. Finally, Proposition 9 states that the set of schedule games with non-redundant periods
(NRSG) is contained by the set of CCSG and it is easy to figure out that it intersects CSG, SSG
and USG. The same connection applies to the sets of corresponding schedule situations.

We know that some situations do not admit a coherent covering while they induce a schedule
game with a non-empty core, see Example 7. Nevertheless, it remains an open question whether
any schedule games with a non-empty core can be obtained from a schedule situation with a
coherent covering. Moreover, it could be interesting to find a condition which would be both
necessary and sufficient for the non-emptiness of the core of a schedule game.
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Figure 1: Relations between schedule games and schedule situations
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