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Abstract

The Shapley and Owen values defined respectively for cooperative games with transferable

utility (TU-games), and TU-games with coalition structure have recently been extended

as allocation rules for TU-games with diversity constraints. This new class of games is

introduced by Béal et al. (Working paper, 2024). In this new environment, players are

divided into disjointed groups called communities. Diversity constraints require a mini-

mum number of members in each community for cooperation to take place. A coalition

is diverse if it contains at least the required number of members from each community.

The diversity-restricted game is a TU-game which assigns zero to any non-diverse coali-

tion and also assigns the original worth of a coalition if it is diverse. The extensions of

the Shapley and Owen values are respectively called the Diversity Shapley value which

is defined as the Shapley value of the diversity-restricted game, and the Diversity Owen

value which is defined as the Owen value of the diversity-restricted game with coalition

structure. Moreover, two axiomatic characterizations of these values are given. In this

paper, we also present two new axiomatic characterizations of the Diversity Owen and

Shapley values.

Key-words: TU-games, diversity constraints, axiomatic characterization, Diversity Shap-

ley value, Diversity Owen value.

JEL Codes: C71.

1. Introduction

We consider a new class of games called cooperative games with diversity constraints and

recently introduced by Béal et al. (2024). A cooperative game with diversity constraints

consists of a set of players, a characteristic function that assigns to each coalition its

worth, a coalition structure that is simply a partition of the set of players into disjoint
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groups called communities, and a vector of minimum numbers of members of each com-

munity who can take part in a cooperation. In this new class of games, diversity is an

important and essential criterion for cooperation. A coalition is diverse if it contains a

least a required number of members of each community. A game is diverse if all the pro-

ductive coalitions are diverse. Béal et al. (2024) illustrate this model with three real life

situations. The voting system during the constitutional reforms (initiated by the Presi-

dent of the Republic) in the French Parliament of the Fifth Republic can be described as

a cooperative game with diversity constraints where the players are the parliamentarians,

the characteristic function assigns one to every coalitions containing more than 60% of the

parliamentarians and zero otherwise, the coalition structure is composed of two groups

(deputies and senators), and a vector of minimum numbers that indicates the quota of

members of each group for the decision to be adopted (at least 50% of members from

each group). The second example is the participatory budgeting with districts where the

players are the projects, the characteristic function assigns to each group of projects their

score received from the population during the vote, a partition of these projects accord-

ing to the different districts that have initiated them, and a minimum number of projects

from each district that will be realized. The last example is the well-known voting sys-

tem in the United Nations Security Council. Moreover, Béal et al. (2024) introduce and

axiomatically characterize two allocation rules inspired from the literature of cooperative

games with transferable utility (TU-games).

In the literature of TU-games, the Shapley value (Shapley, 1953) is probably the most

eminent one-point solution concept. Many authors such as van den Brink (2002), Chun

(1991), Myerson (1980), Shapley (1953) and Young (1985) have characterized this value

using many different approaches. In addition to this literature, the class of TU-games

was extended to the class of TU-games with coalition structure by Aumann and Dreze

(1974) where they defined a new solution concept generalizing the Shapley value. Three

years later, Owen (1977) introduced and characterized a new allocation rule for TU-games

with coalition structure. This allocation rule called the Owen value is a variant of the

Shapley value and it is probably the most eminent one-point solution concept for TU-

games with coalition structure. Many axiomatic characterizations of the Owen value were

proposed. Among these characterizations, we have Calvo et al. (1996), Casajus (2010),

Hu (2021), Khmelnitskaya and Yanovskaya (2007), and Owen (1977). Inspired by the

approach of Myerson (1977) extending the Shapley value in the class of TU-games with

communication structure, Béal et al. (2024) introduced two allocation rules which can be

viewed as the extension of the Shapley and Owen values to the class of TU-games with

diversity constraints. They consider a particular TU-game called the restricted-diversity

game which assigns zero to any non-diverse coalition and the original worth of a coalition

if it is diverse. The first value called the Diversity Owen value is defined as the Owen value

of the restricted-diversity game with coalition structure. The second allocation rule called
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the Diversity Shapley value is defined as the Shapley value of the restricted-diversity game

without the coalition structure.

Additionally, these allocation rules are characterized by the incorporation of two prin-

ciples: the spirit of Owen (1977) and Shapley (1953), along with the one of Young (1985)

and Khmelnitskaya and Yanovskaya (2007). Following the first approach, three classical

axioms are adapted for TU-games with diversity constraints. Efficiency states that the

worth of the grand coalition is allocated optimally to the players. Additivity states that

the payoff of any player in the sum of two games should coincide with the sum of its pay-

offs in the two games. Intra-coalitional equal treatment of necessary players states that

all necessary players (i.e., those whose absence from a coalition makes it unproductive)

within the same community should have the same payoff. The next three axioms are new

and indicates the impact of diversity constraints on the allocation process. Null player

out for preserving-diversity games states that if a player is unproductive in a game and its

presence is not necessary to achieve diversity criteria then the payoff of the other players

should not change when this player leaves the game. Equality through diversity states that

the different communities should be treated equally by receiving the same payoffs. Inde-

pendence from non-diverse coalitions states that in a TU-game with diversity constraints,

only productive coalitions should matter and then the payoff allocation only depends on

the subset of coalitions that meet the diversity requirements. Béal et al. (2024) show that

all these six axioms characterize the Diversity Owen value. They also show that when

we replace Intra-coalitional equal treatment of necessary players by the stronger version

Equal treatment of necessary players 1 and remove Equality through diversity, the rest of

the axioms characterizes the Diversity Shapley value. Following the second approach, two

classical axioms are stated on the class of diverse games. Marginality for diverse games

states that if the marginal contributions of any player coincide in two diverse games then

this player should have the same payoff in these two games. Strong monotonicity for

diverse games states that if the marginal contributions of a player in a diverse game

are at least equal to its marginal contributions in another diverse game then its payoff

in the first game should be at least equal to its payoff in the second game. Béal et al.

(2024) show that any one of these last axioms can replace Null player out for preserving-

diversity games and Additivity on the first characterization of the Diversity Owen and

Shapley values. They also show that any one of these two last axioms can be replaced

by the following axiom introduced by Chun (1989). Coalitional strategic equivalence for

diverse game states that the payoff of a player in a game should not change in another

game if this game is obtained by adding to the original game a diverse game where this

player is unproductive. Finally, they show that their two first results remain valid within

the class of simple games with diversity constraints by replacing Additivity by the axiom

of Transfer introduced by Dubey (1975).

1The only change is that the players are not necessary from the same community.
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In this paper, we propose two new characterizations of the Diversity Owen and Shapley

values. In our first characterization, we use the fairness approach introduced in the

class of TU-games by van den Brink (2002) for the characterization of the Shapley value

and latter used by Hu (2021) in the class of TU-games with coalition structure for the

characterization of the Owen value. Following the fairness approach, we consider the

first characterization of the Diversity Owen value where we show that Additivity, Intra-

coalitional equal treatment of necessary players and Equality through diversity can be

replaced by the following two new axioms. Fairness within component states that the

payoffs of two members of the same community in a game change by the same amount

if we move to a new game obtained from the original one by adding a game where the

two players are symmetric (interchangeable). Fairness through diversity states that the

amount receives by each community in a game should changes by the the same amount

if we move to a new game by adding another game to the original one. When we replace

Fairness within component by the strongest version simply called Fairness (the two players

are not necessary the members of the same community) and we also remove Fairness

through diversity, we obtain a new characterization of the Diversity Shapley value.

In the second approach, we adapt the balanced contributions axiom introduced by

Myerson (1980). Intra-coalitional balanced contributions with out players for preserving

diversity states that if the presence of any one among two members of the same community

is not necessary to achieve the diversity criteria then the payoff of any one of this member

change by the same amount when the other one leaves the game. Furthermore, if one

player among the two proves unproductive in the new game upon the departure of the

other player, its payoff in the new game should be zero. In the first characterization of the

Diversity Owen value, we show that Null player out for preserving-diversity games, Intra-

coalitional equal treatment of necessary players and Additivity can be replaced by Intra-

coalitional balanced contributions with out players for preserving diversity. Similarly, we

derive a new characterization of the Diversity Shapley value by using a stronger version of

this new last axiom, where the players are not necessarily members of the same community.

Our paper is organized as follows. In Section 2, we present some basic notions on TU-

games with coalition structures, and we also present a literature review on TU-games with

diversity constraints. In Section 3, we propose a new characterization of the Diversity

Owen and Shapley values by using the fairness approach. In Section 4, we characterize

these two allocation rules by using the balanced contributions axiom. Section 5 concludes

the paper.
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2. Preliminaries

2.1. Cooperative games with coalition structures

A cooperative game with transferable utility (TU-game) is defined as a pair (N, v) where

N is a finite set of players and v is a function assigning a real number v(S) to each

coalition S ⊆ N . This real number can be viewed as the worth of the coalition S. We

assume that v(∅) = 0. We denote by G the set of TU-games with a finite player set. A

player i ∈ N is null in the game (N, v) if for each S ⊆ N\{i}, v(S ∪ {i}) = v(S). Two

players i, j ∈ N, are symmetric in the game (N, v) if v(S ∪ {i}) = v(S ∪ {j}) for every

S ⊆ N\{i, j}. A player i ∈ N is necessary in the the game (N, v) if for each S ⊆ N\{i},
v(S) = 0. Given two TU-games (N, v) and (N,w), the TU-game (N, v+w) is defined by

(v +w)(S) = v(S) +w(S) for all S ⊆ N . For any S ⊆ N , the subgame of (N, v) induced

by S is the game (S, v|S), where, for each T ⊆ S, v|S(T ) = v(T ). For every coalition

T ⊆ N , we denote by uT the unanimity game and it is given by uT (S) = 1 if T ⊆ S and

0 otherwise. Any game can be uniquely represented by a unanimity game. In particular,

we have

v =
∑

S⊆N,S ̸=∅
∆v(S)uS,

where ∆v(S) is called the Harsanyi dividend (Harsanyi, 1959) of S and defined recursively

as follows ∆v(S) := v(S)−
∑

T⊊S

∆v(T ) with ∆v(∅) = 0.

A value f on G is a function assigning to each TU-game (N, v) ∈ G a vector of real

numbers (fi(N, v))i∈N such that fi(N, v) corresponds to the payoff of player i ∈ N in

the game (N, v). The Shapley value Sh (Shapley, 1953) is among the well-known solution

concepts for TU-games. It is given by

Shi(N, v) =
∑

S⊆N,S∋i

∆v(S)

|S| .

The Shapley value equitably distributes the dividend of any coalition among its members.

A coalition structure on N denoted by B = {B1, B2, · · · , Bm} is a partition of N into

disjoints groups of players Bℓ. A cooperative game with a coalition structure is a triple

(N, v,B) where (N, v) is a TU-game and B is a coalition structure. We denote by GB the

set of TU-games with coalition structure in which the player set is finite. For any S ⊆ N ,

we denote by B|S = {B1 ∩ S, . . . , Bm ∩ S} the coalition structure on S induced by B. For
any S ⊆ N , the subgame with a coalition structure on S induced by B is the game with a

coalition structure (S, v|S,B|S). The elements of B are called components. For any i ∈ N ,

we denote by B(i) the component containing player i. Many values on GB was defined

in the literature and it turns out that the Owen value (Owen, 1977) is probably the best
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allocation rules for TU games with coalition structures. It is given by

Owi(N, v,B) =
∑

S⊆N,S∋i

∆v(S)

|B(i) ∩ S| · |{Bk ∈ B : S ∩Bk ̸= ∅}| .

The Owen value is a generalization of the Shapley value to games with coalition structures.

It distributes the dividend of any coalition by considering two distinct steps. In the first

step, the dividend of a given coalition S is shared equally to all components containing

the members of S. In the second step, the dividend received by these components is also

shared equally among the members of S belonging to the component.

2.2. Cooperative games with diversity constraints

Béal et al. (2024) enforce some diversity requirements as a prerequisite for cooperation.

They assume that the players are partitioned into communities Bk with k ∈ {1, · · · ,m}
such that B is a coalition structure. They predefine a minimal number dk ∈ {1, . . . , |Bk|}
of each community Bk who can cooperate and then introduce some new notions. A

coalition S is a diverse coalition if this coalition contains at least the required number

of members of each community, i.e., |S ∩ Bk| ≥ dk for all k ∈ {1, · · · ,m}. We denote

by D(N,B, d) the set of diverse coalitions. A game (N, v,B, d) is a diverse game if

v(S) ̸= 0 =⇒ S ∈ D(N,B, d). An example of a diverse game is the game (N, vd,B, d)
where vd assigns the original worth to every diverse coalition and 0 to every non-diverse

coalition. It is given by

vd(S) =

{
v(S) if S ∈ D(N,B, d),
0 otherwise.

The pair (N, vd) is called the diversity-restricted game. A player i ∈ Bk ∈ B is out in a

game (N, v,B, d) if its presence is not necessary to achieve the diversity requirement, i.e.,

|Bk|−dk ≥ 1. A game (N, v,B, d) is called i-out diverse, i ∈ Bk, if (N, v,B, d) is diverse
and |Bk| − dk ≥ 1. A TU-game with diversity constraints is a four-tuple (N, v,B, d)
where (N, v,B) is a TU-game with a coalition structure and d = (d1, d2, · · · , dm). We

denote by GD the set of all TU-games with diversity constraints and a finite player

set. For any S ⊆ N , the subgame with diversity constraints of (N, v,B, d) induced by

S is the game with diversity constraints (S, v|S,B|S, d). As noticed in the introductory

section, some real life situations modeled by TU-games with diversity constraints can

be found in Béal et al. (2024). Two allocations rules for TU-games with diversity con-

straints are introduced and axiomatically characterized by Béal et al. (2024). The first

allocation rule is called the Diversity Owen value. It is denoted by DOw and defined

as the Owen value of the restricted-diverse game with coalition structure, i.e., for any

(N, v,B, d) ∈ GD, DOw(N, v,B, d) = Ow(N, vd,B). The second allocation rule is called
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the Diversity Shapley value. It is denoted by DSh and defined as the Shapley value of

the restricted-diverse game without coalition structure, i.e., for any (N, v,B, d) ∈ GD,

DSh(N, v,B, d) = Sh(N, vd). Béal et al. (2024) state and interpret the following axioms

for TU-games with diversity constraints.

• Efficiency (E). For each (N, v,B, d) ∈ GD,
∑

i∈N fi(N, v,B, d) = v(N).

• Additivity (A). For each (N, v,B, d), (N,w,B, d) ∈ GD, f(N, v + w,B, d) =

f(N, v,B, d) + f(N,w,B, d).

• Equal treatment of necessary players (ETNP). For each (N, v,B, d) ∈ GD and

each i, j ∈ N , if i and j are necessary in (N, v) then, fi(N, v,B, d) = fj(N, v,B, d).

• Intra-coalitional equal treatment of necessary players (ICETNP). For each

(N, v,B, d) ∈ GD and each i, j ∈ Bh ∈ B, if i and j are necessary in (N, v) then,

fi(N, v,B, d) = fj(N, v,B, d).

• Independence from non-diverse coalitions (INDC). For each (N, v,B, d),
(N,w,B, d) ∈ GD such that v(S) = w(S) for all S ∈ D(N,B, d), f(N, v,B, d) =

f(N,w,B, d).

• Intra-coalitional symmetry (ICS). For any (N, v,B, d) ∈ GD, if i, j ∈ Bk and i

and j are symmetric in (N, v), then fi(N, v,B, d) = fj(N, v,B, d).

• Symmetry (S). For any (N, v,B, d) ∈ GD, if i and j are symmetric in (N, v), then

fi(N, v,B, d) = fj(N, v,B, d).

• Equality through diversity (ED). For any (N, v,B, d) ∈ GD and each k, q ∈ M ,∑
i∈Bk

fi(N, v,B, d) = ∑
i∈Bq

fi(N, v,B, d).

• Null player out for preserving-diversity games (NPOPD). If (N, v,B, d) is i-
out diverse and player i is null in (N, v), then fj(N, v,B, d) = fj(N\{i}, v|N\{i},B|N\{i}, d)

for each j ∈ N\{i}.

• Coalitional strategic equivalence for diverse game (CSEDG). If (N, v,B, d) ∈
GD is diverse and player i is null in (N, v), then for any game (N,w,B, d) ∈ GD,

fi(N, v + w,B, d) = fi(N,w,B, d).

• Marginality for diverse games (MDG). For any pair of diverse games (N, v,B, d),
(N,w,B, d) ∈ GD, and any i ∈ N such that v(S ∪ {i})− v(S) = w(S ∪ {i})−w(S)

for all S ⊆ N\{i}, we have fi(N, v,B, d) = fi(N,w,B, d).

• Strong monotonicity for diverse games (MoDG). For any pair of diverse

games (N, v,B, d), (N,w,B, d) ∈ GD, and any i ∈ N such that v(S ∪ {i})− v(S) ≥
w(S ∪ {i})− w(S) for all S ⊆ N\{i}, we have fi(N, v,B, d) ≥ fi(N,w,B, d).
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By combining some axioms, they characterize the Diversity Owen and Shapley values as

shown below.

Proposition 1. The Diversity Owen value is the unique value on GD that satisfies Effi-

ciency (E), Additivity (A), Intra-coalitional equal treatment of necessary players (ICETNP),

Null player out for preserving-diversity games (NPOPD), Equality through diversity

(ED), and Independence from non-diverse coalitions (INDC).

By using the strongest version of ICETNP and by removing ED, they characterize

the Diversity Shapley value.

Proposition 2. The Diversity Shapley value is the unique value on GD that satisfies Ef-

ficiency (E), Additivity (A), Equal treatment of necessary players (ETNP), Null player

out for preserving-diversity games (NPOPD), and Independence from non-diverse coali-

tions (INDC).

Moreover, they show that A and NPOPD can be replaced by some new axioms as

shown below.

Proposition 3. The Diversity Owen value is the unique value on GD that satisfies Ef-

ficiency (E), Intra-coalitional equal treatment of necessary players (ICETNP), Equality

through diversity (ED), Independence from non-diverse coalitions (INDC), and Coali-

tional strategic equivalence for diverse game (CSEDG) or Marginality for diverse games

(MDG) or Strong monotonicity for diverse games (MoDG).

Similarly, they propose a second characterization of the Diversity Shapley value.

Proposition 4. The Diversity Shapley value is the unique value on GD that satis-

fies Efficiency (E), Equal treatment of necessary players (ETNP), Independence from

non-diverse coalitions (INDC), and Coalitional strategic equivalence for diverse game

(CSEDG) or Marginality for diverse games (MDG) or Strong monotonicity for diverse

games (MoDG).

3. Axiomatization with fairness approach

We propose a new characterization of the Diversity and Shapley values by using the fair-

ness approach introduced by van den Brink (2002) in the class of TU-games and extended

by Hu (2021) in the class of TU-games with coalition structure. We adapt the fairness

properties for TU-games with diversity constraints as follows.

Fairness (F). For all (N, v,B, d), (N,w,B, d) ∈ GD and i, j ∈ N ,

fi(N, v + w,B, d)− fi(N,w,B, d) = fj(N, v + w,B, d)− fj(N,w,B, d),
8



whenever i and j are symmetric in (N, v).

This axiom states that the variation of the payoffs of a pair of players should be the

same, if we move from one game to another by adding a game in which the two players

are symmetric. The next axiom weakens the fairness axiom.

Fairness within component (FwC). For all (N, v,B, d), (N,w,B, d) ∈ GD and i, j ∈
Bp ∈ B, if i and j are symmetric in (N, v), then

fi(N, v + w,B, d)− fi(N,w,B, d) = fj(N, v + w,B, d)− fj(N,w,B, d).

It requires that the payoffs of a pair of players belonging to the same community

should change by the same amount if we move from one game to another by adding a

game in which the two players are symmetric. The next axiom is the last variation of the

fairness axiom.

Fairness through diversity (FD). For all (N, v,B, d), (N,w,B, d) ∈ GD and Bp, Bq ∈
B,
∑

i∈Bp

fi(N, v + w,B, d)−
∑

i∈Bp

fi(N,w,B, d) =
∑

i∈Bq

fi(N, v + w,B, d)−
∑

i∈Bq

fi(N,w,B, d).

This axiom requires that the variation of the payoff received by two communities should

change by the same amount if we move from one game to another by adding a new game.

The next result states that the Additivity, Intra-coalitional equal treatment of neces-

sary players and Equality through diversity axioms of Proposition 1 can be replaced by

Fairness within component and Fairness through diversity axioms.

Proposition 5. The Diversity Owen value is the unique value on GD that satisfies

Efficiency (E), Fairness within Component (FwC), Fairness through diversity (FD),

Independence from non-diverse coalitions (INDC), and Null player out for preserving-

diversity games (NPOPD).

Proof of Proposition 5. We adapt the approach used by Hu (2021), and Béal et al.

(2024).

Existence. The Diversity Owen value satisfies E, NPOPD, and INDC. Let us also

show that it satisfies FD and FwC.

The Diversity Owen value satisfies ICS and ED. It also satisfies FwC and FD since

A and ICS (respectively, ED) imply FwC and (respectively, FD). For any diverse

game (N, v,B, d) ∈ GD, if i ∈ N is null in (N, v) then i is also null in (N, vd) since

vd = v. Thus, Owi(N, vd,B) = 0.
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Uniqueness. Let f be a value on GD that satisfies E, FwC, FD, INDC, and

NPOPD. Let us show that f = DOw.

Let us consider a game (N, v,B, d) ∈ GD. By INDC, we have f(N, v,B, d) =

f(N, vd,B, d). We set

T (vd) := {T ∈ D(N,B, d) | ∆vd(T ) ̸= 0}.

By induction on the cardinality of T (vd), we are going to show that f = DOw.

Induction basis (IB): For any game (N, v,B, d) ∈ GD such that
∣∣T

(
vd
)∣∣ = 0,

(N, vd) is a null game.

Let Bk ∈ B be a given community and p /∈ N an outside player who wants to

join the community Bk. Let us define a new game (N ∪ {p}, (vd)+p,B+p, d) ∈ GD

where (vd)+p(S) = vd(S\{p}) for every S ⊆ N ∪ {p}, and B+p = {B1, B2, · · · , Bk ∪
{p}, Bk+1, · · · , Bm}. The TU-game (N∪{p}, (vd)+p) is also a null game. Every player is

null in the game (N∪{p}, (vd)+p). For any j ∈ Bk∪{p}, the game (N∪{p}, (vd)+p,B+p, d)

is j-out diverse. For any i ∈ Bk, by E we have

∑

j∈N∪{p}
fj
(
N ∪ {p}, (vd)+p,B+p, d

)
= (vd)+p(N ∪ {p}) = 0 = (vd)+p

(
(N\{i}) ∪ {p}

)

=
∑

j∈(N\{i})∪{p}
fj
(
(N\{i}) ∪ {p},

(
(vd)+p

)
|(N\{i})∪{p},

(
B+p

)
|(N\{i})∪{p}, d

)
.

Applying NPOPD, we have fi(N ∪ {p}, (vd)+p,B+p, d) = 0. By NPOPD again, we

have fi(N ∪ {p}, (vd)+p,B+p, d) = fi(N, vd,B, d) = 0.

Similarly with the other communities, we have fi(N, vd,B, d) = 0 = Owi(N, vd,B, d)
for any i ∈ N .

Induction hypothesis (IH): Suppose the claim holds for all (N, v,B, d) ∈ GD such

that
∣∣T (vd)

∣∣ ≤ t̄ with t̄ ∈ N.

Induction step: Let (N, v,B, d) ∈ GD be a game such that
∣∣T (vd)

∣∣ = t̄+1. We set

T(vd) :=
{
i ∈ N | i ∈ T, for all T ∈ T (vd)

}
.

This set can be empty or not. So, we consider the following two cases.

1st case: We assume that T(vd) = ∅. If there exists at least one component Bh ∈ B
such that |Bh| = dh, then

∣∣T
(
vd
)∣∣ = 0 since the elements of T (vd) are supposed to be

diverse and also T(vd) = ∅. From (IB), the claim is immediate.

We assume now that there are no Bh ∈ B such that |Bh| = dh. For any player

i ∈ N , there exists some diverse coalition To ∈ T
(
vd
)
such that i /∈ To. Let us fix
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w =
∑

S∈D(N,B,d)\{To}∆vd(S)uS. Hence, v
d = w +∆vd(To)uTo and |T (w)| = t̄. By (IH),

we deduce that f(N,w,B, d) = Ow(N,wd,B).

By applying FD, for every Bp, Bq ∈ B, we have

∑

k∈Bp

fk(N, vd,B, d)−
∑

k∈Bq

fk(N, vd,B, d) =
∑

k∈Bp

fk(N,w,B, d)−
∑

k∈Bq

fk(N,w,B, d)

(IH)
=

∑

k∈Bp

Owk(N,wd,B)−
∑

k∈Bq

Owk(N,wd,B)

(ED)
= 0.

Hence, we have ∑

k∈Bp

fk(N, vd,B, d) =
∑

k∈Bq

fk(N, vd,B, d).

Applying E gives

∑

k∈B(i)
fk(N, vd,B, d) = vd(N)

m
=

∑

k∈B(i)
Owk(N, vd,B). (1)

Recall that |B(i)| > 1 since dh < |B(i)| with Bh = B(i).
Let us assume that Bh = B(i) = {i, i′}. So, dh is necessary equal to 1. There exists

a diverse coalition T1 ∈ T
(
vd
)
such that i′ /∈ T1. Moreover, i ∈ T1 and i′ ∈ T0 since T1

and T0 are diverse. The players i and i′ are symmetric in
(
N,∆vd(To)uTo +∆vd(To)uT1

)
.

By applying FwC, we have

fi(N, vd,B, d)− fi′(N, vd,B, d)
= fi(N, vd −∆vd(To)uTo −∆vd(To)uT1 ,B, d)− fi′(N, vd −∆vd(To)uTo −∆vd(To)uT1 ,B, d)
= fi(N,w −∆vd(To)uT1 ,B, d)− fi′(N,w −∆vd(To)uT1 ,B, d)
(IH)
= Owi(N, (w −∆vd(To)uT1)

d,B)−Owi′(N, (w −∆vd(To)uT1)
d,B)

= Owi(N, vd,B)−Owi′(N, vd,B). (2)

Adding Equations (1) and (2) leads to fi(N, vd,B, d) = Owi(N, vd,B).
Now, let us assume that |B(i)| > 2. It is clear that every player j ∈ B(i)\To and i are

symmetric in
(
N,∆vd(To)uTo

)
. Similarly to Equation (2), applying FwC gives

fi(N, vd,B, d)− fj(N, vd,B, d) = Owi(N, vd,B)−Owj(N, vd,B). (3)

Analogously, every pair of players j, k ∈ B(i)∩To are also symmetric in
(
N,∆vd(To)uTo

)
,
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and by FwC we have

fk(N, vd,B, d)− fj(N, vd,B, d) = Owk(N, vd,B)−Owj(N, vd,B). (4)

Finally, let i′′ ∈ B(i) ∩ To be a player and T2 ∈ T
(
vd
)
a diverse coalition such that

i′′ /∈ T2, since vd = ∆vd(T2)uT2 +
∑

S∈2N\{T2,∅}∆vd(S)uS, by applying (IH) and FwC,

we have





fi′′(N, vd,B, d)− fj(N, vd,B, d)
= Owi′′(N, vd,B)−Owj(N, vd,B) for all j ∈ B(i)\T2,

fk(N, vd,B, d)− fj(N, vd,B, d)
= Owk(N, vd,B)−Owj(N, vd,B) for all j, k ∈ B(i) ∩ T2.

(5)

Recall that To ̸= T2. So there are at least |B(i)| − 1 linearly independent equations

in Equations (3), (4), and (5). Combining these equations with Equation (1) leads to

fi(N, vd,B, d) = Owi(N, vd,B).

2nd case: Now, let us assume that T(vd) ̸= ∅. The eventuality where i ∈ N\T(vd)
is solved in the 1st case. So, let us consider that i ∈ T(vd). If T(vd) = {i}, then from

the 1st case and E, we have fi(N, vd,B, d) = Owi(N, vd,B) since DOw and f satisfy E.

We assume that |T(vd)| > 1. Let us decompose vd into two functions w1 and w2 such

that vd = w1 + w2 with w1 =
∑

S∈D(N,B,d)

S⊉T(vd)

∆vd(S)uS and w2 =
∑

S∈D(N,B,d)

S⊇T(vd)

∆vd(S)uS.

Note that every pair of players in T(vd) are symmetric in (N,w2). For every j ∈
T(vd) ∩ B(i), applying FwC gives

fi(N, vd,B, d)− fj(N, vd,B, d) = fi(N,w1,B, d)− fj(N,w1,B, d).

It is clear that |T (w1)| = 0. According to (IH) and by applying FwC, we have

fi(N, vd,B, d)− fj(N, vd,B, d) = fi(N,w1,B, d)− fj(N,w1,B, d)
= Owi(N,wd

1,B)−Owj(N,wd
1,B)

= Owi(N, vd,B)−Owj(N, vd,B). (6)

We have already shown that fj(N, vd,B, d) = Owj(N, vd,B) for all j ∈ B(i)\T(vd).
Moreover, there are |T(vd)| − 1 linearly independent equations given by Equation (6).

Combining these equations with Equation (1) implies fi(N, vd,B, d) = Owi(N, vd,B).
2

Analogously, Additivity and Equal treatment of necessary players axioms of Proposition

2 can be replaced by the Fairness axiom.
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Proposition 6. The Diversity Shapley value is the unique value on GD that satisfies

Efficiency (E), Fairness (F), Independence from non-diverse coalitions (INDC), and

Null player out for preserving-diversity games (NPOPD).

Proof of Proposition 6. Existence: The Diversity Shapley value satisfies all these

axioms.

Uniqueness. Let f be a value on GD that satisfies E, F, INDC and NPOPD. Let

us show that f = DOw.

For any game (N, v,B, d) ∈ GD, by INDC, we have f(N, v,B, d) = f(N, vd,B, d).
We set

T (vd) := {T ∈ D(N,B, d) | ∆vd(T ) ̸= 0}.

By induction on the cardinality of T (vd), let us show that f = DOw.

Induction basis (IB): For any game (N, v,B, d) ∈ GD such that
∣∣T

(
vd
)∣∣ = 0,

(N, vd) is a null game. By using NPOPD, we have the claim (see the proof of Propo-

sition 5).

For any game (N, v,B, d) ∈ GD, if
∣∣T

(
vd
)∣∣ = 1, i.e., T

(
vd
)
= {S} then vd =

∆vd(S)uS. For any i ∈ N\S, by NPOPD and E, fi(N, v,B, d) = 0 (see the proof

of Proposition 1 in Béal et al., 2024). Moreover, Béal et al. (2024) in the proof of

Proposition 1 show that by NPOPD, fi(N, v,B, d) = fi(S, v|S,B|S, d) for all i ∈ S.

Any pair of players in S are symmetric in the game (S, v|S). Let consider the null game

(S,0) restricted on S, i.e., for any T ⊆ S, 0(T ) = 0. Recall that, fi(S,0,B|S, d)
(IB)
= 0

for all i ∈ S. For any i, j ∈ S, by F, we have fi(S, v|S,B|S, d) = fi(S, v|S + 0,B|S, d) −
fi(S,0,B|S, d) = fj(S, v|S + 0,B|S, d)− fj(S,0,B|S, d) = fj(S, v|S,B|S, d).

So, by E, we have fi(S, v|S,B|S, d) =
∆

vd
(S)

|S| for any i ∈ S. Thus, f = DOw.

Induction hypothesis (IH): Let the claim holds for all (N, v,B, d) ∈ GD such that∣∣T (vd)
∣∣ ≤ t̄ with t̄ ∈ N.

Induction step: Let (N, v,B, d) ∈ GD be a game such that 2 ≤
∣∣T (vd)

∣∣ = t̄ + 1.

By mimicking the proof of Theorem 2.5 given by van den Brink (2002), we have the

complete proof. 2

4. Axiomatization with balanced contributions prop-

erty

We propose a new characterization of the Diversity Owen and Shapley values by using the

balanced contributions property introduced by Myerson (1980). We adapt this property

for TU-games with diversity constraints as follows.
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Balanced contributions with out players for preserving diversity (BCOPPD).

For any diverse game (N, v,B, d) ∈ GD and any out players i, j ∈ N with i ̸= j,

fi(N, v,B, d)− fi(N\{j}, v|N\{j},B|N\{j}, d)

= fj(N, v,B, d)− fj(N\{i}, v|N\{i},B|N\{i}, d).

Moreover, if i is null in (N\{j}, v|N\{j},B|N\{j}, d) then fi(N\{j}, v|N\{j},B|N\{j}, d) = 0

(respectively, if j is null in (N\{i}, v|N\{i},B|N\{i}, d) then fj(N\{i}, v|N\{i},B|N\{i}, d) =

0).

This axiom requires that for a given pair of players in a diverse game, if the presence

of any one among them is not necessary to achieve the diversity requirements then the

variation of the payoff of any one among these two players changes by the same amount

when the other player leaves the game. Moreover, if one player becomes null when the

other leaves the game then its payoff should be zero in the new game.

The next axiom weakens BCOPPD.

Intra-coalitional balanced contributions with out players for preserving di-

versity (IBCOPPD). For any diverse game (N, v,B, d) ∈ GD and any out players

i, j ∈ Bp ∈ B with i ̸= j,

fi(N, v,B, d)− fi(N\{j}, v|N\{j},B|N\{j}, d)

= fj(N, v,B, d)− fj(N\{i}, v|N\{i},B|N\{i}, d).

Moreover, if i is null in (N\{j}, v|N\{j},B|N\{j}, d) then fi(N\{j}, v|N\{j},B|N\{j}, d) = 0

(respectively, if j is null in (N\{i}, v|N\{i},B|N\{i}, d) then fj(N\{i}, v|N\{i},B|N\{i}, d) =

0).

The interpretation of this axiom remains the same as that of the previous axiom. The

only difference is that both players are members of the same community.

The following result shows that A, ICETNP, and NPOPD in Proposition 1 can be

replaced by IBCOPPD.

Proposition 7. The Diversity Owen value is the unique value on GD that satisfies Effi-

ciency (E), Intra-coalitional balanced contributions with out players for preserving diver-

sity (IBCOPPD), Equality through diversity (ED), and Independence from non-diverse

coalitions (INDC).

Proof of Proposition 7. Existence. The Diversity Owen value satisfies E, ED,

and INDC. The Diversity Owen value also satisfies IBCOPPD since the Owen value
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satisfies the Intra-coalitionnal balanced contributions axiom (see Calvo et al., 1996).

In fact, for any diverse game (N, v,B, d) ∈ GD, and i, j ∈ Bk ∈ B with i ̸= j and

|Bk| > dk,

Owi(N, vd,B)−Owi(N\{j}, vd|N\{j},B|N\{j}),

= Owj(N, vd,B)−Owj(N\{i}, vd|N\{i},B|N\{i})

since vd is a TU-game on N and vd|N\{ℓ} is the TU-game vd restricted to N\{p} with

ℓ ∈ {i, j}. Moreover, (N\{ℓ}, vd|N\{ℓ},B|N\{ℓ}) is also a diverse game. If a player l ∈ N

is null in (N, v) then DOwl(N, v,B, d) = 0.

Uniqueness. Let f be a value on GD that satisfies E, IBCOPPD, ED, and INDC.

Let us show that f is the Diversity Owen value.

For any (N, v,B, d) ∈ GD, by INDC, we have f(N, v,B, d) = f(N, vd,B, d). For any

Bk ∈ B, by ED and E we have,

∑

i∈Bk

fi(N, vd,B, d) = v(N)

m
=

∑

i∈Bk

DOwi(N, v,B, d). (7)

For any (N, v,B, d) ∈ GD and Bk ∈ B, we are going to show that fi(N, vd,B, d) =

DOwi(N, v,B, d) for all i ∈ Bk.

If |Bk| = 1 then from Eq. (7), we have the claim.

We consider the following two cases.

1st case: We assume that |Bk| ≥ 2 and |Bk| > dk. By induction on the cardinality

of Bk, let us prove the claim.

Induction basis (IB): If Bk = {i, j} and dk = 1, applying IBCOPPD gives

fi(N, vd,B, d)− fj(N, vd,B, d)
= fi(N\{j}, vd|N\{j},B|N\{j}, d)− fj(N\{i}, vd|N\{i},B|N\{i}, d)

= DOwi(N\{j}, v|N\{j},B|N\{j}, d)−DOwj(N\{i}, v|N\{i},B|N\{i}, d)

= DOwi(N, v,B, d)−DOwj(N, v,B, d). (8)

Adding Equations (7) and (8) gives fp(N, vd,B, d) = DOwp(N, v,B, d) for all p ∈ Bk.

Induction hypothesis (IH): For any (N, v,B, d) ∈ GD and Bk ∈ B such that 2 ≤
|Bk| ≤ t̄ with t̄ ∈ N, we have fi(N, vd,B, d) = DOwi(N, v,B, d), for all i ∈ Bk.

Induction step: Let (N, v,B, d) ∈ GD be a game and Bk ∈ B a community such that
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2 ≤ |Bk| = t̄+ 1. By applying IBCOPPD, we have

fi(N, vd,B, d)− fj(N, vd,B, d)
= fi(N\{j}, vd|N\{j},B|N\{j}, d)− fj(N\{i}, vd|N\{i},B|N\{i}, d)

(IH)
= DOwi(N\{j}, v|N\{j},B|N\{j}, d)−DOwj(N\{i}, v|N\{i},B|N\{i}, d)

= DOwi(N, v,B, d)−DOwj(N, v,B, d).

That is, fi(N, vd,B, d)−DOwi(N, v,B, d) = fj(N, vd,B, d)−DOwj(N, v,B, d).
Moreover,∑

j∈Bk

(
fi(N, vd,B, d)−DOwi(N, v,B, d)

)
=

∑
j∈Bk

(
fj(N, vd,B, d)−DOwj(N, v,B, d)

)
.

This equation implies |Bk|
(
fi(N, vd,B, d)−DOwi(N, v,B, d)

) (Eq.7)
= 0.

Finally, we obtain fi(N, vd,B, d) = DOwi(N, v,B, d).
2nd case: Let (N, v,B, d) ∈ GD be a game and Bk a community. We assume that

|Bk| = dk and |Bk| ≥ 2. Let us show that we still have the claim.

Let p /∈ N be an outside player who wants to join the community Bk. We consider

the new diverse game (N ∪ {p}, (vd)+p,B+p, d) defined in the proof of Proposition 5

where (vd)+p(S) = vd(S\{p}) for every S ⊆ N ∪ {p}, and B+p = {B1, B2, · · · , Bk ∪
{p}, Bk+1, · · · , Bm}. In this new game, p is a null and out player.

Note that |Bk ∪ {p}| > dk. From case 1,

fi(N ∪ {p}, (vd)+p,B+p, d) = DOwi(N ∪ {p}, (vd)+p,B+p, d)
(NPOPD)

= DOwi(N, v,B, d) for all i ∈ Bk.

By E and ED, we have

∑

j∈Bk∪{p}
fj(N ∪ {p}, (vd)+p,B+p, d) =

∑

j∈Bk

DOwj(N, v,B, d).

From this equation, we can deduce that fp(N ∪ {p}, (vd)+p,B+p, d) = 0.

For any i ∈ Bk, applying IBCOPPD gives

fi(N ∪ {p}, (vd)+p,B+p, d)− fi(N, vd,B, d) = fp(N ∪ {p}, (vd)+p,B+p, d)

−fp
(
(N\{i}) ∪ {p},

(
(vd)+p

)
|(N\{i})∪{p},

(
B+p

)
|(N\{i})∪{p}, d

)
.

Moreover, p is null in
(
(N\{i}) ∪ {p},

(
(vd)+p

)
|(N\{i})∪{p}

)
, and then

fp
(
(N\{i}) ∪ {p},

(
(vd)+p

)
|(N\{i})∪{p},

(
B+p

)
|(N\{i})∪{p}, d

)
= 0.
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Hence,

DOwi(N, v,B, d)− fi(N, vd,B, d) = 0.

We conclude that fi(N, vd,B, d) = DOwi(N, v,B, d).
2

Similarly, ETNP, A, and NPOPD in Proposition 2 can be replaced by BCOPPD.

Proposition 8. The Diversity Shapley value is the unique value on GD that satisfies Effi-

ciency (E), Balanced contributions with out players for preserving diversity (BCOPPD),

and Independence from non-diverse coalitions (INDC).

Proof of Proposition 8. Existence. The Diversity Shapley value satisfies BCOPPD

since the Shapley value satisfies the Balanced contributions axiom (see Myerson, 1980).

Uniqueness. Let f be a value on GD that satisfies E, BCOPPD and INDC.

Let us show that f = DSh. For any (N, v,B, d) ∈ GD, by INDC, f(N, v,B, d) =

f(N, vd,B, d).
If |N | = 1 then by E, we have the result. We consider the following two cases.

Case 1. Let (N, v,B, d) ∈ GD be a game. We assume that there are no community

Bk ∈ B such that |Bk| = dk (i.e., any player i ∈ N is out). Let us assume that N =

{i1, · · · , in} with |N | = n. By induction on n, we are going to show that f(N, vd,B, d) =
DSh(N, v,B, d).
Induction basis (IB): If N = {i, j} and m = 1 such that any player is out then by

E and BCOPPD, we have the result.

Induction hypothesis (IH): We assume that for any game (N, v,B, d) ∈ GD such

that n ≤ t̄ with t̄ ∈ N, and |Bk| > dk for all Bk ∈ B, we have f(N, vd,B, d) =

DSh(N, v,B, d).
Induction step: Let (N, v,B, d) ∈ GD be a game such that 2 ≤ n = t̄ + 1 and

|Bk| > dk for all Bk ∈ B.
Applying BCOPPD gives the following equations

fi1(N, vd,B, d)− fi2(N, vd,B, d) (IH)
= DShi1(N, v,B, d)−DShi2(N, v,B, d)

fi1(N, vd,B, d)− fi3(N, vd,B, d) (IH)
= DShi1(N, v,B, d)−DShi3(N, v,B, d)
...

fi1(N, vd,B, d)− fin(N, vd,B, d) (IH)
= DShi1(N, v,B, d)−DShin(N, v,B, d).
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By adding these equations and by using E, we have

(n− 1)fi1(N, vd,B, d)− v(N) + fi1(N, vd,B, d)
= (n− 1)DShi1(N, v,B, d)− v(N) +DShi1(N, v,B, d).

That is,

fi1(N, vd,B, d) = DShi1(N, v,B, d).

Similarly, we have fi(N, vd,B, d) = DShi(N, v,B, d) for all i ∈ N .

Case 2. Let (N, v,B, d) ∈ GD be a game. We assume that there are at least one

community Bk ∈ B such that |Bk| = dk. We denote by r̄ = |{Bk ∈ B : |Bk| = dk}| the
number of communities without an out member. By induction on r̄, let us show that

f(N, vd,B, d) = DSh(N, v,B, d).
Induction basis (IB): Let (N, v,B, d) ∈ GD be a game such that r̄ = 1. Let

Bk ∈ B be the community without an out member. Let p /∈ N be an outside

player who wants to join the community Bk. We consider the new diverse game

(N ∪ {p}, (vd)+p,B+p, d) defined in the proof of the previous proposition. From Case

1, we have f(N ∪ {p}, (vd)+p,B+p, d) = DSh(N ∪ {p}, (vd)+p,B+p, d). By BCOPPD,

we deduce that fi(N, vd,B, d) = DShi(N, v,B, d) for all i ∈ N .

Induction hypothesis (IH): Let (N, v,B, d) ∈ GD be a game such that r̄ = z with

r̄ ≥ 1 and z ∈ N, and f(N, vd,B, d) = DSh(N, v,B, d).
Induction step: Let (N, v,B, d) ∈ GD be a game such that 2 ≤ r̄ = z + 1. Let

Bk ∈ B be the community without an out member. Let also p /∈ N be an out-

side player who wants to join the community Bk. We consider the new diverse game

(N ∪ {p}, (vd)+p,B+p, d). From (IH), we have f(N ∪ {p}, (vd)+p,B+p, d) = DSh(N ∪
{p}, (vd)+p,B+p, d). By BCOPPD, it follows that fi(N, vd,B, d) = DShi(N, v,B, d) for
all i ∈ N . 2

Through the following remark proposed by Béal et al. (2024), we show that our charac-

terizations are non-redundant.

Remark 1. i) For Propositions 5 and 7, we consider the following examples:

– The value f on GD defined by fi(N, v,B, d) =
∑

S⊆N :S∋i
∆v(S)

m|B(i)∩S| for each

(N, v,B, d) ∈ GD and i ∈ N satisfies E, IBCOPPD, ED, FwC, FD, and

NPOPD; but does not satisfy INDC.

– The value f on GD defined by fi(N, v,B, d) = Shi(N, vd) for each (N, v,B, d) ∈
GD and i ∈ N satisfies E, FwC, IBCOPPD, NPOPD, and INDC; but

violates ED and FD.
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– The value f on GD defined by fi(N, v,B, d) = v(N)
m|B(i)| for each (N, v,B, d) ∈ GD

and i ∈ N satisfies E, FwC, FD, and INDC; except NPOPD.

– The value f on GD defined by

fi(N, v,B, d) =
∑

S⊆N :S∋i

∑

j∈B(i)∩S
j

i
· ∆vd(S)

|{Bk ∈ B : S ∩Bk ̸= ∅}|

for each (N, v,B, d) ∈ GD and i ∈ N satisfies E, FD, NPOPD, and INDC;

but does not satisfy FwC and IBCOPPD.

– The null value on GD defined by fi(N, v,B, d) = 0 for each (N, v,B, d) ∈ GD

and i ∈ N satisfies ED, FwC, FD, NPOPD, IBCOPPD, and INDC; but

does not satisfy E.

ii) For Propositions 6 and 8, we consider the following examples:

– The value f on GD defined by fi(N, v,B, d) = Shi(N, v) for each (N, v,B, d) ∈
GD and i ∈ N satisfies E, BCOPPD, F, and NPOPD; but does not satisfy

INDC.

– The value f on GD defined by fi(N, v,B, d) = Owi(N, vd,B) for each (N, v,B, d) ∈
GD and i ∈ N satisfies E, NPOPD, and INDC; violates F.

– The equal division value f on GD defined by fi(N, v,B, d) = v(N)
|N | for each

(N, v,B, d) ∈ GD and i ∈ N satisfies E, F, and INDC; except NPOPD.

– The value f on GD defined by fi(N, v,B, d) = Owi(N, vd,B) for each (N, v,B, d) ∈
GD and i ∈ N satisfies E and INDC. It does not satisfy BCOPPD.

– The null value on GD defined by fi(N, v,B, d) = 0 for each (N, v,B, d) ∈ GD

and i ∈ N satisfies NPOPD, BCOPPD, F, and INDC; but does not satisfy

E.

5. Conclusion

The aim of this paper is to propose two new characterizations of the Diversity Owen and

Shapley values. We characterize these two values by using two different approaches: the

fairness and balanced contributions approaches. For future research, exploring alternative

approaches that consider the impact (gain-loss) of diversity constraints on players’ payoffs,

especially in scenarios where the minimum required number of members from a specific

community undergoes changes, would add valuable insights to the study.
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