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Abstract

We address the problem of electing a committee subject to diversity constraints.

Given a set of candidates and a set of voters, such that each voter is represented by a

linear order, the goal is to select a fixed-size subset of candidates by combining the

excellence of candidates and a given form of diversity requirements. The grounding

assumption in this paper is that the set of candidates is slotted into at least two groups

according to a specific attribute such as gender, religion, ethnicity, or profession, and

the diversity constraint takes the form of a vector of integers specifying the lowest

number of candidates required from each group. We introduce a class of voting rules

suitable for electing a diverse committee in this framework and we show how this class

of rules handles the issue of combining both excellence and diversity. Furthermore,

we provide some axiomatic properties that highlight the behavior of these rules when

we aim to select a diverse committee.

Keywords: Voting, multiwinner elections, committee, diversity, axioms.

JEL classification: D71, D72.
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1 Introduction

The problem of selecting a group of items or individuals from a larger set is an ubiquitous

problem in both theory and real life. Such a problem can arise in parliamentary elections,

shortlisting candidates for a competition, choosing a set of movies to be offered on air-

planes, selecting a number of items to be put on a page of an online store, etc. In social

choice theory, we generally talk about a set of voters (or individuals) who express their

preferences over a set of candidates (or alternatives) in order to select a fixed-size subset

of candidates called a committee. These kinds of problems are well known under the name

of multiwinner elections or committee selection.

There are many multiwinner voting rules based on many different ideas and principles.

The more studied ones are those based on k-winner extensions of well-known single-winner

rules, where k is the target size of the committee to be selected. In this category, the family

of rules that has received the most interest in the literature is undoubtedly the family of

committee scoring rules that we will focus on in the paper at hand. This family of rules was

introduced by Elkind et al. (2017) as the multiwinner analogues of the well-known single-

winner positional scoring rules. The idea of single-winner positional scoring rules (or,

simply, scoring rules) is to assume that each voter ranks all the candidates from the most

to the least preferred one and to consider a scoring vector that associates each position in

a ranking with a given score value; the final score of a candidate is calculated as the sum of

the scores he/she (hereinafter she) obtains from all the voters; finally, the candidate with

the highest total score wins the election.1 Roughly speaking, and similarly to the single-

winner setting, under a committee scoring rule each voter assigns a predefined score to

each committee based on the positions of the committee members in the considered voter’s

ranking and, at the end, the winning committee is the one with the maximum total score

computed as the sum of the scores received from all voters to every candidate. A formal

definition of committee scoring rules will be given later. Note that Skowron et al. (2019)

provided an axiomatic characterization of committee scoring rules which extends by the

way the characterizations given by Young (1974, 1975) for single-winner scoring rules. Due

to their simplicity, the most commonly used committee scoring rules are undoubtedly those

that are (weakly) separable. Under (weakly) separable committee scoring rules, candidates

are one by one rated according to a single-winner scoring vector and any set of k candidates

with the highest total scores is picked at the end as a winning committee. We refer the

reader to Elkind et al. (2017) and Faliszewski et al. (2018, 2019), among others, for further

discussions about committee scoring rules in general and (weakly) separable committee

scoring rules in particular.

1With a possible tie-breaking rule which could be used to break ties among winning candidates having
the same highest total score.
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Multiwinner elections with diversity constraints

Choosing a committee can sometimes be subject to certain constraints based on different

ideas and goals that should be achieved as argued by Brams (1990), Kamada and Kojima

(2015), Lu and Boutilier (2011), and Skowron et al. (2016), among others. The paper

at hand is concerned with the question of diversity. Precisely, the general idea of this

piece of literature is that there is one (or more) attribute(s), which can be gender, age,

ethnicity, etc., allowing the set of candidates to be sorted into several classes (or types),

such that each candidate is labeled by one (or more) type(s) according to each attribute.2

Then, the goal is to ensure a certain degree of diversity among the candidates composing

the selected committee. There are numerous examples of such constraints. For instance,

shortlisting candidates for a competition can be subject to a condition requiring an equal

number of men and women, or a condition seeking to achieve a certain regional equilibrium

if the candidates’ home region is an important aspect of the committee selection so that

no region feels excluded or underrepresented. Another example has to do with the choice

of movies to be offered on airplanes; since the goal is to please all the passengers, it would

be “fair” that plane movies include thrillers, biographical dramas, romantic comedies or

other varieties. In social choice theory, we generally say that the committee to be selected

is subject to a diversity constraint and we talk about the selection of a diverse committee.

The literature devoted to the framework of diverse committee selection is recent and

rich, and to the best of our knowledge it may be classified into two groups.

The first group concerns the multi-attribute framework, assuming that each candidate

is represented by one label over each attribute. In this framework, Bredereck et al. (2018)

for instance considered that the diversity constraint is expressed by two vectors of integers

specifying the lowest and the highest numbers of candidates to be selected from each

attribute class and the goal is to optimize a given objective function so as to provide a

committee that meets in the best possible way the diversity constraint. The authors mainly

focused on the computational complexity of selecting such a committee. In the same vein,

Lang and Skowron (2018) studied the problem of selecting a diverse committee by assuming

that the set of candidates is slotted into many classes according to many attributes. The

diversity constraint is considered in their model as a sequence of vectors expressing the

number of candidates to be selected from each class and each attribute, and the ultimate

goal is to select a committee that is closer to the target sequence of vectors using some

specific metrics. The authors also studied the computational complexity of managing

such a problem, and furthermore provided some properties that should be satisfied when

selecting a diverse committee in this framework. Many other works have addressed the

same problem in the multi-attribute setting, we refer the reader to Bei et al. (2022), Celis

et al. (2017), and Do et al. (2021), among others.

The second group consists of the setting where the set of candidates is slotted into

several classes according to a single specific attribute. In this framework, Ianovski (2022)

2Obviously, the classes can overlap or not depending on the considered attribute.
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for instance considered two types of diversity constraints, namely the interval constraints

and dominance constraints,3 and studied the problem of selecting a feasible committee that

preserves the excellence of candidates under an objective function. Ianovski (2022) then

focused on the computational complexity of this problem. A second example concerns the

work of Aziz (2019) who considered that the set of candidates is structured into several

non-disjoint classes according to a specific attribute, and defined a diversity constraint as

a vector of integers specifying the lowest number of candidates to be selected from each

class. The author assumed that the preferences of voters are already aggregated into a

single (weak) order on the set of candidates and provided an algorithm that combines

both excellence (measured according to the positions of the candidates in the social weak

order) and diversity. Excellence and diversity are modelled by two axioms, namely justified

envy-freeness and type optimality that we will present and discuss in detail later in this

paper. Many other works are dedicated to the same framework; we can point the reader

toward the works of Kagita et al. (2021), Relia (2021), and Thejaswi et al. (2021), among

others.

Our contribution

We consider the framework where (i) the set of candidates is partitioned into at least two

disjoint groups according to a single specific attribute, and (ii) the diversity constraint takes

the form of a vector of integers specifying the lowest number of candidates that are required

from each group. Our main objective is to select a committee which effectively combines

both the excellence of candidates in terms of scores and the diversity requirements. We

consider the well-known committee scoring rules and we introduce a diversity reward that

we distribute to each committee according to its degree of diversity, i.e., its ability to meet

the diversity constraint. This allows us to define a new class of committee selection rules

that we consider as suitable for selecting a diverse committee in this framework. We call it

the class of diverse committee scoring rules. We further provide some desirable properties

that are satisfied by this class of rules. Some of these properties are adjustments of well-

known axioms already considered in the literature, mainly by Aziz (2019) and Elkind et al.

(2017), whereas other axioms are proper to our model. We pay a particular attention to

the diverse committee scoring rules that are based on (weakly) separable scoring functions

and we characterize this subclass of rules using a particular property.

The paper is organized as follows: Section 2 presents the model by laying out some

basic definitions. Section 3 is devoted to the definition of the class of diverse committee

scoring rules and describes how it operates. In Section 4, we provide some axioms that we

see as suitable when the goal is to select a diverse committee and we evaluate the class of

rules that we propose in the light of those axioms. Section 5 concludes and presents some

directions for future research.

3The interval constraints indicate the interval to which the number of candidates to be selected from
each class must belong. The dominance constraint shows, for any two classes, which one deserves more
candidates to be selected.

4



2 Preliminary definitions

Consider a non-empty set A of m alternatives (or candidates) and a non-empty set N of n

voters (or individuals) with m ≥ 3 and n ≥ 2. Alternatives are denoted by small letters a,

b, c, . . . , or a1, a2, a3, etc. Voters are denoted by positive integers 1, 2, 3, etc. We denote by

N the set of all non-negative integers and by N∗ the set of all positive integers. Throughout

the paper, we simply write [r] to denote the set {1, . . . , r} for any positive integer r ∈ N∗.

We assume that the set of alternatives is slotted into l subsets A1, . . . , Al, with l ≥ 2,

according to a single specific attribute (e.g., gender, religion, political orientation, etc.)

such that A = ∪l
j=1Aj . For every type j ∈ [l], we denote by mj = |Aj | the cardinality of

the class Aj . Although some classes can overlap,4 we focus in this paper on attributes for

which any candidate belongs to only one class; that is, Aj ∩ Aj′ = ∅ for all j, j′ ∈ [l] such

that j ̸= j′. For any alternative a ∈ A, we denote by j(a) the type of a; that is, the integer

from [l] such that a ∈ Aj(a). We say that Aj(a) is the class of candidate a. For every Aj ,

we use throughout the paper the term type referring to j and the term class referring to

the subset Aj .

We assume that every voter ranks all the alternatives from the most preferred to the

least preferred one without the possibility of ties. Every individual preference is then a

linear order on A; that is, a complete, anti-symmetric, and transitive binary relation on A.

The set of all linear orders on A is denoted by P. It is worth mentioning that the partition

of the set of candidates into classes does not affect the ranking of any voter; that is, each

voter casts her ranking regardless of the types of the candidates. Given i ∈ N , the (linear)

ranking or the preference relation of i is denoted by pi. The n-tuple p = (p1, p2, . . . , pn)

which specifies the ranking of each voter is called a preference profile (or simply a profile).

The set of all profiles with n voters is denoted by Pn. For any two alternatives a and b,

we write a ≻i b or simply ab (in row or column) if voter i strictly prefers a to b.

Definition 1 Given a voter i, the rank r(pi, a) of any alternative a ∈ A in the preference

relation pi is defined by

r(pi, a) =
∣∣∣ {b ∈ A : b ≻i a}

∣∣∣+ 1 = m−
∣∣∣ {b ∈ A : a ≻i b}

∣∣∣. (1)

Each individual preference pi induces a restricted ranking pji (also denoted by ≻j
i ) over

each class Aj such that, for all a, b ∈ Aj ,

a ≻j
i b ⇐⇒ a ≻i b. (2)

For instance, assume that A = {a, b, c, d, e}, l = 2, A1 = {a, c, e}, and A2 = {b, d}. Let us
consider the preference relation pi = adecb of a given voter i, meaning that the highest-

ranked candidate is a, candidate d is ranked second, and so forth until the lowest-ranked

4The framework in which an individual can belong to two or more classes (e.g., spoken languages,
citizenships, etc.) is out of the scope of this paper. See, for instance, Aziz (2019), Bei et al. (2022),
Bredereck et al. (2018), Do et al. (2021), and Lang and Skowron (2018), among others.
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candidate b. In this case, the preference relation pi induces the two following restricted

rankings over each class Aj for j ∈ [2]: p1i = aec and p2i = db.

For any integer k ∈ [m − 1], we call a committee of size k any k-element subset of

A and the set of all possible committees of size k for the set of candidates A is denoted

by 2Ak . Given a set of candidates, a set of voters, and a preference profile, we consider

throughout this paper a framework in which the goal is to select a committee of size k

taking into account both the excellence of candidates in terms of scores and the diversity

of the selected committee with regards to the classes of candidates.

Definition 2 We call a diversity constraint any quota vector q = (q1, . . . , ql) ∈ Nl speci-

fying the lowest number of candidates from each class that the selected committee should

contain and we denote by [l]∗q the set
{
j ∈ [l] : qj ̸= 0

}
of all types j for which the diversity

constraint requires at least one candidate from Aj.

For a given committeeW ∈ 2Ak and a type j ∈ [l], we denote byW j the set of candidates

from Aj belonging to W ; that is, W j = W ∩ Aj . We say that a committee W satisfies

the diversity constraint q if |W j | ≥ qj for all j ∈ [l]. Recalling that the committee size k

is fixed and any two classes are disjoint, the condition
∑l

j=1 qj ≤ k holds since the sum

of the lowest number of candidates required from all the possible classes cannot exceed

the target size of the committee. It is worth mentioning that there can be no committee

satisfying the diversity constraint q, which means that imposing the diversity constraint

makes the selection process unfeasible. This scenario happens when at least one class Aj

does not contain enough candidates to achieve the enforced quota qj for that class. In

this case, the aim will be to select the committee that best enables us to get close to the

diversity constraint. Thus, for any type j ∈ [l], we denote δ(Aj) = min{|Aj |, qj} as the

minimum between the lowest number qj of candidates that is required from the class Aj

and the total number of candidates available in Aj .

Definition 3 Given a diversity constraint q, we say that a committee W is a q-diverse

committee if |W j | ≥ δ(Aj) for all j ∈ [l], and we denote by 2Ak,q the set of all q-diverse

committees of size k.

Literally, 2Ak,q stands for the set of committees of size k that are closest to the diversity

constraint, and this set coincides with the set of size-k committees satisfying the diversity

constraint whenever such committees exist.

Example 1 Consider a set of candidates A = {a, b, c, d, e} partitioned according to gender

(for instance), with A1 = {a, b, c} being the set of all available men and A2 = {d, e} being

the set of all available women. Suppose that k = 3 and q = (1, 2) requiring exactly one

man and two women. In this case, the diversity constraint can be satisfied and the set

2Ak,q contains the committees {a, d, e}, {b, d, e}, and {c, d, e}. Assume now that k = 4 and

q = (1, 3) requiring exactly one man and three women. In this case, the diversity constraint

cannot be satisfied and the set 2Ak,q contains the three closest committees to the diversity

constraint, which are {a, b, d, e}, {a, c, d, e}, and {b, c, d, e}.
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Definition 4 A Diverse Committee Selection Rule (DCSR) is a mapping F that assigns

to any profile p, any integer k ∈ [m − 1], and any diversity constraint q, one (or more)

winning committee(s) of size k. The set of winning committees with respect to the triplet

(p, k, q) is denoted by F (p, k, q) and it is called the social outcome of the triplet (p, k, q)

when the DCSR is F .

3 Committee scoring rules and diversity constraints

Our main task in this section is to define a diverse form of committee scoring rules that

we tentatively see as suitable for selecting a diverse committee in our framework. We start

by recalling the definition of committee scoring rules given by Elkind et al. (2017).

3.1 Classical committee scoring rules

Given a committee W ∈ 2Ak , the rank r(pi,W ) of the committee W with regards to

the linear order pi of a given voter i is the increasing sequence (i1, . . . , ik) obtained by

ordering the set
{
r(pi, a) : a ∈ W

}
. For instance, assume that the set of candidates

is A = {a, b, c, d, e}, the preference of voter i is pi = bcade, and the committee size is

k = 3. Then, the rank of the committee W = {a, c, e} in voter’s i preference relation is

r(pi,W ) = (2, 3, 5). We denote by [m]k the set of all possible increasing sequences of k

elements from [m]. In other words, [m]k stands for the set of all possible ranks of a given

size-k committee in a given linear ranking. Given two committee ranks I = (i1, . . . , ik) and

J = (j1, . . . , jk), we say that I dominates J , which is denoted by I ⪰ J , if it ≤ jt for all

t ∈ [k]. In particular, I0 = (1, . . . , k) dominates any other rank, and J0 = (m−k+1, . . . ,m)

is dominated by any other rank.

Definition 5 A committee scoring function is a function fm,k : [m]k → R+ such that for

all I, J ∈ [m]k, I ⪰ J implies fm,k(I) ≥ fm,k(J). Given a committee scoring function

fm,k, the score of a committee W ∈ 2Ak with respect to the committee scoring function fm,k

and a preference profile p is defined by

Sfm,k
(p,W ) =

∑

i∈N
fm,k

(
r(pi,W )

)
. (3)

We can immediately deduce that the score of a committee W with respect to the

committee scoring function fm,k always satisfies

nfm,k(J0) ≤ Sfm,k
(p,W ) ≤ nfm,k(I0). (4)

Definition 6 A committee selection rule F is a committee scoring rule if there is a family

of scoring functions f = (fm,k)k≤m−1 such that for any size k ≤ m− 1 and any preference

profile p, the set of winning committees with respect to (p, k) is the set of all committees

7



of size k with the highest score; that is,

F (p, k) =
{
W ∈ 2Ak : Sfm,k

(p,W ) ≥ Sfm,k
(p,W ′) for all W ′ ∈ 2Ak

}
. (5)

As noted in the introductory section, the most studied committee scoring rules are

undoubtedly the (weakly) separable committee scoring rules that rate the candidates sep-

arately according to a single-winner scoring vector and selects the k candidates with the

highest scores.5 Let us recall that a scoring vector for single-winner elections is a vector

α = (α1, . . . , αm) of real-number scoring weights satisfying both α1 ≥ α2 ≥ · · · ≥ αm

and α1 > αm. In other words, each voter gives α1 points to her most favoured candidate,

α2 points to her second-ranked candidate, and so forth until αm points to her bottom-

ranked candidate. The (weakly) separable committee scoring rule associated to the family

of scoring vectors (αk)k≤m−1 selects, for each committee size k, the k candidates with

the highest number of total points since the total points collected determine a complete

ranking of the candidates with possible ties. If the scoring vector αk does not depend

on k; that is αk = αk′ = α for all k, k′ ≤ m − 1, then the rule is simply said to be

separable; otherwise, the accuracy weakly is needed. The vectors αP = (1, 0, 0, . . . , 0),

αB = (m − 1,m − 2, . . . , 2, 1, 0), and αAP = (1, 1, . . . , 1, 0) are the scoring vectors associ-

ated with the well-known separable k-Plurality rule (also called Single Non Transferable

Voting rule, SNTV), k-Borda rule, and k-Antiplurality rule respectively, whereas the vec-

tor αk,Bl = (1, . . . , 1︸ ︷︷ ︸
k times

, 0, . . . , 0︸ ︷︷ ︸
m−k times

) is the scoring vector used for the well-known weakly

separable Bloc rule.

Formally, the score gained by any candidate a ∈ A across a preference profile p ∈ Pn

when the scoring vector αk is considered is given by

Sαk(p, a) =

n∑

i=1

αk
r(pi,a)

. (6)

Definition 7 For a given profile p ∈ Pn, the (weakly) separable committee scoring rule

associated with the family of scoring vectors (αk)k≤m−1 outputs, for any committee size k,

the committee(s) W ∈ 2Ak that maximise(s) the score Sαk(p,W ) defined by

Sαk(p,W ) =
∑

a∈W
Sαk(p, a) =

∑

a∈W

n∑

i=1

αk
r(pi,a)

. (7)

Every (weakly) separable committee scoring rule defined through a family of scoring

vectors (αk)k≤m−1 is then a committee scoring rule associated with the family of scoring

5The subclass of separable committee scoring rules can be seen as the intersection between the com-
mittee scoring rules and the candidate-wise procedures already defined by Kilgour and Marshall (2012). A
procedure is described as a candidate-wise procedure if the score of a given committee is the sum of the
scores of all the candidates belonging to that committee, each of them considered as a 1-size committee.
Note that the candidate-wise procedures are analogous to the additive procedures studied in a more general
context in Kilgour (2010).
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functions (fm,k)k≤m−1 defined by

fm,k(i1, . . . , ik) =

k∑

t=1

αit . (8)

Note that the wide class of committee scoring rules contains other interesting rules

which are not (weakly) separable. We can think about a version of the Chamberlin-

Courant rule (Chamberlin and Courant, 1983) defined with the scoring function

fm,k(i1, . . . , ik) = m− i1. (9)

Under this rule we start by fixing a scoring vector. For instance, the version defined in

(9) is based on the Borda scoring vector. Then, each voter’s score for a given committee

with k candidates is defined to be the Borda score that she assigns to her most preferred

candidate in that committee; the goal is then to find a committee that maximizes the joint

scores collected from all voters.

3.2 Diverse committee scoring rules

As noted before, our proposal is to define a diverse form of committee scoring rules with

a view to selecting a committee that allows to combine both the excellence of candidates

in terms of scores and the diversity of its members. The main idea is to combine the score

of any committee defined in (3) with another score reflecting the degree of diversity.

Definition 8 Given a non-negative real number M and a family of committee scoring

functions f = (fm,k)k≤m−1, the diverse committee scoring rule associated to the couple

(M,f), is the DCSR that outputs for each triplet (p, k, q) ∈ Pn × [m − 1] × Nl, the set

F (p, k, q) of all committees W ∈ 2Ak that maximize the diverse score DSfm,k
(p, q,W ) de-

fined by

DSfm,k
(p, q,W ) = Sfm,k

(p,W ) +

l∑

j=1

δj(W )M, (10)

where δj(W ) = min
{∣∣W j

∣∣, qj
}

for all j ∈ [l].

The first component of DSfm,k
(p, q,W ) has been defined in (3) and will be called through-

out the paper the score of excellence. In other words, it represents the score that

W would have obtained without the diversity requirement. The second component of

DSfm,k
(p, q,W ) is the additional score that has to do with the degree of diversity of the

considered committee. It will be called the total diversity reward that is given to the com-

mittee W based on its ability to meet the diversity constraint q.6 The basic idea behind

6Izsak et al. (2018) had a quite similar idea (but for a different model) to rate the committees based
on (weakly) separable committee scoring rules and combined with synergy functions that describe how the
candidates from different classes react each other into a committee. The goal of that model is to select a
subset of candidates with a certain degree of affinities.
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the second component of DSfm,k
(p, q,W ) is the following: going through all possible types

j ∈ [l], the committee W receives a diversity reward of M as many times as δj(W ). Note

that more details on the choice of the reward M will be given later in the article. The vari-

able δj(W ) can be seen as the number of candidates from Aj that allow W to be considered

as satisfactory regarding the requirement of diversity for type j. Indeed, if |W j | > qj for a

given type j ∈ [l], since there are more candidates of type j than those required from that

type, the committee W can be seen as satisfactory regarding the requirement of diversity

of type j, thanks to the required qj candidates of W
j . Now, if |W j | ≤ qj , the committee W

can also claim to have a certain degree of satisfaction concerning the requirement of diver-

sity of type j, thanks to the |W j | candidates of W j . Roughly, for any committee W ∈ 2Ak ,

there are δj(W ) candidates that allow W to claim a certain satisfaction with regards to

the diversity requirement for type j. The total diversity reward that will be given to W

for type j is then proportional to δj(W ). The second component of DSfm,k
(p, q,W ) is the

sum of the diversity rewards collected over all types. Note finally that any two committees

having the same diversity structure earn the same total diversity reward.7

A natural question is how the choice of the diversity rewardM impacts the composition

of the winning committee(s) derived from (10). Of course, if we consider M = 0 (or very

small values of M), we simply recover the classical committee scoring rules. The first result

of the paper at hand shows that, once the diversity reward M has reached a certain value

that depends on the scoring function in consideration, the election process can be reduced

to the selection of the most excellent committee(s) from 2Ak,q; that is, the committee(s)

which meet(s) or which are closest to the diversity constraint and having the highest

excellence score.

Theorem 1 Given a family f = (fm,k)1≤k≤m−1 of scoring functions, there exists a di-

versity reward M(f) such that for any diverse committee scoring rule F defined by f and

a diversity reward M with M > M(f), it holds that for any W ∈ 2Ak and any triplet

(p, k, q) ∈ Pn× [m−1]×Nl, W ∈ F (p, k, q) if and only if W is a q-diverse committee with

the highest (excellence) score.

Proof. Let F be a diverse committee scoring rule associated to the couple (M,f) such

that the collection f of scoring functions and the diversity reward M satisfy M > M(f)

where

M(f) = n
(
fm,k(I0)− fm,k(J0)

)
. (11)

Let p be a profile, k ∈ [m − 1] be a given committee size, q be a diversity constraint and

W ∈ 2Ak . We have to prove that W ∈ F (p, k, q) if and only if W ∈ 2Ak,q and Sfm,k
(p,W ) ≥

Sfm,k
(p,W ′) for all W ′ ∈ 2Ak,q.

First suppose that W ∈ F (p, k, q). To prove that W ∈ 2Ak,q, suppose on the contrary that

W /∈ 2Ak,q. Then, for some j0 ∈ [l], either |Aj0 | ≥ qj0 and |W j0 | < qj0 , or |Aj0 | < qj0 and

7Two committees have the same diversity structure if they both contain the same number of candidates
from each class.
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Aj0 ̸⊂ W . In both cases, since
∑l

j=1 qj ≤ k, there exists j1 ∈ [l] such that |W j1 | > qj1 . Let

a ∈ W j1 and b ∈ Aj0 \W j0 (such a candidate b exists by assumption). We set T = W \{a}
and W ′ = T ∪ {b}. It is clear that δj1(W ′) = δj1(W ) = qj1 and |W j0 | < |W ′j0 | ≤ qj0 .

Thus, the diverse score of W ′ is equal to

DSfm,k
(p, q,W ′) = Sfm,k

(
p, T ∪ {b}

)
+

∑

j ̸=j0

(
δj(W )M

)
+ |W ′j0 |M.

Therefore, the difference of diverse scores between W ′ and W is equal to

DSfm,k
(p, q,W ′)−DSfm,k

(p, q,W ) =
(
|W ′j0 | − |W j0 |

)
M −

(
Sfm,k

(p,W )− Sfm,k
(p,W ′)

)
.

Since |W ′j0 | = |W j0 |+ 1, it follows that

DSfm,k
(p, q,W ′)−DSfm,k

(p, q,W ) = M −
(
Sfm,k

(p,W )− Sfm,k
(p,W ′)

)
. (12)

By assumption, M satisfies (11). This implies that

DSfm,k
(p, q,W ′)−DSfm,k

(p, q,W ) >
(
nfm,k(I0)−Sfm,k

(p,W )
)
+
(
Sfm,k

(p,W ′)−nfm,k(J0)
)
≥ 0.

A contradiction holds since W ∈ F (p, k, q). Hence, for all j ∈ [l], either |Aj | ≥ qj and

|W j | ≥ qj , or |Aj | < qj and Aj ⊂ W ; that is, W ∈ 2Ak,q.

Now consider any other committee W ′ ∈ 2Ak,q. Then, δj(W ) = δj(W ′) for all j ∈ [l] and,

thus, the two committeesW andW ′ receive the same total diversity reward. Consequently,

DSfm,k
(p, q,W )−DSfm,k

(p, q,W ′) = Sfm,k
(p,W )− Sfm,k

(p,W ′) ≥ 0,

since W ∈ F (p, k, q). Thus, W is a q-diverse committee with the highest excellence score.

Conversely, assume that W is a q-diverse committee with the highest excellence score.

Since W has the same total diversity reward with any other q-diverse committee, it holds

that DSfm,k
(p,W ) ≥ DSfm,k

(p,W ′) for all W ′ ∈ 2Ak,q. For any non q-diverse committee

W ′ ∈ 2Ak , W receives at least on more diversity reward M than W ′. Therefore,

DSfm,k
(p, q,W )−DSfm,k

(p, q,W ′) ≥ Sfm,k
(p,W )− Sfm,k

(p,W ′) +M

> [nfm,k(I0)− Sfm,k
(p,W ′)] + [Sfm,k

(p,W )− nfm,k(J0)] ≥ 0.

This proves that W maximizes the diverse score among committees in 2Ak and, thus,

W ∈ F (p, k, q).

Before we continue, it is worth mentioning that (11) provides a value of M(f) such

that any greater diversity reward guarantees the selection of the q-diverse committee(s)

with the highest excellence score. This threshold does not depend on the preferences of

voters. However, smaller values of the threshold can be obtained even as a function of

the profile in consideration. In this case, we can consider a value M(f, p) such that the
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quantity in (12) is positive; that is,

M(f, p) = max
T∈ 2Ak−1 ; a,b /∈T

(
Sfm,k

(
p, T ∪ {a}

)
− Sfm,k

(
p, T ∪ {b}

))
. (13)

However, since the total diversity reward should only depend on the composition of any

committee and not on the preferences of voters, we simply consider a constant reward

which can be declared right at the beginning of the selection process independently of the

preferences of voters. Moreover, since our main concern is to select a committee that is

closest to the diversity constraint, Theorem 1 suggests to consider from now the threshold

M(f) provided in (11).

Definition 9 A DCSR F is a diverse committee scoring rule if there exists a family of

scoring functions f = (fm,k)k≤m−1 and a diversity reward M > M(f) = n
(
fm,k(I0) −

fm,k(J0)
)
such that, for any triplet (p, k, q) ∈ Pn × [m − 1] × Nl, F (p, k, q) is the set of

committee(s) that maximize(s) the diverse score with respect to the couple (M,f).

It is worth mentioning that the diverse score allows us to obtain a complete ranking

of all the committees, and once the diversity reward M is sufficiently large, any best

committee in the derived complete ranking is necessarily a q-diverse committee with the

highest excellence score as shown in Theorem (1). However, using the diverse score has

the practical advantage of applying the voting process in one step, rather than in two steps

by first determining all the q-diverse committees and then choosing among them based on

their excellence scores.

In the sequel, when the committee size k is fixed for a given number of candidates

m, we will simply denote by f the committee scoring function fm,k and by α the scoring

vector αk to ease notations.

4 Desirable axioms for selecting a diverse committee

In this section, we define some properties that we consider to be suitable in the diverse

committee selection framework. Some of the properties that we present in this paper are

adjustments of well-known properties defined in the literature for the general multiwinner

setting, whereas others are proper to our model.

4.1 Optimal diversity and Pareto envy-freeness

We start by providing the properties that are proper to the diverse committee selection

setting and which cannot make sense in the general setting. The first properties that we

focus on in this category aim to guarantee the main goal previously emphasized, namely

the combination of both the excellence in terms of scores and diversity. They are obtained

by reshaping two axioms, called type optimality and justified envy-freeness that have been

proposed by Aziz (2019) in order to find a committee that is as close as possible to satisfying

the diversity constraint while also selecting the best candidates.

12



Roughly speaking, a committee is said to be type optimal if it is as close as possible to

the diversity constraint. More exactly, a committee W is type optimal if by replacing any

candidate in W by any other candidate outside W we cannot obtain a committee that is

closer to the constraint than W . Due to the partition of the set of candidates into disjoint

classes in our model, we propose the following variant of type optimality, which we call

optimal diversity.

Definition 10 A DCSR F satisfies optimal diversity if, for any triplet (p, k, q) ∈ Pn ×
[m−1]×Nl, it holds that |W j | ≥ qj for all W ∈ F (p, k, q) and all j ∈ [l] whenever |Aj | ≥ qj

and Aj ⊂ W otherwise.

In other words, a DCSR satisfies optimal diversity if it always selects a committee

that respects the quota for every class with enough candidates to achieve the quota, and

contains all the candidates from any class with a number of candidates less than the

enforced quota bound.

Proposition 1 Every diverse committee scoring rule satisfies optimal diversity.

Proof. It follows from Theorem 1 since F (p, k, q) ⊆ 2Ak,q and any q-diverse committee

satisfies the conditions required by optimal diversity.

We can immediately deduce the following corollary.

Corollary 1 Let F be a diverse committee scoring rule. For any triplet (p, k, q), if there

exists at least one size-k committee satisfying the diversity constraint q, then every com-

mittee in F (p, k, q) satisfies the diversity constraint.

Proof. It follows immediately from Proposition 1 since 2Ak,q coincides in this case with the

set of all committees satisfying the diversity constraint.

Note that optimal diversity is desirable to ensure a certain degree of diversity in the

selected committee, but it does not take into account the excellence of candidates. By

adapting a common property in matching theory,8 Aziz (2019) defined justified envy-

freeness for this purpose, which addresses the following idea: If a candidate a is ranked

higher than a candidate b in the arbitrary (social) weak order over the set of candidates,

the only reason one could leave a and choose b is precisely the proximity to the constraint

q. We reshape this axiom to make it suitable for our framework and we call it Pareto

envy-freeness.

Definition 11 A DCSR F satisfies Pareto envy-freeness if for all triplets (p, k, q) ∈ Pn×
[m − 1] × Nl, and for any two candidates a and b such that b ≻i a for all i ∈ N , it

holds that if a ∈ W for some W ∈ F (p, k, q) and |W j(a)| > qj(a), then b ∈ W ′ for some

W ′ ∈ F (p, k, q).

8See Ehlers et al. (2014), Goto et al. (2017), and Kamada and Kojima (2015), among others.
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Intuitively, Pareto envy-freeness requires that when a candidate a belongs to a winning

committee wherein the class of a is already overrepresented, it holds that if all individuals

(and thus the society) prefer a candidate b to candidate a then b is also selected in at least

one winning committee. Note that in accordance with the spirit of justified envy-freeness,

our goal is to consider a social outcome where candidate b is ranked higher than candidate

a. In order to ensure that b will be collectively better ranked than a for any reasonable

rule that we use to aggregate individual preferences, the only minimal requirement is to

consider that all the voters prefer b to a.

Proposition 2 Every diverse committee scoring rule satisfies Pareto envy-freeness.

Proof. Let F be a diverse committee scoring rule based on a committee scoring function

f . Let p be a preference profile, k ∈ [m − 1] be the committee size, and q be a diversity

constraint. Let a, b ∈ A such that b ≻i a for every i ∈ N . Assume that a ∈ W for some

W ∈ F (p, k, q) with |W j(a)| > qj(a). By optimal diversity, either |W j(b)| ≥ qj(b) or Aj(b) ⊂
W hold. In the latter case, it holds that b ∈ W and W ′ = W ∈ F (p, k, q). In the former

case, it can also be the case that b ∈ W ∈ F (p, k, q); otherwise, let W ′ =
(
W \ {a}

)
∪{b}.

It holds that δj(b)(W ′) = δj(b)(W ) = qj(b) and δj(a)(W ′) = δj(a)(W ) = qj(a). Thus, W

and W ′ both receive the same total diversity reward and the difference of diverse scores

between W ′ and W is simply

DSf (p, q,W
′)−DSf (p, q,W ) = Sf (p,W

′)− Sf (p,W )

=
∑

i∈N
f
(
r(pi,W

′)
)
−

∑

i∈N
f
(
r(pi,W )

)

≥ 0,

since r(pi,W
′) ⪰ r(pi,W ) for all i ∈ N and then f

(
r(pi,W

′)
)

≥ f
(
r(pi,W )

)
for all

i ∈ N . Hence, W ′ ∈ F (p, k, q) and b ∈ W ′.

4.2 Constraint fairness and type independence

Let us now add some further notations. For any diversity constraint q and for any j ∈ [l],

we denote by (q−j , q
′
j) the diversity constraint obtained from q by replacing qj by q′j . For

any profile p, we simply write F (p, k) as the outcome of the committee selection rule F

with the null diversity constraint
(
i.e., qj = 0 for all j ∈ [l]

)
, meaning that there is no

diversity constraint in the committee selection process.

Another desirable property which is also proper to our setting is called constraint

fairness.

Definition 12 A DCSR F satisfies constraint fairness if, for any two candidates a, b ∈ A

such that j(a) = j(b), if a ∈ W for some W ∈ F (p, k) and b /∈ W for all W ∈ F (p, k),

then for any diversity constraint q and for any W ′ ∈ F (p, k, q), b ∈ W ′ implies a ∈ W ′.
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Roughly speaking, a DCSR F satisfies the constraint fairness property if introducing

the diversity constraint does not foster a candidate having a given type while penalizing

another candidate from the same type.

Proposition 3 Every diverse (weakly) separable committee scoring rule satisfies con-

straint fairness.

Proof. Let F be a diverse (weakly) separable committee scoring rule defined via a scoring

vector α, p be a preference profile, and k ∈ [m − 1] be the committee size. Let a, b ∈ A

be two candidates such that j(a) = j(b), a ∈ W for some W ∈ F (p, k), and b /∈ W for all

W ∈ F (p, k). Then, it holds that Sα(p, a) > Sα(p, b) by the definition of F (p, k). Let q be

a diversity constraint. Assume by contradiction that there is a committee W ′ ∈ F (p, k, q)

such that b ∈ W ′ and a /∈ W ′. Consider the committee W ′′ obtained from W ′ by replacing

b by a. Then, W ′′ =
(
W ′ \ {b}

)
∪ {a} and it follows that W ′ and W ′′ have the same

diversity structure since j(a) = j(b). Thus, |W ′′j | = |W ′j | ≥ δ(Aj) (by Theorem 1) for all

j ∈ [l] and W ′,W ′′ ∈ 2Ak,q. But W
′′ and W ′ satisfy

DSα(p, q,W
′′)−DSα(p, q,W

′) =
∑

x∈W ′′
Sα(p, x)−

∑

x∈W ′
Sα(p, x) = Sα(p, a)− Sα(p, b) > 0.

This is a contradiction since W ′ ∈ F (p, k, q) and one should have DSα(p, q,W
′′) −

DSα(p, q,W
′) ≤ 0. Hence, for any diversity constraint q and for any W ′ ∈ F (p, k, q),

b ∈ W ′ implies a ∈ W ′.

The following example shows that constraint fairness is not satisfied by all diverse

committee scoring rules.

Example 2 Consider a set of candidates A = {a1, a2, a3, a4, b1, b2} partitioned according

to gender (for instance) such that A1 = {a,1 , a2, a3, a4} is the class of men and A2 =

{b1, b2} is the class of women. Assume that k = 2 and q = (0, 1). Consider the following

preference profile

p =




a1 a1 a2 a2

a3 a3 a3 a3

a4 a2 a4 a1

a2 a4 a1 a4

b1 b1 b1 b1

b2 b2 b2 b2




Under the version of the Chamberlin-Courant rule that has been presented in (9), the only

winning committee without any diversity constraint is {a1, a2} with a total score of 20.

Now, it can be checked that enforcing the diversity constraint results in the winning com-

mittees {a3, b1} and {a3, b2} under the diverse Chamberlin-Courant rule with a maximal

diverse score of 16 +M , where the diversity reward satisfies M > 16. Thus, the property

of constraint fairness is not satisfied since a1 is selected whereas a3 is not if we do not con-
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sider the diversity constraint, but enforcing the diversity constraint results in the selection

of a3 and not a1.

The next property that we consider as suitable for the diverse committee selection

setting requires the attribute classes to be independent. Intuitively, the attribute classes

are independent if the quality of the members from a given class in any preference profile

does not affect (upward or downward) that of candidates from any other class. In other

words, if some candidates of a given type end up in a winning committee it is because those

candidates deserve it, not because they are taking advantage of the potential of candidates

from other types. We call this property type independence.

Definition 13 A DCSR F satisfies type independence if for every triplet (p, k, q) ∈ Pn ×
[m−1]×Nl, for every j ∈ [l] and for any two committees W and W ′ such that W j = W ′j,

if W ∈ F (p, k, q) and W ′ /∈ F (p, k, q), then for every subset Bj ⊆ Aj with |Bj | = |W ′j | it
holds that W ′′ = (W ′ \W ′j) ∪Bj /∈ F (p, k, q).

Proposition 4 Every diverse (weakly) separable committee scoring rule satisfies type in-

dependence.

Proof. Let p be a preference profile, k be the committee size, and q be a diversity

constraint. Let F be a diverse (weakly) separable committee scoring rule associated with

the scoring vector α. Let j ∈ [l] be a type and W and W ′ be two size-k committees

such that W ∈ F (p, k, q), W ′ /∈ F (p, k, q), and W j = W ′j . Consider Bj ⊆ Aj with

|Bj | = |W j | = |W ′j | and let W ′′ = (W ′ \ W ′j) ∪ Bj . Note that W ′ and W ′′ have the

same diversity structure. There are two possible cases. First, suppose that W ′ /∈ 2Ak,q.

It follows that W ′′ /∈ 2Ak,q. Therefore, W ′′ /∈ F (p, k, q) by Theorem 1. Now, suppose

that W ′ ∈ 2Ak,q. In this case, W and W ′ have the same total diversity reward and, thus,

Sα(p,W
′) < Sα(p,W ). This implies that

Sα(p,W
′) =

∑

a∈W ′
Sα(p, a) =

∑

a∈W ′j

Sα(p, a) +
∑

a∈W ′\W ′j

Sα(p, a)

< Sα(p,W )

=
∑

a∈W j

Sα(p, a) +
∑

a∈W\W j

Sα(p, a).

Since W j = W ′j , the following holds

∑

a∈W ′\W ′j

Sα(p, a) <
∑

a∈W\W j

Sα(p, a).
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Then, the committee W ′′ = (W ′ \W ′j) ∪Bj satisfies

Sα

(
p,W ′′

)
=

∑

a∈Bj

Sα(p, a) +
∑

a∈W ′\W ′j

Sα(p, a)

<
∑

a∈Bj

Sα(p, a) +
∑

a∈W\W j

Sα(p, a)

= Sα

(
p, (W \W j) ∪Bj

)

≤ Sα(p,W ).

Hence, Sα

(
p,W ′′

)
< Sα(p,W ) and W ′′ /∈ F (p, k, q).

The following example shows that type independence is not satisfied by every diverse

committee scoring rule. We take the diverse Chamberlin-Courant rule as an example.

Example 3 Consider a set of candidates A = {a1, a2, a3, b1, b2} partitioned according to

gender (for instance) such that A1 = {a1, a2, a3} is the class of men and A2 = {b1, b2} is

the class of women. Assume that k = 2 and q = (1, 1). Consider the following preference

profile with four voters

p =




b1 b1 b2 b2

a1 a2 a2 a3

a2 a1 a1 a2

b2 b2 b1 b1

a3 a3 a3 a1




Under the diverse Chamberlin-Courant rule, it can be checked that the committee {a1, b2}
is a winning committee with the maximal diverse score of 13+2M (with M > 12) whereas

the committee {a1, b1} is a losing committee with the diverse score of 11+ 2M . Moreover,

if we replace a1 by a2 into the latter committee, we obtain {a2, b1} which is also a winning

committee with the same maximal diverse score of 13 + 2M . This proves that the diverse

Chamberlin-Courant rule fails to satisfy type independence.

4.3 Further properties

We now provide some properties that are adjustments of some well-known properties of

multiwinner voting rules that have been defined for the general setting. Clearly, not all

axioms known in the literature of committee selection can be adapted to the diversity

framework. We will therefore focus on those axioms that make sense in our framework

and that seem to us as important to be satisfied. This point will be discussed more

thoroughly at the end of this section.

The weak unanimity property has been defined by Elkind et al. (2017) as follows: For

every preference profile p and every integer k ∈ [m − 1], if there is a committee W ∈ 2Ak
such that each voter ranks the k candidates from W on top, then W ∈ F (p, k). From the

above definition, we give here a variant of weak unanimity for diverse committee elections

that we call weak restricted unanimity.
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Definition 14 A DCSR F satisfies weak restricted unanimity if for all triplets (p, k, q) ∈
Pn × [m− 1]×Nl and every j ∈ [l]∗q, if there is a subset Xj ⊆ Aj of size xj ≤ qj such that

each voter ranks all the xj candidates from Xj before every other candidate from Aj \Xj,

it holds that Xj ⊆ W for some W ∈ F (p, k, q).

Intuitively, the condition of weak restricted unanimity requires that when a group of

candidates of the same type, and of cardinality less than or equal to the required diversity

quota for that type, is ranked by all the voters before every other candidate of that type,

then this group of candidates must necessarily belong to a winning committee.

Proposition 5 Every diverse committee scoring rule satisfies weak restricted unanimity.

Proof. Let F be a diverse committee scoring rule associated to a family of scoring func-

tions f and a diversity reward M , p be a preference profile, k ∈ [m − 1] be the com-

mittee size, and q be a diversity constraint. Let j ∈ [l]∗q and Xj ⊆ Aj be a subset of

Aj of size xj ≤ qj such that each voter ranks all the candidates from Xj before every

candidate from Aj \ Xj . Assume by contradiction that there is no winning committee

W such that Xj ⊆ W , which means that the diverse score DSf of any committee con-

taining Xj is (strictly) less than the diverse score DSf of any winning committee. Let

W ∈ F (p, k, q). By optimal diversity, it follows that |W j | ≥ xj and then there are some

candidates a1, . . . , as ∈ Aj \ Xj with 1 ≤ s ≤ xj such that at ∈ W for all t ≤ s, and

there are some candidates b1, . . . , bs ∈ Xj such that bt /∈ W for all t ≤ s. Let us set

W ′ =
(
W \ {a1, . . . , as}

)
∪ {b1, . . . , bs}. Since all the candidates bt are ranked higher

than all the candidates at, then it follows that r(pi,W
′) ⪰ r(pi,W ) for all i ∈ N and

f
(
r(pi,W

′)
)

≥ f
(
r(pi,W )

)
for all i ∈ N . This implies that Sf (p,W

′) ≥ Sf (p,W ).

Moreover, since δj(W ′) = δj(W ) for all j ∈ [l], W and W ′ receive the same total diversity

reward. The difference of diverse scores between W ′ and W is then equal to

DSf (p, q,W
′)−DSf (p, q,W ) = Sf (p,W

′)− Sf (p,W ) ≥ 0.

This inequality means that W ′ has a diverse score greater than or equal to that of W ,

which is a contradiction with the assumption. Hence Xj is contained in at least one

winning committee.

Kamwa (2017) defined the Pareto criterion in order to study the behavior of stable

multiwinner voting rules.9 In the context of committee elections, the Pareto criterion

requires that if there are two candidates a and b such that a is always ranked ahead of

b, then if there is a winning committee that includes b, there is also one that includes a.

Formally, the Pareto criterion is satisfied if, for every preference profile p, every committee

size k ∈ [m − 1], and any two candidates a and b such that a ≻i b for all i ∈ N , it holds

9A committee selection rule is stable if it always picks a weak Condorcet committee when such a com-
mittee exists. A weak Condorcet committee is a committee such that no member of that committee is
defeated in pairwise majority comparisons by a candidate that does not belong to it (see, for instance,
Bubboloni et al., 2020; Diss and Doghmi, 2016; Diss et al., 2020; Diss and Mahajne, 2020; Gehrlein, 1985).
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that, b ∈ W for some W ∈ F (p, k) implies a ∈ W ′ for some W ′ ∈ F (p, k). We reshape this

property in the diverse committee selection framework by naturally making restrictions

on different classes of the set of candidates A. We call this property the restricted Pareto

criterion.

Definition 15 A DCSR F satisfies the restricted Pareto criterion if for each preference

profile p, each k ∈ [m−1], any j ∈ [l], and any two candidates a and b such that j(a) = j(b),

it holds that if a ≻i b for all i ∈ N , then for any diversity constraint q, b ∈ W for some

W ∈ F (p, k, q) implies that a ∈ W ′ for some W ′ ∈ F (p, k, q).

Intuitively, this axiom requires that when all voters unanimously rank a candidate a

above another candidate b of the same type, it holds that if candidate b belongs to a given

winning committee, then this must also be the case for candidate a.

Proposition 6 Every diverse committee scoring rule satisfies restricted Pareto criterion.

Proof. Let p be a preference profile. Consider any two candidates a and b such that

j(a) = j(b). Assume that a ≻i b for all i ∈ N . Let W ∈ F (p, k, q) be a winning

committee such that b ∈ W . Either a ∈ W or a /∈ W . In the latter case, the committee

W ′ = (W \{b})∪{a} has the same diversity structure as W and, then, the two committees

receive the same total diversity reward. Moreover, we have r(pi,W
′) ⪰ r(pi,W ) for all

i ∈ N since a is ranked higher than b by all the voters. This implies that Sf (p,W
′) ≥

Sf (p,W ). Therefore, DSf (p, q,W
′) − DSf (p, q,W ) = Sf (p,W

′) − Sf (p,W ) ≥ 0. Thus,

W ′ is a winning committee that contains a.

Following Elkind et al. (2017), a committee selection rule F satisfies committee mono-

tonicity if, for every preference profile p, the following conditions hold: (1) For each

k ∈ [m − 1], if W ∈ F (p, k), then there exists a committee W ′ ∈ F (p, k + 1) such that

W ⊆ W ′; (2) for each k ∈ [m− 1], if W ∈ F (p, k+1), then there exists W ′ ∈ F (p, k) such

that W ′ ⊆ W . Note that the committee monotonicity property has been widely discussed

by many other authors in the context of multiwinner elections under different names (see,

for instance, Barberà and Coelho, 2008; Kilgour and Marshall, 2012; Ratliff, 2003; Staring,

1986). A variant of this property has also been studied by Kamwa and Merlin (2015). In

our setup, we propose a property that is similar to committee monotonicity which we call

constraint monotonicity. Our proposal does not depend on the committee size but on the

diversity constraint.

Definition 16 A DCSR F satisfies constraint monotonicity if for every preference profile

p, each k ∈ [m − 1], and any diversity constraint q such that
∑l

j=1 qj < k, it holds that:

(1) For every j ∈ [l], if W ∈ F (p, k, q), then there exists W ′ ∈ F
(
p, k, (q−j , qj + 1)

)
such

that W j ⊆ W ′j; (2) for every j ∈ [l], if W ′ ∈ F
(
p, k, (q−j , qj + 1)

)
, then there exists

W ∈ F (p, k, q) such that W j ⊆ W ′j.
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Basically, constraint monotonicity stipulates that when the required diversity quota

increases for a given type none of the already selected candidates of that type should be

dropped. In addition, lowering the diversity quota for a given type must not lead to the

selection of completely new candidates of the same type. Note that what is modified in

the definition of committee monotonicity is the committee size k, but in that of constraint

monotonicity, we are concerned with the diversity quota qj of type j ∈ [l] while the

committee size remains fixed.

Note that Elkind et al. (2017) used committee monotonicity to characterize a specific

class of committee selection rules called the best-k rules. Before giving the definition of

best-k rules, let us remind the reader that a social preference function g is a function

assigning to each preference profile p, the set g(p) of (tied) linear orders over the set of

candidates A. According to a best-k rule, we sort the candidates according to a linear order

provided by a social preference function and pick the top k ones. The formal definition is

given as follows:

Definition 17 A committee selection rule is a best-k rule if there exists a social preference

function g such that for any preference profile p and each k ∈ [m − 1], it holds that

W ∈ F (p, k) if and only if there is a linear order ≻ ∈ g(p) that ranks the candidates in W

in the top positions; that is, a ≻ b for all a ∈ W and b ∈ A \W .

We can see that the class of best-k rules is incompatible with the spirit of electing a

diverse committee since selecting the top-k candidates of the ranking generated by the

social preference function might fail to guarantee the diversity requirement. We provide

below a suitable class of diverse committee selection rules equivalent to the class of best-k

rules, which depend on the attribute classes. We call them the best-top diverse rules.

Definition 18 A DCSR F is a best-top diverse rule if for each k ∈ [m − 1], there exists

a social preference function gk such that for any preference profile p and any diversity

constraint q, it holds that W ∈ F (p, k, q) if and only if there is a linear order ≻ ∈ gk(p)

such that for every j ∈ [l], ≻j ranks the candidates in W j on the top positions; that is,

a ≻j b for all a ∈ W j and b ∈ Aj \W j.

In other words, we here sort all the candidates of the same type according to their

positions in the social ranking and pick the top ones. Recall that ≻j is the restricted

linear ranking induced by the linear order ≻ on the class Aj .

Theorem 2 A DCSR is a best-top diverse rule if and only if it is constraint monotonic.

Proof. Let F be a best-top diverse committee selection rule, p be a preference profile,

k ∈ [m−1] be the committee size, and q be a diversity constraint such that
∑l

j=1 qj < k.10

(1) Let W ∈ F (p, k, q). Then, there exists a linear order ≻ ∈ gk(p) such that for each

j ∈ [l], W j consists of the top candidates of ≻j . Let j ∈ [l].

10The sum of the diversity quotas of all types should be strictly smaller than k in order to be able to
increase a quota of type j by 1 following the definition of constraint monotonicity.
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� If |W j | ≥ qj + 1, then W is also a winning committee for the diversity constraint

q′ = (q−j , qj + 1) and the result holds.

� If |W j | ≤ qj , since
∑l

t=1 qt < k, then there exists j0 ∈ [l] such that |W j0 | > qj0 . Let

a ∈ W j0 such that x ≻j0 a for all x ∈ W j0 \ {a}, and b ∈ Aj \W j such that b ≻j y

for all y ∈ Aj \W j . In other words, a is the worst-ranked candidate from W j0 with

respect to ≻j0 and b is the best-ranked candidate from Aj \W j with respect to ≻j .

By letting W ′ =
(
W \ {a}

)
∪ {b}, it follows that W ′ ∈ F

(
p, k, (q−j , qj + 1)

)
and

W j ⊂ W ′j .

(2) Let j ∈ [l] and W ′ ∈ F (p, k, q′) with q′ = (q−j , qj + 1). Then, there is a linear order ≻
∈ gk(p) on A such that the candidates from W ′j are in the top positions of ≻j . Two cases

are possible:

� Case 1: If |W ′j | > qj +1, then W ′ is still winning for the diversity constraint q and

the result holds.

� Case 2: If |W ′j | ≤ qj + 1, W ′ can still be a winning committee for the diversity

constraint q and the result holds directly. Otherwise, let a ∈ W ′j such that x ≻j a for

all x ∈ W ′j\{a}. Then there is a committeeW ∈ F (p, k, q) such thatW j = W ′j\{a},
and then W j ⊂ W ′j .

Conversely, assume that F satisfies constraint monotonicity. We have to show that F is a

best-top diverse rule. Let k ∈ [m − 1] be the given committee size and p be a preference

profile. Assume that the set of candidates is A = {a1, . . . , am}, and for any class Aj we

can write Aj = {aj1, . . . , ajmj}. Let gk(p) be the set of all linear orders ≻ on A such that

for every j ∈ [l], if the restriction ≻j is ajπ(1) ≻j · · · ≻j ajπ(mj)
(where π is the permutation

which gives the order of the candidates of Aj in the linear order ≻), then for any q−j

and for all s ≥ 1, W j
s = {ajπ(1), . . . , a

j
π(s)} ⊂ W j for some W ∈ F (p, k, (q−j , s)). Such a

linear order always exists from the two conditions of constraint monotonicity, and it holds

that F is a best-top diverse rule with the social preference function that assigns to each

preference profile p the set of linear orders gk(p) for each k ∈ [m− 1].

The following proposition states that the set of best-top diverse rules includes the

subclass of diverse (weakly) separable committee scoring rules.

Proposition 7 Every diverse (weakly) separable committee scoring rule is a best-top di-

verse rule.

Proof. Let F be a diverse (weakly) separable committee scoring rule with respect to the

family of scoring vectors α = (αk)k≤m−1. Given a committee size k, let gk be the social

preference function that associates each preference profile p with the set gk(p) of linear

orders on A such that for all ≻ ∈ gk(p) and any two candidates a and b, a ≻ b implies

Sα(p, a) ≥ Sα(p, b). Let j ∈ [l] and a, b ∈ Aj such that a ≻j b. Assume that b ∈ W for some
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W ∈ F (p, k, q). Then, either a ∈ W or a /∈ W . In the latter case, let W ′ =
(
W \{b}

)
∪{a}.

It holds that W and W ′ earn the same total diversity reward since a and b belong to the

same class, and then DSα(p,W
′) −DSα(p,W ) = Sα(p, a) − Sα(p, b) ≥ 0. So, W ′ is also

a winning committee that contains a. Thus, F is a best-top diverse rule associated with

the social preference function gk for each k ∈ [m− 1].

We deduce the following corollary from Theorem 2 and Proposition 7.

Corollary 2 Every diverse (weakly) separable committee scoring rule is constraint mono-

tonic.

We provide below a simple example to show that not all diverse committee scoring

rules are best-top rules.

Example 4 Consider a set of candidates A = {a, b, c, d} partitioned into two classes A1

and A2 such that A1 = {a, b, c} and A2 = {d}. Assume that k = 2 and q = (1, 0). Consider

the following preference profile with five voters

p =




a d d d d

b b c c b

c c b b c

d a a a a




Under the diverse Chamberlin-Courant rule, it can be checked that the committee {a, d}
is the only winning committee with the maximal diverse score of 15 +M (with M > 10).

However, it can be checked that the only winning committee for the diversity constraint

q′ = (2, 0) is the committee {b, c} with the maximal diverse score of 10 + 2M . Thus,

candidate a is selected into the winning committee for the quota q1 = 1 while increasing

the quota q1 to 2 leads to the selection of b and c and not a. This proves that the diverse

Chamberlin-Courant rule fails to satisfy constraint monotonicity and then it is not a best-

top diverse rule.

As argued by Elkind et al. (2017), separable committee scoring rules belong to the

class of best-k rules, which is not the case for weakly separable committee scoring rules.

This is due to the fact that the social ranking outputted by a weakly separable scoring

rule depends on the committee size and, then, the transition from k to k+1 might change

the social ranking. In other words, the conditions of committee monotonicity would be

failed. However, this issue is released for the best-top diverse rules since in the definition

of constraint monotonicity, the quota of a given class changes while the committee size

does not. This allows diverse weakly separable committee scoring rules to also be best-top

diverse rules.

Let us now move to our next property. Note that Elkind et al. (2017) and Faliszewski

et al. (2019) characterized the (weakly) separable committee scoring rules as the only

committee scoring rules that satisfy the non-crossing monotonicity property. Roughly
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speaking, a committee selection rule satisfies the non-crossing monotonicity property if,

by shifting a candidate a from a winning committee one position forward in one individual

preference, that committee stays winning if the prior candidate ranked immediately before

a in that preference does not belong to that committee. For our framework, we provide

below a variant of the non-crossing monotonicity property that we call type monotonicity.

Definition 19 A DCSR F satisfies type monotonicity if for every profile p, every k ∈
[m− 1], every diversity constraint q, and any candidate a ∈ A such that a ∈ W for some

W ∈ F (p, k, q), then for any preference profile p′ obtained from p by shifting the candidate

a one position forward in some individual preference pi, it holds that if candidate a was

ranked immediately below some candidate b such that j(a) ̸= j(b), then W j(a) ⊆ W ′j(a) for

some W ′ ∈ F (p′, k, q).

Intuitively, if a is shifted one position forward after a swap with a candidate b from

a different class, then all the candidates from the same class as a that were selected in

W should still be selected in a winning committee when we consider the new profile. In

contrast with the original form of non-crossing monotonicity, we do not require the prior

candidate b to be not selected.

Theorem 3 A diverse committee scoring rule F is (weakly) separable if and only if it

satisfies type monotonicity.

Proof. Let F be a diverse (weakly) separable committee scoring rule defined by the family

of scoring vector α = (αk)k≤m−1. Let a be a candidate belonging to a winning committee

W ∈ F (p, k, q) and i be a voter that ranks candidate a at a given position t ∈ {2, · · · ,m}.
Let b be the candidate ranked at the position (t − 1) in ≻i such that j(b) ̸= j(a). After

voter i swaps a and b, candidate a gains αt−1 − αt points, candidate b loses αt−1 − αt

points, and all the other candidates keep the same individual score. Since b /∈ Aj(a), it

holds that the swapping does not decrease the total score of the candidates from W j(a).

Therefore, all the members from W j(a) still belong to a winning committee with respect

to the new profile p′.

Conversely, let F be a diverse committee scoring rule associated with a family of scoring

functions f and a reward M . Assume that F satisfies type monotonicity and let us show

that F is weakly separable.

Consider the preference profile p with m! voters wherein each linear order is cast by one

voter. In this case, all size-k committees have the same excellence score and the winning

committee is any size-k committee with the maximal diverse score. Let I = (i1, . . . , ik)

be the rank of such a committee that contains a position t ∈ {2, . . . ,m}. Let i ∈ N

be a given voter such that the two candidates that fill the positions t − 1 (candidate b)

and t (candidate a) are from different classes, and let W (I) be the set of k candidates

such that r(pi,W (I)) = I. It holds that W (I) is a winning committee with respect to p.

Let p′ be the profile obtained after swapping candidate b at the position t and candidate
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a at the position t − 1 in the linear order of voter i and let I ′ be the committee rank

obtained from I after this permutation. Let us note that I = I ′ if I contains the position

t − 1; that is, if candidate b also belongs to W (I). Since F is type monotonic, we have

W (I)j(a) ⊆ W for some W ∈ F (p′, k, q). Let J = r(pi,W ) be the rank of the committee

W in the linear order of voter i, and let J ′ = r(p′i,W ); obviously, J contains position t

and J ′ contains position t − 1. The difference of scores of W between the two profiles p′

and p is equal to fm,k(J
′)− fm,k(J). This difference of score does not depend on the rank

I. Indeed, let I∗ be another rank of a committee maximizing the diversity score, J∗ and

J∗′ be the ranks obtained from I∗ analogously, and W ∗ be the corresponding committee

(the committee such that r(pi,W
∗) = J∗). It holds that W and W ∗ have the same

maximal score across the two profiles p and p′; it then follows that fm,k(J
′) − fm,k(J) =

fm,k(J
∗′)− fm,k(J

∗). Thus, we can define the function hm,k : {2, . . . ,m} → R+ such that

hm,k(t− 1) = fm,k(J
′)− fm,k(J) for any rank J containing the position t.

The rest of the proof is similar to that of Theorem 10 in Faliszewski et al. (2019) and we

point the reader toward that work.

Another desirable property of multiwinner elections defined by Elkind et al. (2017) is

the consensus committee property. This property is originally defined as follows: Let p be

a preference profile and k be the committee size. If there is a committee W of size k such

that each voter ranks some candidate from W first and each member of W is ranked first

by ⌊nk ⌋ or ⌈nk ⌉ voters, then F (p, k) = {W}. We fit this property to our model by focusing

on a single class and we call it type consensus.

Definition 20 A DCSR F satisfies type consensus if for every preference profile p, any

diversity constraint q, and any type j ∈ [l]∗q, it holds that if there is a qj-element subset

Qj of Aj such that each voter ranks some member of Qj first, and each member of Qj is

ranked first by ⌊ n
qj
⌋ or ⌈ n

qj
⌉ voters, then Qj ⊆ W for all W ∈ F (p, k, q).

We can check that the diverse form of the Chamberlin-Courant rule given in (9) satisfies

the type consensus property since any subset Qj that meets the conditions of Definition

(9) necessary has the maximal excellence score whenever such a subset exists. However,

not all diverse committee scoring rules satisfy this property. The next proposition gives

an overview regarding diverse separable committee scoring rules.

Proposition 8 Let F be a diverse separable committee scoring rule based on the scoring

vector α = (α1, α2, . . . , αm).

1. If F = diverse SNTV, then F satisfies type consensus.

2. If F ̸= diverse SNTV, then F satisfies type consensus if max
j∈[l]

qj <
α1
α2

whenever the

number of voters is sufficiently large.

3. If F ̸= diverse SNTV, then F fails to satisfy type consensus if there is a type j ∈ [l]

such that qj ≥ α1
α2
.
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Proof. Let F be a diverse separable committee scoring rule based on the scoring vector

α = (α1, α2, . . . , αm) and p be a preference profile. Let q = (q1, . . . , ql) be a diversity

constraint. Let us prove the three points separately.

1. Assume that F is the diverse SNTV rule; that is α2 = 0. Then each member of Qj

gains at least one point and the score of any non-member of Qj is null. Since the

diversity constraint requires at least qj members from Aj , then Qj ⊆ W (by optimal

diversity) for all W ∈ F (p, k, q).

2. Assume that F ̸= diverse SNTV and maxj∈[l] qj < α1
α2
. Let j ∈ [l]∗q and Qj be a

qj-element subset of Aj such that each voter ranks some candidate from Qj first

and each candidate from Qj is ranked first by ⌊ n
qj
⌋ or ⌈ n

qj
⌉. Then the individual

score of every candidate from Qj is at least ⌊ n
qj
⌋α1 ≥ ( n

qj
− 1)α1 > nα2 whenever

n >
qjα1

α1−qjα2
> 0 (since α1 − qjα2 > 0). Thus, the individual score of each member

of Qj is greater than nα2 ≥ S(p, x) for all x ∈ A \Qj . Since the selected committee

contains at least qj candidates from Aj , it holds that Qj ⊆ W for all W ∈ F (p, k, q).

all

3. Assume that α2 ̸= 0 and that there is a type j ∈ [l] such that qj ≥ α1
α2
. Assume that F

satisfies the type consensus property. We can construct a profile with m candidates

and qj +1 voters as follows: the class Aj contains at least qj +1 candidates that we

can write Aj = {a1, . . . , aqj , aqj+1, . . . , amj}, each of the candidates a1, . . . , aqj−1 is

ranked first by one voter, candidate aqj is ranked first by 2 voters and all the voters

rank aqj+1 second. Moreover, from position 3, all the voters rank all the candidates

from other classes before all the remaining candidates in Aj and, finally, all the voters

who do not rank candidate a1 first rank it at the last position. By considering a

diversity constraint q such that
∑l

s=1 qs = k, it follows that the selected committee

should contain exactly qj candidates from Aj . Since F satisfies the type consensus

property, it follows that W j = {a1, . . . , aqj} for all W ∈ F (p, k, q), which means that

a1 has a greater individual score than aqj+1. However, the score of candidate aqj+1

is nα2 = (qj + 1)α2 and it follows that α1 > (qj + 1)α2 which is a contradiction.

Hence F fails the type consensus property.

As mentioned earlier in this section, we focused on the properties of multiwinner rules

that can be adapted to the diverse committee selection framework. Let us mention that

some other well-known properties of multiwinner rules such as anonymity, homogeneity,

consistency, and candidate monotonicity11 are trivially satisfied by every diverse committee

scoring rule. The anonymity property requires that the result of any election does not

depend on the names of voters. Formally, for any triplet (p, k, q) and any permutation

π on the set of voters, F (π(p), k, q) = F (p, k, q), where π(p) = (pπ(1), . . . , pπ(n)). The

homogeneity property requires that every duplication of the preferences of voters leads

to the same result. Formally, F (tp, k, q) = F (p, k, q) for all t ∈ N∗, where tp is a new

11See, for instance, Elkind et al. (2017).
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profile in which each voter’s preference in p is replicated the same number of times t.

The consistency property requires that if W is a winning committee with respect to two

preference profiles p and p′ that are respectively cast by two disjoint set of voters N1

and N2, then W should still be winning when we merge the two profiles. Formally, if

F (p, k, q) ∩ F (p′, k, q) ̸= ∅, then F (p + p′, k, q) = F (p, k, q) ∩ F (p′, k, q), where p + p′ is

the profile cast by the set N1 ∪N2. The property of candidate monotonicity requires that

if a candidate a belongs to a winning committee with respect to the profile p, then for

any profile p′ obtained from p by shifting a one position forward into a voter’s preference

while keeping all the other preferences unchanged, then a should still belong to a winning

committee with respect to p′.

The neutrality property is also well known in the literature of social choice theory.

It is a typical condition that is considered to ensure equal treatment of alternatives and

requires the result of an election to change in compliance with renaming of alternatives.

Let σ be a permutation of the set of candidates A and p be a preference profile. Let

σ(p) = (σ(p1), · · · , σ(pn)) be a new profile such that for any voter i ∈ N and all a, b ∈ A,

σ(a)σ(≻i)σ(b) ⇔ a ≻i b. The property of neutrality has originally been defined as follows:

For any committee size k ≤ m−1, we have F
(
σ(p), k

)
= σ

(
F (p, k)

)
, where σ

(
F (p, k)

)
=

{
σ(W ) : W ∈ F (p, k)

}
. In our setting, we can naturally adjust this property by making

some restrictions on the set of possible permutations σ such that for every candidate

a ∈ A, j(a) = j(σ(a)); that is, the permutations changing any candidate into a candidate

with the same type. In this case, we can check that any diverse committee scoring rule

satisfies this property. Without the above restriction, we cannot insure that the property

is satisfied.

The non-imposition property is also well known in the literature of social choice theory

and requires in its original form that any committee having the target size can be selected.

It is clear that this property is failed by every diverse committee scoring rule since we

impose in our selection process that the only committees that could be chosen are those

that respect the diversity constraint or those that come as close as possible to the diversity

constraint.

Note also that some properties defined by Lang and Skowron (2018) in order to select

diverse committees in the multi-attribute setting can be reshaped to our model.12 House

monotonicity, for instance, is trivially satisfied by every diverse separable committee scor-

ing rule. The house monotonicity property can be defined in our model as follows: If a

committee W is a winning committee with respect to the triplet (p, k, q) and a committee

W ′ is a winning committee with respect to the triplet (p, k′, q) with k′ > k, then, for any

type j ∈ [l], the number of candidates with type j in W ′ is greater than (or equal to)

the number of candidates with type j in W . However, it seems to us that some other

properties defined by Lang and Skowron (2018), such as the non-reversal property, are

not meaningful in our framework. Literally, the non-reversal property requires that, if the

12Note that those properties are generalisations of axioms commonly considered in the political science
literature in the context of apportionment (Balinski and Young, 1979, 2001).
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diversity quota of a type j is greater than the diversity quota of another type j′, then

the proportion (or number) of the selected candidates of type j should be greater than

(or equal to) the proportion of the selected candidates with type j′. This condition is no

longer relevant in our framework since the diversity quota enforced for each class is the

minimal number of candidates to be selected, but not the exact number of candidates to

be selected from the class.13

5 Concluding comments

In this paper we considered the problem of selecting sets of candidates of a predefined

size (committees) on the basis of the preferences of the voters. Specifically, we were

interested in committee selection subject to diversity constraints. We assumed that the

set of candidates is partitioned into classes (such as classes of men and women) according

to a specific attribute (such as gender) and the goal is to select a committee that, on

the one hand, has the highest possible score regarding a given excellence measure, but

that, on the other hand, meets certain diversity specifications regarding the composition

of the committee. We have shown in this paper how the well-known class of committee

scoring rules can be extended and used for the selection process in this framework. This

extension is called throughout the paper the class of diverse committee scoring rules. The

next step was to present some new properties that are desirable in our framework. We

considered adaptations of well-established properties from the literature dealing with the

standard committee selection framework and, further, we introduced new axioms that are

specific to the task of committee selection under diversity constraints. Our next goal was

mainly to study the behavior of the class of diverse committee scoring rules by testing

those properties.

A number of questions remain open for future work, but it seems to us that among

all, two directions are most pressing. The first direction is to apply our framework to

Condorcet-based rules. The class of diverse committee scoring rules that we presented in

this paper are fundamentally different from the rules that are motivated by the Condorcet

principle. It would thus be interesting to investigate how diversity constraints should be

dealt with when the selection process is based on pairwise majority comparisons. The

second direction would be to follow the work started by Bredereck et al. (2018) who

introduced the concept of “price of diversity”, which quantifies the “cost” of introducing

diversity constraints in the committee selection setting. Basically, the committees that

maximize the excellence score using a committee scoring rule are not necessarily diverse

(with regard to the diversity constraint) and, then, we sometimes need to “pay a price” in

order to select a diverse committee. Bredereck et al. (2018) express the price of diversity as

the ratio between the score of the committee that would have won without considering the

diversity constraint and the score of the committee that wins when the diversity constraint

13Similarly, it seems to us that exactness and respect of quota and population monotonicity defined by
Lang and Skowron (2018) are not compatible with our setup for the same reasons.
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is taken into account. We believe that this concept deserves more attention.
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