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Abstract

A cooperative game with diversity constraints is given by a cooperative game, a coalition

structure which partitions the set of players into communities, and a vector of integers

specifying, for each community, the minimal number of its members that a coalition must

possess to be considered as diverse. We provide axioms for a value on the class of such co-

operative games with diversity constraints. Some combinations of axioms characterize two

values inspired by the Shapley value (Shapley, 1953) and the Owen value (Owen, 1977) for

games with a coalition structure. More specifically, the Diversity Owen value is character-

ized as the Owen value of the diversity-restricted game with a coalition structure, where the

diversity-restricted game assigns a null worth to a coalition if it does not meet the diversity

requirements or its original worth otherwise. Similarly, the Diversity Shapley value is char-

acterized as the Shapley value of the diversity-restricted game (without coalition structure).

Some of our axiomatic characterizations can be adapted to the class of simple games by

replacing the Additivity axiom by the Transfer axiom (Dubey, 1975).
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1. Introduction

In recent years, inclusion and diversity has been underline as important criteria in numer-

ous aspects of political and economic life (e.g. Page, 2008). It takes many forms: increased

participation of women in company management committees, gender parity on certain elec-

toral lists of candidates (this is the case for instance in some elections in Belgium, Ecuador,

and France to name few countries) or requirement for a minimum percentage of each gender

to form a committee (40% for recruiting committees at the university level in France), rep-

resentation of minorities (according to Haughton et al., 2023, at least 44 states or state-like

entities impose minority representation within their parliaments), representation of politi-

cal parties (standing parliamentary committees in France must include at least one member

from each political group), different districts of a city in the context of a municipal participa-

tory budgeting campaign, diversified selection of movies from airlines and digital platforms,

etc.

In the academic world, diversity has already been taken into account in theoretical

studies. In social choice theory, it is analyzed in the context of multiwinner elections by

Bredereck et al. (2018), Celis et al. (2018), Aziz (2019), Kagita et al. (2021), Relia (2021),

and Ianovski (2022). Diversity is also examined in the context of matching problems (see

Ehlers et al., 2014; Echenique and Yenmez, 2015; Benabbou et al., 2020).

The objective of this article is to introduce diversity considerations into the classical

framework of cooperative games with transferable utility (simply games henceforth). To the

best of our knowledge, we provide the first study accomplishing this. Cooperative games

model situations in which a finite set of players can obtain certain payoffs by cooperation

and have been used extensively to analyze many applications, including the a priori measure

of the power of each player in a collective decision-making process modelled as a simple

game (see Barr and Passarelli, 2009, among others). A game with diversity constraints

is described by a classical game, which reflects the economic possibilities that the various

coalitions of players can achieve by cooperating, a partition of the player set into groups

that we interpret as the different communities in the participating population and a vector

specifying, for each community, an integer or quota representing the number of targeted

members for this community that a coalition must contain in order to be considered diverse.

Our model extends both classical games and games with coalition structures. Classically, a

value for this class of games specifies, for each game and each player, a payoff that captures

the importance of that player in the game.

A reader familiar with the literature on games with a coalition structure will find some

similarities with our model in the sense that both approaches rely on a partition of the set

of players. At the level of the models, the similarities end there as this partition is used in a

very different way to ours, whether in the approach of Aumann and Dreze (1974), where the

cooperation between players is limited within communities, or that of Owen (1977), where
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communities are considered as bargaining units without preventing cooperation possibilities.

At the level of the results, as we will explain later, however, the values that we characterize

show links with this literature.

We adopt the axiomatic approach and invoke several axioms in order to design a value

for games with diversity constraints. Some axioms are new in order to highlight the influ-

ence of the diversity constraints on the allocation process. Some others are inspired by the

literature on the Shapley value (Shapley, 1953) and the Owen value (Owen, 1977), which

are probably the most well-studied values for classical games and for games with coalition

structures, respectively. A key axiom is the axiom of Independence from non-diverse coali-

tions, which imposes that the payoff allocation only depends on the susbset of coalitions

that meet the diversity requirements. This axiom clearly makes sense in the applications

that we have in mind. For instance, in the case of certain participatory budgeting campaign,

subset of projects that did not include at least one project in each district would not be

eligible. Another axiom which emphasize the importance of the diversity requirement is the

axiom of Equality through diversity, which imposes equal total payoff for each community

in the population. Again, this is relevant in the context of participatory budgeting, where

many municipalities (for instance in Wroclaw, Poland) allocates the same budget to each

district. We also invoke four other axioms that adapt classical axioms to the class of games

with diversity constraints. Additivity requires that the characterized value is an additive

function. Efficiency imposes that the worth of the grand coalition is fully distributed to

the players. Null player out for preserving-diversity games adapts the null player out ax-

iom (Derks and Haller, 1999) and states that if a player is unproductive, all productive

coalitions meet the diversity criteria and some coalition can achieve the diversity require-

ments without this player, then the payoff of the other players should remain the same when

this player leaves the game. Finally, Intra-coalitional equal treatment of necessary players

impose that two necessary players (a player is necessary if a coalition not containing this

player is unproductive) belonging to the same community obtain the same payoff. We prove

that the combination of these six axioms singles out a unique value for games with diver-

sity constraints. It turns out that this value coincides with the Owen value of the so-called

diversity-restricted game with coalition structure in which the characteristic function assigns

a null worth to coalitions that do not meet the diversity standards and its original worth to

the other coalitions. For that reason, we call this value the Diversity Owen value.

Dropping Equality through diversity in the previous result and strengthening Intra-

coalitional equal treatment of necessary players by the axiom of Equal treatment of neces-

sary players, which imposes equal payoff for two necessary players even if they belong to

distinct communities, yields a characterization of the Diversity Shapley value, which assigns

to each game with diversity constraints the Shapley value of its diversity-restricted game

(without coalition structure). Furthermore, two types of variation are proposed for these

characterisations. The first variation is inspired by the characterizations of the Shapley
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value by Young (1985) and Chun (1989) and that of the Owen value by Khmelnitskaya and

Yanovskaya (2007).1 It replaces the axioms of Additivity and Null player out for preserving-

diversity games with Coalitional strategic equivalence for diverse game, Marginality for

diverse games, or Strong monotonicity for diverse games. All three axioms involve diverse

games, i.e., games with diversity constraints in which each productive coalition meets the

diversity criteria. Coalitional strategic equivalence for diverse game requires invariance to

a player’s payoff if a diverse game in which she is null is added to any game. Marginal-

ity for diverse games imposes equal payoffs for a player in two diverse games in which she

has identical marginal contributions. Strong monotonicity for diverse games states that if

the marginal contributions of a player are weakly greater in a first diverse game than in

a second diverse game, then she does not obtain less payoff in the first game than in the

second game. The resulting characterization of the Diversity Owen value via Coalitional

strategic equivalence for diverse game can be seen as an adaptation to our framework of

the characterization of the Owen value by Hu (2021, Theorem 3.2). The second variation

demonstrates that our two characterizations can be applied to the class of simple games

with diversity constraints by substituting the Additivity axiom with the Transfer axiom

suggested by Dubey (1975). This latter result is relevant since many natural applications of

games with diversity constraints are linked to voting procedures modelled by simple games.

We would like to distinguish our approach in terms of diversity from games featuring

complementarities. In multi-sided assignment games (Quint, 1991) or multi-glove games

(Moretti and Norde, 2021), the players are grouped into categories according to the type

of resource they own, and a coalition is productive if and only if it contains at least one

player of each category. Hence, complementarities have a direct effect on the characteristic

function while diversity has not, a priori, since coalitions that do not meet the diversity

requirements can still be productive. It is true that our diversity-restricted game acts like

the above constraints of complementarities, but it is also possible to follow another road and

to design values that take non-diverse productive coalitions into account.

The rest of this article is organized as follows. In Section 2, we recall basic notions on

games and games with coalition structures. In Section 3, we present the class of games

with diversity constraints. In Section 4, we introduce axioms for games with diversity

constraints. In Section 5, we characterize two allocation rules for games with diversity

constraints. In Section 6, we adapt our characterizations to the class of simple games with

diversity constraints. Section 7 concludes the paper.

1More characterizations of the Shapley value can be found in Hart and Mas-Colell (1989) and Casajus

(2011), among others, whereas alternative characterizations of the Owen value are due to Hart and Kurz

(1983) and Casajus (2010), among others.
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2. Cooperative games

2.1. Cooperative games with transferable utility

A cooperative game with transferable utility (simply a game) is a pair (N,v) such that,

for each coalition S ⊆ N , v(S) ∈ R is the worth of coalition S, i.e., the best result that the

players in S can achieve by cooperating without the help of the other players, and v(∅) = 0

by convention. Denote by G the set of all games in which the player set is finite. Players

i, j ∈ N are symmetric in the game (N,v) if for each S ⊆ N/{i, j}, v(S ∪ {i}) = v(S ∪ {j}).
Player i ∈ N is null in the game (N,v) if for each S ⊆ N/{i}, v(S ∪{i}) = v(S). Player i ∈ N
is necessary in the game (N,v) if for each S ⊆ N/{i}, v(S) = 0. The sum of two games (N,v)
and (N,w) is the game (N,v + w) such that, for each S ⊆ N , (v + w)(S) = v(S) + w(S).
For any S ⊆ N , the subgame of (N,v) induced by S is the game (S, v∣S), where, for each

T ⊆ S, v∣S(T ) = v(T ). Since Shapley (1953), it is known that any function v can be uniquely

expressed as:

v = ∑
S⊆N,S≠∅∆v(S)uS,

where (N,uS) is the unanimity game on N induced by coalition S given by uS(T ) = 1 if

T ⊇ S and uS(T ) = 0 otherwise, and ∆v(S) is called the Harsanyi dividend (Harsanyi, 1959)

of S and defined recursively by setting ∆v(∅) = 0 and

∆v(S) = v(S) − ∑
T⊊S ∆v(T ).

A value on G is a function f which assigns to each game (N,v) ∈ G a payoff vector f(N,v)
such that fi(N,v) ∈ R is the payoff obtained by player i ∈ N for her participation in game(N,v). The Shapley value Sh (Shapley, 1953) is the value on G which shares the dividend

of each coalition equally among its members:

Shi(N,v) = ∑
S⊆N,S∋i

∆v(S)∣S∣ .

2.2. Games with a coalition structure

A game with a coalition structure is a triple (N,v,B), where (N,v) is a game and (N,B)
is a coalition structure, i.e., B = {B1, . . . ,Bm} is a partition of N . Denote by CSG the set of

all games with a coalition structure in which the player set is finite. Let M = {1, . . . ,m} and

denote by B(i) is coalition containing player i in B. The quotient game (M, (v)B) is a game

where (v)B(Q) = v(⋃k∈QBk) for all Q ⊆ M . In order to be more specific, the coalitions inB are called components. For any S ⊆ N , the coalition sub-structure of (N,B) induced by

S is the coalition structure (S,B∣S) where B∣S = {B1 ∩ S, . . . ,Bm ∩ S}. For any S ⊆ N , the

subgame with a coalition structure of (N,v,B) induced by S is the game with a coalition

structure (S, v∣S,B∣S).
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As for a value on G, a value on CSG is a function f which assigns to each game (N,v,B) ∈
CSG and each player i ∈ N a payoff fi(N,v,B) reflecting the participation of i to (N,v,B).
The most well-known value for games with a coalition structure is the Owen value Ow

(Owen, 1977), which can be defined as follows:

Owi(N,v,B) = ∑
S⊆N,S∋i

∆v(S)∣B(i) ∩ S∣ ⋅ ∣{Bk ∈ B ∶ S ∩Bk ≠ ∅}∣ . (1)

Hence, the dividend of a coalition S is shared according to a two-step procedure. First, the

dividend is split in equal shares among the components in B intersecting S. Second, the

share obtained by a component of the coalition structure is split in equal shares among the

component members who are in S. The Owen value generalizes the Shapley value on CSG

since Ow(N,v,B) = Sh(N,v) if either B = {N} or B = {{i} ∶ i ∈ N}.
3. Games with diversity constraints

In this section, the diversity of coalition members is taken into account. As for a game

with a coalition structure, we rely on a partition B. Each component Bk ∈ B is considered

as a community and we require a coalition to include at least dk ∈ {1, . . . , ∣Bk∣} members

of community Bk to be considered diverse. Hence, a coalition structure with diversity

constraint is a triple (N,B, d) where d = (d1, . . . , dm). Formally, a coalition S ⊆ N is a

diverse coalition in (N,B, d) if ∣S ∩Bk∣ ≥ dk for all k ∈ M . We denote by D(N,B, d) the

set of diverse coalitions in (N,B, d). Remark that if S ∈D(N,B, d), then S∩Bk ≠ ∅ for each

k ∈M and if T ⊇ S, then T ∈D(N,B, d).
A game with diversity constraints (N,v,B, d) is called diverse if v(S) ≠ 0 Ô⇒ S ∈

D(N,B, d), i.e., all coalitions enjoying a non-null worth are diverse. A game (N,v,B, d) is

called i-out diverse, i ∈ Bk, if (N,v,B, d) is diverse and ∣Bk∣ − dk ≥ 1. This last condition

means that the presence of player i is not necessary for a coalition to be diverse or, equiva-

lently, diverse coalitions exist in the coalition structure with diversity constraints resulting

from the removal of i. A game with diversity constraints is a four-tuple (N,v,B, d)
where (N,v,B) is a game with a coalition structure and d = (dk)k∈M . We denote by GD

the set of all games with diversity constraints with a finite player set. For any S ⊆ N , the

subgame with diversity constraints of (N,v,B, d) induced by S is the game with diversity

constraints (S, v∣S,B∣S, d). Remark that d is identical in both (N,v,B, d) and (S, v∣S,B∣S, d).
Hence, if diverse coalitions exist in (N,v,B, d), there may exist none in (S, v∣S,B∣S, d).

We illustrate games with diversity constraints in the context of three examples.

Example 1. (Constitutional reforms in France) The French Parliament of the Fifth

Republic is bicameral, comprising the National Assembly and the Senate. The National

Assembly is composed of 577 deputies and the Senate is composed of 381 senators. The
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constitutional reforms initiated by the President of the Republic can be done without using

a referendum if:

• Firstly, on the National Assembly at least 50% of the deputies vote for the reform and

also on the Senate at least 50% of the senators vote for the reform.

• Secondly, on the Parliament meeting in Congress 60% of the parliamentarians (deputies

and senators) vote for the reforms.

This voting system can be apprehended by a game with diversity constraint (N,v,B, d)
where (N,v) is the simple game such that N is the set of all 958 members of the Parliament,

v(S) = 1 if ∣S∣ ≥ 575 and v(S) = 0 otherwise, B = (B1,B2), where B1 is the set of 577 deputies

and B2 the set of 381 senators and d = (d1, d2) with d1 = 289 and d2 = 191. In words, the

aforementioned first condition is reflected in the 50% quota required for each of the two

communities, one corresponding to the National Assembly, the other corresponding to the

Senate. ◻
Example 2. (Participatory budgeting with districts) Participatory budgeting refers

to a form of public consultation in which residents of a city decide how to spend a part of

the municipal budget. It can be described as a tuple (N,K,B, r, c, sc), where N = {1, . . . , n}
is a set of projects, K = {1, . . . , k} is a set of voters/residents, B is a partition of the set of

projects into m groups, one for each of the m municipality districts, r ∈ R+ is the available

budget, c ∶ N Ð→ R+ specifies the cost c(i) ∈ R+ of each project i ∈ N and sc is a profile of

score functions such that, for each voter j ∈ K and each project i ∈ N , j assigns the score

scj(i) ∈ R+ to i (a point system is often used to reflect the preferences of the voters). In this

context, the objective is to select of subset of feasible projects, i.e., a set S ⊆ N such that∑i∈S c(i) ≤ r. For each subset of projects S ⊆ N , the score of S is sc(S) = ∑j∈K∑i∈S scj(i),
i.e., the total score given by the voters to the projects in S. Inspired by Faliszewski et al.

(2018), we associate this problem to a cooperative game (N,v) where N is the set of projects

and, for each coalition of projects S ⊆ N ,

v(S) = max
T⊆S∶∑i∈T c(i)≤r sc(T ).

In words, v(S) is the maximal score achieved by a feasible subset of projects among S.

In the close context of a multi-winner election, Faliszewski et al. (2018) rely on a value

(the Banzhaf value) in order to assess the importance of each project in the game (N,v).
However, the approach presented so far does not fully capture the system used by some

municipalities, where the highest-ranked project from each district must be included in the

subset of selected projects. This is the case, for instance in Brest, France.2 A game with

2https://jeparticipe.brest.fr/pages/le-reglement-du-budget-participatif
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diversity constraints (N,v,B, d) in which dq = 1 for each district q ∈ {1, . . . ,m} better reflects

such a situation. ◻
Example 3. (United Nations Security Council) The United Nations Security Coun-

cil is composed of five permanent members — China, France, Russia, United Kingdom and

United States of America — and ten non-permanent members elected by the General Assem-

bly for a two-year term — currently Algeria, Ecuador, Guyana, Japan, Malta, Mozambique,

Republic of Korea, Sierra Leone, Slovenia, Switzerland. Under Article 27 of the UN Char-

ter, Security Council decisions on all substantive matters require the affirmative votes of

three-fifths (i.e., nine) of the members. A negative vote or a “veto” by a permanent member

prevents adoption of a proposal, even if it has received the required votes. As an alternative

of the usual simple game used to model this voting system (see Shapley and Shubik, 1954,

for instance), we can define the game with diversity constraint (N,v,B, d) where

• N is the set of fifteen members of the United Nations Security Council;

• v(S) = 1 if ∣S∣ ≥ 9 and v(S) = 0 otherwise;

• B = (B1,B2), where B1 contains the five permanent members and B2 the ten non-

permanent members;

• d = (d1, d2) with d1 = 5 and d2 = 4.

In words, the underlying cooperative game only includes the requirement that 9 countries

are needed to adopt a proposal but not the veto power of the permanent members. This

veto power is rather reflected by the organization of the countries into communities: while

only four of the ten members of the community of non-permanent members is required, all

five members of the community of permanent members are needed. ◻
4. Axioms

We list below some axioms for an arbitrary value f on GD. The first five axioms are

classical and do not rely on the diversity constraints. The axiom of Efficiency is stated on

GD and imposes that the sum of all distributed payoffs coincides with the worth of the

grand coalition in each TU-game with diversity constraints.

Efficiency (E). For each (N,v,B, d) ∈ GD, ∑i∈N fi(N,v,B, d) = v(N).
Additivity (w.r.t the characteristic function) requires that the payoffs distributed in the

sum of two games are equal to the sum of the payoffs distributed in the two games.
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Additivity (A). For each (N,v,B, d), (N,w,B, d) ∈ GD, f(N,v +w,B, d) = f(N,v,B, d) +
f(N,w,B, d).

The third axiom, invoked by Owen (1977) for games with a coalition structure states that

if two players are symmetric in the associated TU-game and belong to the same component

in the coalition structure, then they get the same payoff.

Intra-coalitional symmetry (ICS). For any (N,v,B, d) ∈ GD, if i, j ∈ Bk and i and j are

symmetric in (N,v), then fi(N,v,B, d) = fj(N,v,B, d).
Intra-coalitional symmetry weakens the classical axiom of Symmetry, which requires that

any two symmetric players get the same payoff.

Symmetry (S). For any (N,v,B, d) ∈ GD, if i and j are symmetric in (N,v), then

fi(N,v,B, d) = fj(N,v,B, d).
Owen (1977) also invokes the following coalitional variant of symmetry for games with

a coalition structure, which coincides with the requirement of the Symmetry axiom in the

quotient game.

Coalitional symmetry (CS). For any (N,v,B, d) ∈ GD, if two players k, q ∈ M are

symmetric in (M, (v)B), then

∑
i∈Bk

fi(N,v,B, d) = ∑
i∈Bq

fi(N,v,B, d).

The next axiom is an adaptation of the Equal treatment of necessary players recently

introduced by Béal and Navarro (2020) for the class of classical games where they show that

this axiom weakens the classical Symmetry.

Equal treatment of necessary players (ETNP). For each (N,v,B, d) ∈ GD and each

i, j ∈ N , if i and j are necessary in (N,v) then, fi(N,v,B, d) = fj(N,v,B, d).
This axiom states that all players that are necessary to produce worth should have the

same payoff. By using the spirit of Béal and Navarro (2020), ETNP and ICS can be weak-

ened into the following axiom.

Intra-coalitional equal treatment of necessary players (ICETNP). For each (N,v,B, d) ∈
GD and each i, j ∈ Bh ∈ B, if i and j are necessary in (N,v) then, fi(N,v,B, d) = fj(N,v,B, d).
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This axiom states that all players within a component necessary to produce worth should

have the same payoff.

The next six axioms are new and describe how the diversity constraint can affect the

allocation process. If diversity is viewed as a requirement for cooperation, then only the

diverse coalitions should matter as imposed by the next axiom.

Independence from non-diverse coalitions (INDC). For each (N,v,B, d), (N,w,B, d)
such that v(S) = w(S) for all S ∈D(N,B, d), f(N,v,B, d) = f(N,w,B, d).

Independence from non-diverse coalitions is similar to the axiom of Independence of ir-

relevant coalitions invoked by van den Brink et al. (2011) for cooperative games on union

closed systems. As above, any community can be considered as equality important in order

to meet the diversity constraints. As a consequence, it makes sense to distribute an equal

total payoff to each such component, as required by the next axiom.

Equality through diversity (ED). For each (N,v,B, d) ∈ GD and each pair k, q ∈ M ,∑i∈Bk
fi(N,v,B, d) = ∑i∈Bq

fi(N,v,B, d).
As mentioned in the introduction, this echoes the equal budget allocated by some mu-

nicipalities allocate to each of their districts in the context of participatory budgeting.

The next axiom takes place in a i-out diverse game in which i is further a null player in

the associated game. We can argue that the presence of player i is inconsequential for two

reasons. First, her presence is not necessary to achieve diversity as her community contains

more members than the required quota. Second, her presence is not necessary to achieve any

productivity since she is a null player. In this case, the next axiom imposes that removing

such a useless player does not alter the payoffs received by the remaining players.

Null player out for preserving-diversity games (NPOPD). If (N,v,B, d) is i-out di-

verse and player i is null in (N,v), then fj(N,v,B, d) = fj(N/{i}, v∣N/{i},B∣N/{i}, d) for each

j ∈ N/{i}.
This axiom is a variant of the Null player out axiom (Derks and Haller, 1999) for classical

games, which requires that the removal of any null player from a game does not alter the

payoffs of the other players.

Next, A and NPOPD can be combined into the following new axiom.
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Coalitional strategic equivalence for diverse game (CSEDG). If (N,v,B, d) ∈ GD is

diverse and player i is null in (N,v), then for any game (N,w,B, d) ∈ GD, fi(N,v+w,B, d) =
fi(N,w,B, d).

This axiom states that the payoff of a player in a game with diversity constraints remains

the same in another game with diversity constraints if the latter game is obtained from the

former by adding a diverse game in which the considered player is null. This axiom is an

adaptation of the Coalitional strategic equivalence proposed by Chun (1989) for classical

games and by Hu (2021) for games with coalition structures.

The last two axioms are the adaptations of the axioms introduced by Young (1985) to

characterize the Shapley value.

Marginality for diverse games (MDG). For any diverse games (N,v,B, d), (N,w,B, d) ∈
GD, and any i ∈ N such that v(S ∪ {i}) − v(S) = w(S ∪ {i}) − w(S) for all S ⊆ N/{i}, we

have fi(N,v,B, d) = fi(N,w,B, d).
This axiom states that if a player has the same marginal contributions in two diverse

games then she receives the same payoff in these two games.

Strong monotonicity for diverse games (MoDG). For any pair of diverse games(N,v,B, d), (N,w,B, d) ∈ GD, and any i ∈ N such that v(S ∪{i})−v(S) ≥ w(S ∪{i})−w(S)
for all S ⊆ N/{i}, we have fi(N,v,B, d) ≥ fi(N,w,B, d).

This last axiom states that if the marginal contributions of a player weakly increase from

one diverse game to another diverse game, then her payoff weakly increases as well.

5. Characterizations of the Diversity Owen and Shapley values

In this section, we present four axiomatic characterizations that single out two values for

games with diversity constraints inspired by the Shapley value for classical games and the

Owen value for games with coalition structures. The first two results invoke the axiom of

Additivity.

Proposition 1. There is a unique value on GD satisfying Efficiency (E), Additivity

(A), Intra-coalitional equal treatment of necessary players (ICETNP), Null player out

for preserving-diversity games (NPOPD), Equality through diversity (ED) and Indepen-

dence from non-diverse coalitions (INDC). It is the Diversity Owen value DOw, such

that, for each (N,v,B, d) ∈ GD, DOw(N,v,B, d) = Ow(N,vd,B), where (N,vd,B) ∈ CSG

11



is the diversity-restricted game with a coalition structure constructed from (N,v,B, d)
such that, for each S ⊆ N ,

vd(S) = { v(S) if S ∈D(N,B, d),
0 otherwise.

The diversity-restricted game points out that only diverse coalitions are likely to influence

the allocation process. This approach is similar to Myerson (1977), who constructs a graph-

restricted classical game in which the role of the graph is incorporated into the graph-

restricted characteristic function. More specifically, we construct a diversity-restricted game

with a coalition structure in which the quotas are not an input anymore but are indirectly

taken into account through the diversity-restricted characteristic function.

Before proving Proposition 1, we highlight several properties regarding the diversity

constraints.

Lemma 1. For any (N,v,B, d) ∈ GD, it holds that:

(i) For each S ⊆ N , D(S,B∣S, d) = {T ⊆ S ∶ T ∈D(N,B, d)}.
(ii) For each S ⊆ N , (S, (v∣S)d,B∣S, d) = (S, (vd)∣S,B∣S, d).

(iii) For each k, q ∈M , k and q are symmetric in (M, (vd)B).
(iv) For each k ∈ M and i, j ∈ Bk, if i and j are symmetric in (N,v), then i and j are

symmetric in (N,vd).
(v) For each S /∈D(N,B, d), ∆vd(S) = 0.

Proof. Consider any (N,v,B, d) ∈ GD.

(i) For each S ⊆ N ,

D(S,B∣S, d) = {T ⊆ S ∶ ∣T ∩(Bk∩S)∣ ≥ dk} = {T ⊆ S ∶ ∣T ∩Bk∣ ≥ dk} = {T ⊆ S ∶ T ∈D(N,B, d)}.
(ii) Fix any S ⊆ N . For each T ⊆ S, from point (i), T ∈ D(S,B∣S, d) if and only if T ∈
D(S,B∣S, d). If T ∈D(S,B∣S, d), then

(v∣S)d(T ) = vd(T ) = v(T ) = v∣S(T ) = (vd)∣S(T ).
If T /∈D(S,B∣S, d), the previous equation still holds except that the middle term is 0 instead

of v(T ).
(iii) In the quotient game (M, (vd)B) associated with (N,vd,B), if a coalition Q ⊆ M is

such that Q ≠ M , then there is q ∈ M/Q, which implies that Bq ∩ (∪k∈QBk) = ∅. Hence,∪k∈QBk /∈D(N,B, d), so that

(vd)B(Q) = (vd)( ∪k∈Q v(Bk)) = 0.
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Therefore, all players in M are symmetric in (M, (vd)B), or equivalently, all components inB are symmetric in (N,v,B).
(iv) Consider any Bk ∈ B and any two players i, j ∈ Bk who are symmetric in (N,v).

Pick any S ⊆ N/{i, j}. We distinguish two cases. If S ∪ {i} /∈ D(N,B, d), this means that

there is q ∈M such that ∣S ∩Bq ∣ < dq. But then S ∪ {j} /∈D(N,B, d) since {i, j} ∈ Bk. Thus,

vd(S ∪ {i}) = 0 = vd(S ∪ {j}). If S ∪ {i} ∈ D(N,B, d), obviously S ∪ {j} ∈ D(N,B, d), which

implies that

vd(S ∪ {i}) = v(S ∪ {i}) = v(S ∪ {j}) = vd(S ∪ {j}),
where the second equality comes from the fact that i and j are symmetric in (N,v).

(v) Consider any S /∈ D(N,B, d). Clearly, T /∈ D(N,B, d) for each T ⊆ S. This yields

that vd(T ) = 0 for each T ⊆ S, from which we immediately get ∆vd(T ) = 0 for each T ⊆ S. ∎
Proof. (Proposition 1) Existence. We show that DOw satisfying the six axioms.

E. Since Ow satisfies E on CSG and vd(N) = v(N) for each (N,v,B, d) ∈ DG, DOw

satisfies E as well.

A. For any two games (N,v,B, d), (N,w,B, d) ∈DG, it holds that (v+w)d = vd+wd since

the set of diverse coalitions does not depend on the characteristic function. Hence DOw

inherits A on DG from the fact that Ow satisfies A on CSG.

ICETNP. It is known that Ow satisfies ICS on CSG. Combined with point (iv) in

Lemma 1, we obtain that DOw satisfies ICS on GD as well. DOw satisfies ICETNP on

GD since ICETNP weakens ICS.

NPOPD. Let (N,v,B, d) be an i-out diverse game with diversity constraints and sup-

pose that i is a null player in (N,v), i ∈ Bk. Since (N,v,B, d) is diverse, vd = v, and

so i is null in (N,vd). Recall that ∣Bk∣ − dk ≥ 1. Hence, if S ⊆ N/{i} is in D(N,B, d),
then S ∈ D(N/{i},B∣N/{i}, d). This implies that (N/{i}, v∣N/{i},B∣N/{i}, d) is a diverse game

as well. Therefore, DOw(N,v,B, d) = Ow(N,v,B) and DOw(N/{i}, v∣N/{i},B∣N/{i}, d) =
Ow(N/{i}, v∣N/{i},B∣N/{i}). Now, consider any j ∈ N/{i}. From definition (1), we have

DOwj(N,v,B, d) = Owj(N,v,B)
= ∑

S⊆N,S∋j
∆v(S)∣B(j) ∩ S∣ ⋅ ∣{Bk ∈ B ∶ S ∩Bk ≠ ∅}∣

= ∑
S⊆N/{i},S∋j

∆v(S)∣B(j) ∩ S∣ ⋅ ∣{Bk ∈ B ∶ S ∩Bk ≠ ∅}∣
= ∑

S⊆N/{i},S∋j
∆v(S)∣(B(j)/{i}) ∩ S∣ ⋅ ∣{Bk ∈ B∣N/{i} ∶ S ∩ (Bk/{i}) ≠ ∅}∣= Owj(N/{i}, v∣N/{i},B∣N/{i}),=DOwj(N/{i}, v∣N/{i},B∣N/{i}, d),
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where the third equality follows from the fact that ∆S(v) = 0 for each S ⊆ N with S ∋ i since

i is null in (N,v).
ED. By point (iii) of Lemma 1, we know that for each k, q ∈M , Bk and Bq are symmetric

components in (N,vd,B) (i.e., k and q are symmetric in the quotient game (M, (vd)B)). Since

Ow satisfies the Coalitional symmetry axiom on CSG and DOw(N,v,B, d) = Ow(N,vd,B),
DOw satisfies ED on GD.

INDC. If two games (N,v,B, d) and (N,w,B, d) are such that v(S) = w(S) for each

S ∈ D(N,B, d), then we have vd = wd. Therefore, DOw(N,v,B, d) = Ow(N,vd,B) =
Ow(N,wd,B) =DOw(N,w,B, d).
Uniqueness. Let f be any value on GD meeting the six axioms. Consider any game(N,v,B, d) ∈ GD. By INDC, we have f(N,v,B, d) = f(N,vd,B, d). By A and point (v) in

Lemma 1, we also have

f(N,vd,B, d) = ∑
S⊆N,S≠∅ f(N,∆vd(S)uS,B, d) = ∑

S∈D(N,B,d) f(N,∆vd(S)uS,B, d).
As a consequence, it is enough to prove that f(N, cuS,B, d) is uniquely determined for each

S ∈ D(N,B, d) and each c ∈ R∗. Remark that (N, cuS,B, d) is diverse since S ∈ D(N,B, d).
Furthermore, each player i ∈ N/S is null in (N, cuS). The game (N, cuS,B, d) is i-out diverse

since i ∈ N/S. For any j ∈ N/i, we have

fj(N, cuS,B, d) (NPOPD)= fj(N/{i}, (cuS)∣N/{i},B∣N/{i}, d).
Hence, for each i ∈ N/S, from E, note also that

∑
j∈N fj(N, cuS,B, d) = cuS(N) = c = cuS(N/{i}) = ∑

j∈N/{i} fj(N/{i}, (cuS)∣N/{i},B∣N/{i}, d).
This forces, for each i ∈ N/S, that

fi(N, cuS,B) = 0. (2)

For each i ∈ N/S, i ∈ Bk, and each T ⊆ N/(S∪{i}), consider the subgame (N/T, (cuS)∣N/T ,B∣N/T , d).
Since S ∈ D(N,B, d) and S ⊆ N/T , we have S ∈ D(N/T,B∣N/T , d) by point (i) of Lemma 1.

Hence, ∣Bk ∩ S∣ ≥ dk, S ⊆ N/T , and i ∈ N/T imply that

∣Bk ∩ (N/T )∣ − dk ≥ ∣Bk ∩ (N/T )∣ − ∣S ∩Bk∣ ≥ 1.

Thus, all conditions are met to apply NPOPD (n−s) times successively from (N, cuS,B, d)
to (S, (cuS)∣S,B∣S, d) to get that, for each j ∈ S,

fj(N, cuS,B, d) = fj(S, (cuS)∣S,B∣S, d). (3)
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Since (S, (cuS)∣S,B∣S, d) is diverse, (cuS)d = cuS on S. As a consequence, combining point

(iii) of Lemma 1 with ED and E, we obtain, for each k ∈M , that

∑
j∈Bk∩S

fj(S, (cuS)∣S,B∣S, d) = c/m. (4)

Moreover, since any two players j, l ∈ Bk ∩ S are necessary in (S, (cuS)∣S), ICETNP and

(4) yield that

fj(S, (cuS)∣S,B∣S, d) = c

m∣Bk ∩ S∣ . (5)

Combining (2), (3), and (5), we have proved that f(N, cuS,B, d) is uniquely determined for

each S ∈D(N,B, d) and each c ∈ R∗, which completes the proof. ∎
Dropping Equality through diversity (ED) and strengthening Intra-coalitional equal

treatment of necessary players (ICETNP) by Equal treatment of necessary players (ETNP)

yields a characterization of the Diversity Shapley value, which assigns to each game with

diversity constraints its Shapley value in the associated diversity game.

Proposition 2. There is a unique value on GD satisfying Efficiency (E), Additivity (A),

Equal treatment of necessary players (ETNP), Null player out for preserving-diversity

games (NPOPD) and Independence from non-diverse coalitions (INDC). It is the Diversity

Shapley value DSh, such that, for each (N,v,B, d) ∈ GD, DSh(N,v,B, d) = Sh(N,vd).
Proof. Existence. By definition, DSh satisfies INDC. As in the proof of Proposition 1,

DSh inherits the four other axioms from the fact that Sh satisfies their counterpart on G.

Uniqueness. Consider any value f on GD satisfying the five axioms. The first steps

of the proof of Proposition 1 can be replicated until reaching the subgame with diversity

constraints f(S, (cuS)∣S,B∣S, d), S ∈ D(N,B, d), and c ∈ R∗. Here, ETNP and E yield that

fi(S, (cuS)∣S,B∣S, d) = c/∣S∣ for each i ∈ S, completing the proof. ∎
Note that, in the presence of the Efficiency, Additivity, and Null player out for preserving-

diversity games can be weakened into Coalitional strategic equivalence for diverse game.

Moreover, Coalitional strategic equivalence for diverse game and Marginality for diverse

games do not imply each other. We obtain other axiomatizations of the Diversity Owen

value which do not rely of the Additivity axiom.

Proposition 3. The Diversity Owen value is the unique value on GD that satisfies Ef-

ficiency (E), Intra-coalitional equal treatment of necessary players (ICETNP), Equality

through diversity (ED), Independence from non-diverse coalitions (INDC) and Coalitional

strategic equivalence for diverse game (CSEDG) or Marginality for diverse games (MDG)

or Strong monotonicity for diverse games (MoDG).
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Proof. (Proposition 3) Existence. We already proved that DOw satisfies E, ICETNP,

ED, and INDC.

Regarding MDG or MoDG, if (N,v,B, d) ∈ GD is diverse then vd = v. Thus, DOw also sat-

isfies MDG or MoDG since the Owen value satisfies Marginality and Strong monotonicity

for games with coalition structures.

Regarding CSEDG, let (N,v,B, d) ∈ GD be a diverse game and i a null player in(N,v). For any game (N,w,B, d) ∈ GD, since DOw satisfies A, we have DOwi(N,v +
w,B, d) = DOwi(N,w,B, d) + DOwi(N,v,B, d). Since (N,v,B, d) is a diverse game and

i is null in (N,v), i is also null in (N,vd) and we have DOwi(N,v,B, d) = 0. Thus,

DOwi(N,v +w,B, d) =DOwi(N,w,B, d).
Uniqueness. Let f be a value on GD that satisfies E, ICETNP, ED, INDC, and

CSEDG or MDG or MoDG. We show that f(N,v,B, d) = DOw(N,v,B, d) for each(N,v,B, d) ∈ GD. For any game (N,v,B, d) ∈ GD, by INDC, we have f(N,v,B, d) =
f(N,vd,B, d). Hence, it is enough to prove that f(N,vd,B, d) = DOw(N,vd,B, d). We

prove this by induction on the cardinality of the set

T (vd) ∶= {T ∈D(N,B, d) ∶ ∆vd(T ) ≠ 0}
of coalitions with non-zero dividends in vd.

By induction on the cardinality of T (vd), let us show that DOw = f .

Induction basis (IB): For any game (N,v,B, d) ∈ GD such that ∣T (vd)∣ = 0, (N,vd) is a null

game. All players are symmetric in (N,vd). By using E, ICETNP and ED, for any i ∈ N ,

we have

fi(N,vd,B, d) = 0

m.∣B(i)∣ = 0 = Owi(N,vd,B) =DOw(N,vd,B, d).
Induction hypothesis (IH): Suppose that f(N,vd,B, d) =DOw(N,vd,B, d) for all (N,v,B, d) ∈
GD such that such that ∣T (vd)∣ ≤ t̄ with t̄ ∈ N.

Induction step: Let (N,v,B, d) ∈ GD such that ∣T (vd)∣ = t̄ + 1. By setting

T(vd) ∶= {i ∈ N ∶ i ∈ T, for all T ∈ T (vd)},
we distinguish the following two cases:

Case 1. We assume that T(vd) = ∅. Note that this rules out the case where ∣Bh∣ = dh

for some component Bh ∈ B since we would have Bh ⊆ S for each diverse coalition. Thus,

assume that there are no Bh ∈ B such that ∣Bh∣ = dh. Then, for any i ∈ N , there exists some

To ∈ T (vd) such that i ∉ T0. Note that, T0 is diverse. We set w = ∑S∈D(N,B,d)/{T0}∆vd(S)uS.

Obviously, (N,w,B, d) is a diverse game (as the sum of diverse games) and then wd = w.
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Hence, vd = w+∆vd(T0)uT0 and ∣T (w)∣ = t̄. Thus, fi(N,w,B, d) (IH)= Owi(N,w,B). Moreover,

the game (N,∆vd(T0)uT0 ,B, d) is diverse (since T0 is a diverse coalition) and player i is null

in (N,∆vd(T0)uT0). Each of the following two situations hold.

• By CSEDG, we have fi(N,vd,B, d) = fi(N,w,B, d) = Owi(N,w,B) = Owi(N,vd,B).
• Since ∆vd(K ∪{i}) = ∆w(K ∪{i}) for all K ⊆ N/{i}. By MDG (or MoDG), we have

fi(N,vd,B, d) = fi(N,w,B, d) = Owi(N,w,B) = Owi(N,vd,B).
In the two situations, the equality f(N,vd,B, d) =DOw(N,vd,B, d) holds, as desired.

Case 2. Now, we assume that T(vd) ≠ ∅. For any i ∈ N, if i ∈ N/T(vd) then from Case 1

we have the claim. Let i ∈ N be a player such that i ∈ T(vd). If T(vd) = {i} then from Case

1 and E, we have fi(N,vd,B, d) = Owi(N,vd,B) since DOw and f satisfy E. Let us assume

that ∣T(vd)∣ > 1. Every pair of players in T(vd) are necessary in (N,vd). If T(vd) ⊆ B(i)
then by applying E and ICETNP, we have

fi(N,vd,B, d) = vd(N) −∑j∈N/T(vd) fj(N,vd,B, d)∣T(vd)∣
= vd(N) −∑j∈N/T(vd)Owj(N,vd,B)∣T(vd)∣= Owi(N,vd,B),

for each i ∈ T(vd). If T(vd) ⊈ B(i) then we set RT(vd) = {B` ∈ B ∶ B` ∩ T(vd) ≠ ∅}. By

applying E and ED, we have

∑
k∈B(i) fk(N,vd,B, d) = ∑B`∈RT(vd)∑k∈B`

fk(N,vd,B, d)
∣RT(vd)∣

= vd(N) −∑B`∈B/RT(vd)∑k∈B`
fk(N,vd,B, d)

∣RT(vd)∣
= vd(N) −∑B`∈B/RT(vd)∑k∈B`

Owk(N,vd,B)
∣RT(vd)∣= ∑

k∈B(i)Owk(N,vd,B).
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Moreover, i and every j ∈ T(vd) ∩ B(i) are necessary in (N,vd). Applying ICETNP gives

fi(N,vd,B, d) = ∑k∈T(vd)∩B(i) fk(N,vd,B, d)∣T(vd) ∩ B(i)∣
= ∑k∈B(i) fk(N,vd,B, d) −∑k∈B(i)/T(vd) fk(N,vd,B, d)∣T(vd) ∩ B(i)∣
= ∑k∈B(i)Owk(N,vd,B) −∑k∈B(i)/T(vd)Owk(N,vd,B)∣T(vd) ∩ B(i)∣= Owi(N,vd,B),

for each i ∈ T(vd), which completes the proof. ∎
The counterpart of Proposition 2 can be stated as well to obtain additional characteri-

zations of the Diversity Shapley value.

Proposition 4. The Diversity Shapley value is the unique value on GD that satisfies Effi-

ciency (E), Equal treatment of necessary players (ETNP), Independence from non-diverse

coalitions (INDC) and Coalitional strategic equivalence for diverse game (CSEDG) or

Marginality for diverse games (MDG) or Strong monotonicity for diverse games (MoDG).

Since the proof follows the same steps as in the proof of Proposition 3, we do not detail

it here. Through the following remark, we show that the characterizations in Propositions

1, 2, 3, and 4 are non-redundant.

Remark 1. i) For the case of Propositions 1 and 3, we consider the following examples:

– The value f on GD defined by fi(N,v,B, d) = ∑S⊆N ∶S∋i ∆v(S)
m∣B(i)∩S∣ for each (N,v,B, d) ∈

GD and i ∈ N satisfies E, A, ICETNP, MDG, MoDG, ED, CSEDG and
NPOPD; but does not satisfy INDC.

– The value f on GD defined by fi(N,v,B, d) = Sh(N,vd) for each (N,v,B, d) ∈ GD
and i ∈ N satisfies E, A, ICETNP, MDG, MoDG, CSEDG, NPOPD and
INDC; but violates ED.

– The value f on GD defined by fi(N,v,B, d) = v(N)
m∣B(i)∣ for each (N,v,B, d) ∈ GD

and i ∈ N satisfies E, A, ICETNP, ED and INDC; except NPOPD,MDG,
MoDG and CSEDG. If fact, let consider S ∈D(N,B, d), for any i ∉ S, (N,uS,B, d)
is i-out diverse and i is null in (N,uS). So, fi(N,v + uS,B, d) = v(N)+uS(N)

m∣B(i)∣ =
v(N)+1
m∣B(i)∣ ≠ fi(N,v,B, d).

– The value f on GD defined by

fi(N,v,B, d) = ∑
S⊆N ∶S∋i

∑
j∈B(i)∩S j

i
⋅ ∆v(S)∣{Bk ∈ B ∶ S ∩Bk ≠ ∅}∣
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for each (N,v,B, d) ∈ GD and i ∈ N satisfies E, A, ED, MDG, MoDG,
CSEDG, NPOPD and INDC; but does not satisfy ICETNP.

– The value f on GD defined by fi(N,v,B, d) = Owi(N,vd,B) if v(N) ≠ 0 and
fi(N,v,B, d) = 0 if v(N) = 0 for each (N,v,B, d) ∈ GD and i ∈ N satisfies E,
ICETNP, ED, NPOPD and INDC. It does not satisfy A.

– The null value on GD defined by fi(N,v,B, d) = 0 for each (N,v,B, d) ∈ GD and
i ∈ N satisfies A, ICETNP, ED, MDG, MoDG, CSEDG, NPOPD and
INDC; but does not satisfy E.

ii) For the case of Propositions 2 and 4, let us consider the following examples:

– The value f on GD defined by fi(N,v,B, d) = Shi(N,v) for each (N,v,B, d) ∈ GD
and i ∈ N satisfies E, A, MDG, MoDG, CSEDG, ETNP and NPOPD; but
does not satisfy INDC.

– The value f on GD defined by fi(N,v,B, d) = Owi(N,vd,B) for each (N,v,B, d) ∈
GD and i ∈ N satisfies E, A, NPOPD, MDG, MoDG, CSEDG and INDC;
violates ETNP.

– The equal division value f on GD defined by fi(N,v,B, d) = v(N)∣N ∣ for each (N,v,B, d) ∈
GD and i ∈ N satisfies E, A, ETNP and INDC; except NPOPD,MDG,
MoDG and CSEDG.

– The value f on GD defined by fi(N,v,B, d) = Shi(N,vd) if v(N) ≠ 0 and
fi(N,v,B, d) = 0 if v(N) = 0 for each (N,v,B, d) ∈ GD and i ∈ N satisfies E,
ETNP, NPOPD and INDC. It does not satisfy A.

– The null value on GD defined by fi(N,v,B, d) = 0 for each (N,v,B, d) ∈ GD and
i ∈ N satisfies A, ETNP, NPOPD, MDG, MoDG, CSEDG and INDC; but
does not satisfy E.

6. Characterizations on simple games with diversity constraints

In this section, we show that our two previous characterizations invoking the Additivity

axiom can be adapted to the class of simple TU-games with diversity constraints in which

the Diversity Owen and Shapley values can be used as relevant power indices. A game(N,v) ∈ G is a simple game if for any S ⊆ N, v(S) ∈ {0,1}; v(N) = 1 and v is monotonic,

i.e., for any coalitions S,T ⊆ N , S ⊂ T implies v(S) ≤ v(T ). We denote by SG the set

of simple games on a finite set of players. A coalition S is said to be winning in a game(N,v) ∈ SG if v(S) = 1, and losing otherwise. A coalition S is said to be minimal winning

in a game (N,v) ∈ SG if it is winning and for any T ⊂ S, we have v(T ) = 0. For two simple

games (N,v), (N,w) ∈ SG, we define the simple games (N,v ∨w) and (N,v ∧w) as follows:

v ∨w(S) = max{v(S),w(S)} and v ∧w(S) = min{v(S),w(S)} for all S ⊆ N.

The four-tuple (N,v,B, d) is called a simple game with diversity constraints if (N,v) ∈
SG. We denote by SGD the set of simple games with diversity constraints with a finite
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set of players and by CSSG the set of all simple games with a coalition structure in which

player set is finite. Any value f restricted to SGD is called an index and assigns to each

game (N,v,B, d) ∈ SGD and each player i ∈ N a positive real number fi(N,v,B, d) which

can be seen as the power of i or her influence in (N,v,B, d). Following the literature, the

Owen value restricted to SGD can be called the Owen index and the Shapley value on SGD

can be called the Shapley-Shubik index (Shapley and Shubik, 1954).

It is obvious that the sum of two simple games is not a simple game, which prevents to

use of axiom of Additivity on SGD. Dubey (1975) suggests to replace this axiom by the

axiom of Transfer, which can be stated as follows on SGD.

Transfer (Tr). For any (N,v,B, d), (N,w,B, d) ∈ SGD, we have f(N,v∨w,B, d)+f(N,v∧
w,B, d) = f(N,v,B, d) + f(N,w,B, d).

The transfer axiom is invoked to characterize the Shapley-Shubik index on SG (Dubey,

1975; Einy and Haimanko, 2011) and other values in various context (see Feltkamp, 1995;

Dubey et al., 2005, among others). The transposition of our two first results to the class

SGD is not totally immediate since this requires to ensure that the diversity-restricted game

induced by a simple game remains a simple game. This is done in the next lemma.

Lemma 2. Let (N,v,B, d) ∈ SGD be any simple game with diversity constraints. Then it

holds that:

(i) the game (N,vd) is a simple game.

(ii) if an index f on SGD satisfies Transfer (Tr) and Independence from non-diverse

coalitions (INDC) then

f(N,v,B, d) = ∑
I⊂{1,2,...,`},I≠∅(−1)∣I ∣+1f(N,u∪j∈ILj

,B, d),
where {Lj ∶ j ∈ {1,2, ..., `}} is the set of minimal winning coalitions in the game (N,vd).

Proof. Consider an arbitrary simple game with diversity constraints (N,v,B, d) ∈ SGD.

Part (i) Firstly, we have vd(N) = v(N) = 1 since N ∈ D(N,B, d). Secondly, for any

S ⊆ N , we have either vd(S) = v(S) ∈ {0,1} if S ∈ D(N,B, d) or vd(S) = 0 if S /∈ D(N,B, d).
Thus, vd(S) ∈ {0,1}. Thirdly, for any S,T ⊆ N such that S ⊆ T , if T ∈ D(N,B, d) then

vd(T ) = v(T ) ≥ v(S) ≥ vd(S), where the first inequality comes from the fact that v is

monotonic and the second inequality comes from the definition of vd. If T ∉D(N,B, d) then

S ∉D(N,B, d) and vd(T ) = vd(S) = 0. Therefore, vd is monotonic as well.
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Part (ii) From INDC, we have f(N,v,B, d) = f(N,vd,B, d). Furthermore, from Dubey

(1975) and the fact that (N,vd) ∈ SG, it is known that vd can be written as a maximum of

a finite number of unanimity games: vd = uL1 ∨ uL2 ∨ ... ∨ uL`
where {Lj ∶ j ∈ {1,2, ..., `}} is

the set of minimal winning coalitions in (N,vd). By definition, all the winning coalitions in

the game (N,vd) are diverse, which obviously implies that all minimal winning coalitions in(N,vd) are diverse too. Since f satisfies Tr and (N,vd) is a simple voting game, then Einy

(1987, Lemma 2.3) yields that

f(N,vd,B, d) = ∑
I⊂{1,2,...,`},I≠∅(−1)∣I ∣+1f(N,u∪j∈ILj

,B, d),
as desired. ∎

Building on the previous Lemma and Propositions 1 and 2, we obtain the following two

corollaries.

Corollary 1. There is a unique index on SGD satisfying Efficiency (E), Transfer (Tr),

Intra-coalitional equal treatment of necessary players (ICETNP), Null player out for preserving-

diversity games (NPOPD), Equality through diversity (ED) and Independence from non-

diverse coalitions (INDC). It is the Diversity Owen index DOwI, such that, for each(N,v,B, d) ∈ SGD, DOwI(N,v,B, d) = Ow(N,vd,B).
Corollary 2. There is a unique index on SGD satisfying Efficiency (E), Transfer (Tr),

Equal treatment of necessary players (ETNP), Null player out for preserving-diversity

games (NPOPD) and Independence from non-diverse coalitions (INDC). It is the Diver-

sity Shapley-Shubik index DSS, such that, for each (N,v,B, d) ∈ SGD, DSS(N,v,B, d) =
Sh(N,vd).

We conclude this section by noting that Propositions 3 and 4 do not hold anymore on the

class of simple games with diversity constraints. While the axiom sets in these proposition

are still valid on this class, there are other values than DOw and DSh satisfying them as

pointed out by the following two examples:

• The index f on SGD defined by fi(N,v,B, d) = 1
m∣B(i)∣ for each (N,v,B, d) ∈ SGD and

i ∈ N satisfies E, ICETNP, ED, INDC, MDG, MoDG and CSEDG.

• The index f on SGD defined by fi(N,v,B, d) = 1∣N ∣ for each (N,v,B, d) ∈ SGD and

i ∈ N satisfies E, ETNP, INDC, MDG, MoDG and CSEDG.
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7. Conclusion

As a conclusion, we would like to allude to some extensions of our work. There are some

situations in which diversity matters but that our model cannot capture. We detail briefly

two such situations.

Firstly, it may be the case that some but not all communities must be represented

within a diverse coalition. An example is the so-called Victoria charter in Canada that

required in 1971 a Constitutional amendment to be approved by Quebec, Ontario, two of

the four Atlantic Provinces and British Columbia and one central province OR all three

central provinces (see Straffin, 1977). If one naturally considers British Columbia as a single

community and the three central provinces as another community, then this last requirement

implies that all but one communities are needed for a Constitutional amendment, i.e., there

are diverse coalitions not containing members of all communities.

Secondly, in some cases, it makes sense that a player belongs to more than one commu-

nities. As an example, go back to the Participatory budgeting with districts developed in

Example 2. While most projects are implemented within a single districts, there are also

projects that have an impact on multiple districts or even the entire city. In many cases but

not always, such projects are handled through a separate procedure.

These extensions are left for future works.
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Béal, S., Navarro, F., 2020. Necessary versus equal players in axiomatic studies. Operations Research Letters

48, 385–391.

Benabbou, N., Chakraborty, M., Ho, X.V., Sliwinski, J., Zick, Y., 2020. The price of quota-based diversity

in assignment problems. ACM Transactions on Economics and Computation 8(3), 1–32.

Bredereck, R., Faliszewski, P., Igarashi, A., Lackner, M., Skowron, P., 2018. Multiwinner elections with

diversity constraints, in: The Thirty-Second AAAI Conferenceon Artificial Intelligence (AAAI-18), pp.

933–940.

Casajus, A., 2010. Another characterization of the Owen value without the additivity axiom. Theory and

Decision 69, 523–536.

Casajus, A., 2011. Differential marginality, van den Brink fairness, and the Shapley value. Theory and

Decision 71, 163–174.

Celis, L., E., Huang, L., Vishnoi N., K., 2018. Multiwinner voting with fairness constraints, in: Proceedings

of the 27th International Joint Conference on Artificial Intelligence (IJCAI), pp. 144–151.

Chun, Y., 1989. A new axiomatization of the Shapley value. Games and Economic Behavior 1, 119–130.

Derks, J., Haller, H.H., 1999. Null players out? Linear values for games with variable supports. International

Game Theory Review 1, 301–314.

Dubey, P., 1975. On the uniqueness of the Shapley value. International Journal of Game Theory 4, 131–140.

22



Dubey, P., Einy, E., Haimanko, O., 2005. Compound voting and the Banzhaf index. Games and Economic

Behavior 51, 20–30.

Echenique, F., Yenmez, M.B., 2015. How to control controlled school choice. American Economic Review

105(8), 2679–2694.

Ehlers, L., Hafalir, I.E., Yenmez, M.B., Yildirimy, M.A., 2014. School choice with controlled choice con-

straints: Hard bounds versus soft bounds. Journal of Economic Theory 153, 648–683.

Einy, E., 1987. Semivalues of simple games. Mathematics of Operations Research 12, 185–192.

Einy, E., Haimanko, O., 2011. Characterization of the Shapley-Shubik power index without the efficiency

axiom. Games and Economic Behavior 73, 615–621.

Faliszewski, P., Lackner, M., Peters, D., Talmon, N., 2018. Effective heuristics for committee scoring rules,

in: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, pp. 1023–1030.

Feltkamp, V., 1995. Alternative axiomatic characterizations of the Shapley and Banzhaf values. International

Journal of Game Theory 24, 179–186.

Harsanyi, J.C., 1959. A bargaining model for cooperative n-person games, in: Tucker, A.W., Luce, R.D.

(Eds.), Contribution to the Theory of Games vol. IV, Annals of Mathematics Studies 40. Princeton

University Press, Princteon, pp. 325–355.

Hart, S., Kurz, M., 1983. Endogenous formation of coalitions. Econometrica 51, 1047–1064.

Hart, S., Mas-Colell, A., 1989. Potential, value, and consistency. Econometrica 57, 589–614.

Haughton, J., Richards, L., Madden, C., 2023. Indigenous and minority representation worldwide. Research

paper series, 2023-24, Parliament of Australia.

Hu, X.F., 2021. New axiomatizations of the Owen value. Mathematical Methods of Operations Research

93, 585–603.

Ianovski, E., 2022. Electing a committee with dominance constraints. Annals of Operations Research 318,

985–1000.

Kagita, V.R., Pujari, A.K., Padmanabhan, V., Aziz, H., Kumar, V., 2021. Committee selection using

attribute approvals. In Proceedings of the 20th International Conference on Autonomous Agents and

MultiAgent Systems , 683–691.

Khmelnitskaya, A.B., Yanovskaya, E.B., 2007. Owen coalitional value without additivity axiom. Mathe-

matical Methods of Operations Research 66, 225–261.

Moretti, S., Norde, H., 2021. A note on weighted multi-glove games. Social Choice and Welfare 57, 721–732.

Myerson, R.B., 1977. Graphs and cooperation in games. Mathematics of Operations Research 2, 225–229.

Owen, G., 1977. Values of games with a priori unions, in: Henn, R., Moeschlin, O. (Eds.), Essays in

mathematical economics and game theory. Springer, Berlin, pp. 76–88.

Page, S.E., 2008. The Difference: How the Power of Diversity Creates Better Groups, Firms, Schools, and

Societies. Princeton University Press.

Quint, T., 1991. The core of an m-sided assignment game. Games and Economic Behavior 3, 487–503.

Relia, K., 2021. Dire committee: diversity and representation constraints in multiwinner elections. arXiv

preprint arXiv:2107.07356 .

Shapley, L.S., 1953. A value for n-person games, in: Kuhn, H.W., Tucker, A.W. (Eds.), Contribution to the

Theory of Games vol. II, Annals of Mathematics Studies 28. Princeton University Press, Princeton, pp.

307–317.

Shapley, L.S., Shubik, M., 1954. A method for evaluating the distribution of power in a committee system.

The American Political Science Review 48, 787–792.

Straffin, P.D., 1977. Homogeneity, independence, and power indices. Public Choice 30, 107–118.

van den Brink, R., Katsev, I., van der Laan, G., 2011. Axiomatizations of two types of Shapley values for

games on union closed systems. Economic Theory 47, 175–188.

Young, H.P., 1985. Monotonic solutions of cooperative games. International Journal of Game Theory 14,

23



65–72.

24


